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Approximations of Variational Problems in
Terms of Variational Convergence

Huynh Thi Hong Diem

Abstract— We show first the definition of
variational convergence of unifunctions and their
basic variational properties. In the next section, we
extend this variational convergence definition in case
the functions which are defined on product two sets
(bifunctions or bicomponent functions). We present
the definition of variational convergence of
bifunctions, icluding epi/hypo convergence, minsup-
lop convergnece and maxinf-lop convergence, defined
on metric spaces. Its variational properties are also
considered. In this paper, we concern on the
properties of epi/hypo convergence to apply these
results on optimization proplems in two last sections.
Next we move on to the main results that are
approximations of typical and important optimization
related problems on metric space in terms of the types
of variational convergence are equilibrium problems,
and multiobjective optimization. When we applied to
the finite dimensional case, some of our results
improve known one.

Index Terms— Variational
variational properties saddle points
problems multiobjective optimization

convergence
equilibrium

1 INTRODUCTION

ariational convergence has been considered for
half a century with many important
applications because it preserves variational
properties. This preservation means that, when a
sequence of functions converges to a limit function,
properties such as being infimum or supremum
values, minimizers, maximizes, minsup or maxinf
values, minsup-points, saddle points, etc, of these
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functions are inherited by the limit functions. These
objects have played important roles in variational
analysis and optimization-related problems. Hence,
variational convergence is vital for studying
approximation, estimation, stability or sensitivity in
these areas. For unicomponent functions
(unifunctions, or simply, functions), the basic
variational convergence is epi-convergence, which
was introduced in [1-3]. For bicomponent functions
(or simply, bifunctions), i.e., functions of two
components, and one wants to minimize with
respect to (wrt) one component and maximize wrt
the other. The first variational convergence is
epi’hypo convergence proposed in [4,5] and the
second notion is lopside convergence defined in
[6]. In [7,8] lopside convergence of finite-valued
bifunctions defined on rectangles (i.e., product sets)
was introduced and studied with applications in
approximation/stability of variational problems. In
[9,10] epi/hypo convergence of finite-valued
bifunctions defined on rectangles was developed
for the finite-dimensional case. For unifunctions the
books [11,12] are prominent comprehensive
references. Epi-convergence is used in [11,12,13]
for scalar minimization, graphical convergence is
applied in [11] for complementarity problems and
in [14] for variational inequalities, and lop-
convergence is the tool in [15,9,10,16] for various
models. Epi/hypo convergence is studied and
applied in [17,18,10,19].

Regarding the notation, for a subset 4 of a
metric space X, int4 and bd4 stand for its
interior and boundary, respectively. For a function
v X -R=Ru {+o0} , liminfy and 1imsupy/
designate the lower and upper limits of y as x

tends to x. A function y:R” >R is said to be
lower (upper, resp) semicontinuous (abbreviated as
Isc (usc, resp)), at x if liminf, sy(x)2ywX)
(limsup ,_,zw(x) <y (x)) . For a sequence of subsets
4% in x, the lower/inner limit and upper/outer
limit are defined by

LiminﬁcAk ={xeX| Wk > x with 1 e Ak},
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LimsupkAk ={x e X |3k; (a subsequene),
Elxk/ — x with xk[ € Ak[ }.
If Liminf, 4= Limsup ; 4%, one says that *

tends to 4 or 4= Lim,4" (in the Painlevé-

Kuratowski sense). In the sequel denote the
collection of the finite-valued unifunctions by fv-
fen( x ), and we sometimes write simply li, Is, Li,
Ls for liminf, limsup, Liminf, Limsup, resp.

2 VARIATIONAL CONVERGENCE OF UNIFUNCTIONS

In this section, we discuss types of variational
convergence of functions in fv-fcn( x ) and their
basic variational properties. From now on in this

paper, let 4% 4cx  be and

{gok - AF ->R}p.p:4->R

nonempty

Definition 1 (Epi-convergence, [7]) {¢*};, is
called epi-convergent to ¢ , denoted by ¢ = e-

lim kgok or ¢f j)q) if the following conditions are
satisfied

(a) for all x* € 4F - x, liminf ;¥ (x*)> p(x) when
xed and ¢f(x*) >+ when xe4;

(b) for all xe4, there exists xfe4f—x such
that limsup ;" (x*) <p(x).

("3, is called hypo-convergent to ¢, denoted

h
by ¢= h-lim (o or of g if —oF epi-converge to

0.

Proposition 1 Let 4%, 4c x be nonempty and
{gok:Ak —->R}i,p:4->R.

(i) ([12], Proposition 5.33) Lim ;ghpo* =gpho
(i.e., o* graphically converge to ¢ ) if and only if
the following two conditions hold, for all xe 4,

(a) for all exists a

¥ ea 55 there

subsequence 7 such that lim j(pkj (xkf Y=o0(x) ;
(8)
lim ;0" (%) = ().

(ii) ¢* graphically converge to ¢ if and only if

there exists xfe4f¥ >x such that

they both epi- and hypo-converge to ¢ and
lim 4% =4.
(iii) If {p*}; converges continuously to ¢

relative to sequence 4% — 4, then it both epi- and

hypo-converges to ¢. Proof  (ii)) Use the
characterization by conditions («) and (4) in (i)

for graphical convergence. (iii) This is clear.
w

In the rest of this section, we recall most
important  variational  properties of  epi-
convergence, see [7].

Theorem 1 (Epi-convergence: basic property)

Let o*.pe fi-fen(x ) and o= e-limo* . Then,

limsupy (inf " () < inf 4(x).
o ko .. k.
Moreover, if x / is a minimizer of ¢ / for some

subsequence {k;}; and LT Sved , then ¥ is a
minimizer of ¢ and the minimal values tend to that
of Q.

The second part of Theorem 1 can be expressed
equivalently as: if e-lim ;¢ = ¢ then

AN Limsupy (argminAk q;k) c argmin 4.

It is easy to prove the extension that if £¥10 then

AN Limsupk(gk -argmin 4k (pk) C argmin 4.

To guarantee the equality in this relation with
the full Lim instead of Limsup and also the
convergence of the infimal values, we need the
following tightness notion.

Definition 2 (Tight epi-convergence) We say
that a sequence {¢*}; epi-converges tightly to ¢ in
fv-fen (x) if it epi-converges and, for all positive
¢, there exists a compact set B, and an index &,

such that, for all k>k, ,
infBg " o <inf ot +e.

Theorem 2 (Convergence of infima) Let ¢*,p<
fv-fen (X), o= e-lim ;0" and inf 0 be finite.
Then, the epi-convergence is tight

(i) if and only if inf k oF >infie;

(ii) if and only if there exists a sequence 10

such that 4~ Limge® - argmin o = argming .

3 EPI/HYPO CONVERGENCE OF BICOMPONENT
FUNCTIONS AND VARIATIONAL PROPERTIES

We investigate 4,45 x| B,B¥ v,
ok 4*xB¥ SR, and ®:4xB >R

Definition 3 (Epi/hypo-convergence)
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Bifunctions ®F, keN, in fv-biv (X x¥) are called
epi/hypo convergent (e/h-convergent) to a
bifunction @ e fv-biv (X xY) if

(a) for all yeB and all x* e 4¥ - x, there exists
y¥eBF >y such that liminf,o*(*, %) > d(x,y) if
xed or dF(k, %) 540 if xed;

(b) for all xe4 and all y* eB* — », there exists
xF e 4¥ 5 x such that limsup ;@F(F,y5) <@(x,y) if

yeB or q)k(xk,yk)—)foo if yeB.

We denote this convergence by @ = e/h-lim ;@

or clhke—/fcb. Note that if the functions @ do not
depend on y, then epi/hypo convergence reduces
to epi-convergence, and if they do not depend on
x, it collapses to hypo-convergence. However,
note that epi/hypo convergence is not epi-
convergence of the ®*(,y) to ®(,y) for all y and
hypo-convergence of the ®*(x,) to ®(x,) for all x.
This is a sufficient condition for e/h-convergence,

but not necessary. Indeed, ®* in Example 1 below
e/h-converge, but it does not hold that

oF (., y)iCD(-, y) for all yeB. It should be noticed

also that the definitions of epi/hypo and hypo/epi
convergence are symmetric. Furthermore, hypo/epi
convergence coincides with epi/hypo convergence,
if we insist minimizing in x and maximizing in y,
changing only the order of these two operations.
(This fact was not noted clearly in existing papers
in the literature.) To see that this symmetry is an
important feature of epi/hypo convergence, let us
recall the following.

Definition 4 (Minsup-lop convergence, [7])
Bifunctions ®f e fv-biv (X xY) are said to minsup-
lopside converge (minsup-lop converge) to ® e fv-
biv(x xY) if

(a) for all yeB and xFe4f—x, there exists
y¥eB¥ >y such that liminf;o*(x*,y%)>d(x,y) if
xed or dFGK, 5y 5o if xed;

(b) for all xe4, there exists xfe4f—>x such
that, for all yk cB* > v, limsup k(Dk(xk,yk) <D(x,y)

if yeB or d)k(xk,yk)—)foo if yeB.

Observe that Definition 4 is nonsymmetric: the
following maxinf-lop convergence is different from
minsup-lop convergence:
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(a) for all xe4 and y*eB* >y, there exists
xF e 4¥ 5 x such that limsup ;@F(F,y5) <(x,y) if
yeB or oF(F yFy > -0 if yeB;

(b) for all yeB, there exists y*eB* > such
that, for all x¥ e 4% - x, liminf,®*(*, %) > d(x, y)
if xed or d)k(xk,yk)—>oo if xed.

Lopside convergence clearly implies e/h-
convergence. Indeed, condition (a) of the
definitions are the same whereas condition (b) of
lop-convergence is clearly stronger than (b) of
epi/hypo convergence. To see this, simply observe
that, if for all xeC one can find a common
e 4N that

sequence such

limsup ; @F (*, %) < d(x, ) or X (* 15y > —w
depending on y belonging or not to B as lop-
convergence requires, then certainly (b) for
epi’hypo convergence is satisfied, since one can
even choose such a sequence x* - x to depend on
¥ -5 ». However, the converse does not hold as
shown by the following.

Example 1 Let 4% =38%=[1/k,1], 4=B=[01],
and

k )1 if(X,Y)EAkXBkandx:ty,
O (x,y)= i i
0 if(x,y)e A" xB" and x=y.
Then,
1 if(x,y)€[0,1]and x# y,
O(x,y)= ’ i
0 if(x,y)e[0,1]and x=y.

elh
Clearly o* - . We show that condition (b) of
Definition 4 of minsup-lop convergence is violated.
For x=0 and any x*e4*>x, we take y=0 and

¥ eB¥ 50 such that % =x* for all &. Then,

limsup @ (", y¥)=1>0=d(x, ) .

Remark 1

(1) It is clear that continuous convergence of
o () AFxBF SR
sequence 4% xB% - 4xB implies all kinds of e/h-,
minsup-lop and maxinf-lop convergence. (We
know already in Section 2 that continuous
convergence implies also both epi- and hypo-
convergence of @f(.).) So, continuous
convergence is a variational convergence too. But,
this convergence is very strong and hence difficult
to be satisfied.

(i1) Limits of an e/h-convergent sequence are not
unique. The limits form a class of bifunctions,
called an e/h-equivalence class ; see e.g., [9].
However, as we will see below, fortunately almost

bifunctions relative to the
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all variational properties are the same for all the
limit bifunctions in an equivalence class.

(ii1) In [9], characterizations of e/h-convergence
and lop-convergence of finite-valued bifunctions
were established. In particular, [9, Theorem 3]
asserted the equivalence of the e/h-convergence of
a sequence of finite-valued bifunctions and the e/h-
convergence of the corresponding proper extended-
real-valued bifunctions.

Naturally expected variational properties of e/h-
convergence are those related to saddle points,
since this convergence is symmetric. Recall that a
point (x,y)e AxB is said to be a saddle point of @ e
fv-biv (X xY), denoted by (x,y)esdi®, if, for all
xed and yeB,

D(x,y) SO, y) < D(x, ),
or equivalently,  ®(x,y)<®(x,y)
(x,y)e AxB .

In applications, approximate saddle points often
exist even when saddle points do not. Hence, we
will prove the following convergence of
approximate saddle points. The convergence of
saddle points will follows immediately. Recall that,
for a nonegative ¢, a point (x,y)e Ax B is said to be
an ¢ -saddle point of ® e fv-biv (X xY), denoted by
(x,y)ee-sdlo, if, forall xe4 and yeB,

D(x,y) - <D(X,y) <D(x,y) + &,
or equivalently, ®(x,»)-e<®(x,y)+¢
(x,y)e AxB .

Let us define the sup-projection and inf-
projection of a bifunction ®e fv-biv(xXxY) by,
resp,

for all

for all

c():=supyepd(,»), n()=infyc 4 P(x,.).
We have the following simple relation between
approximate solutions.

Proposition 2 Let ® e fv-biv (X xY) and ¢ and
n be its sup-projection and inf-projection,
respectively.

(1) If (x,y)ee-sdlo, then Xxe2¢-argmin(s) and
ye2e - argmax (7) .

(i) If ¥ee- argmin(s) and yee - argmax(y),
then

n(») < O(x,y) <¢(x),

sup infyec 4 P(x, ) — & SO(X, ) < inf sup,ep P(x, y) +&.
yeB xed

Therefore, if ® has a saddle point (x,), then
DO(X,y)—e<D(X,y) <D(x,y) +eé.

Proof (1) We have

s(x¥)=sup B(x,»)= O(x,y) +¢
yeB

= inf ®(x,y)+2¢ < inf sup O(x,y)+2¢ = inf ¢(x) +2é.
xed xed yeB xeA

The corresponding property of 5 is checked

similarly, (ii) It is clear that

O(x,y) 27(y) 2 sup inf P(x,y)-¢&.
yeBxeA

The two right inequalities are proved similarly.
Finally, if (x,y)esdi® , then
D(F,y) - <D, ) - <DE,J) SDEFE,F) + £ <D(x, T) +&.

In the remaining part of this section, we
investigate variational properties of an arbitrary
e/h-limit under some additional conditions. We will
see that all the e/h-limits in an equivalence class
share many common properties. This fact should be
highlighted, since in many applications it helps to
avoid dealing with whole equivalence classes.

Theorem 3 (Convergence of approximate saddle

points) Let a sequence {®*}; e/h-converge to @ in
fv-biv (X xY), £X1e>0 and, for all keN,
&, 75y e ek - sdl ok . Let (x,y)e AxB be a cluster
point of this sequence of approximate saddle
points, say (x,y)= 1imk()_ck,}k) for some
subsequence NcN. Then, (x,y) is an ¢ -saddle
point of ® and
D(x, ) = lim dF &7F, 55).

Proof We can assume
&%, 55> x5 . Pick
sequences x* e 4F > x and ¥ e BX - ) satisfy

that actually
any (x,y)edxB. Any

of K, Ky -k <ok (R 50y < of (oF 5Ky + oK.
These inequalities imply that

o ko=k _k\_ _k
SuP{ykeBk_)y}llm”lfk(‘D "% -

<liminfy ® (2*, 3% <limsup, ®* 7%, %)
. . kook <ky,  k
<
Sinf, ke gk limsupe (PTG, 7Y +27),
By the definition of e/h-convergence, one has

D(x, y)—& <sup liminfi (@FF, yFy - &)

{ykeBkey

. . ko k <k, k -
< ms [0} + <d
_mf{xkeAk x}lz supy (O (x", ")+ &)< D(x,y) + €.

These inequalities mean that (x,y) is an ¢-
saddle  point  of . To see  that
D(x,y)= likaDk(J_ck ,}_/k ), simply observe that the e/h-
convergence and x* —»x ensure the existence of a
sequence y* e BF 5 satisfying

O(F, 7) < liminf D ¥, )
<liminfi (©F G* . 55)+ &) =liminoF (*,55),



TAP CHI PHAT TRIEN KH&CN, TAP 20, SO K2-2017

where the second inequality follows from the
approximate saddle point inequalities. With the role
played by the x-variable and the y -variable
reversed, a similar argument gives

D(x,y) > 1imsupd>k()_ck,)7k).
k—o0

Clearly, by taking =0 in the preceding
statement, we obtain the following basic result on
convergence of saddle points.

Theorem 4 (Convergence of saddle points) Let a

sequence (@} e/h-converge to ® in fv-
biv (xxY) and *,5%) be a saddle point of ok for
all keN. Let (x,y)e AxB be a cluster point of this
sequence of saddle points, say (x,y)= limg (2%, 576)
for some subsequence NcN. Then, (x,7) isa
saddle point of ® and

O(F, ) = lim @ (7,77,

Observe that, in the above two theorems, neither
convex-concave conditions, nor continuity, nor
compactness, nor even closedness are imposed. We
assume only epi/hypo convergence. So, this
convergence is a very suitable notion for
considering saddle (or approximate saddle) points.

Theorem 3 can be restated as follows, for the
case ¢=0. If o e/h-converges to @ and 0,
then

(Ax B) N Limsupy, (sk -sdl (I)k) csdid.

To have equality with the full Lim instead of
Limsup in the above relation, i.e., to have also

(Ax B) N Liminf}, (gk -sdl d)k) o sdlD,

we propose new notions of tightness in
Definition 5 below. Note that these tightness
definitions reflect the symmetric roles of x and y
in the symmetric e/h-convergence (cf. discussions
after Definition 3). They are different from the
known notions of tightness in [7] which are
nonsymmetric.

Definition 5

(i) (x-ancillary tightness) ®f is called to e/h-
converge x -ancillary tightly to @ in fv-biv (X xY)
if (a) of Definition 3 and the following condition
are satisfied:

(b>-t) for all xe 4, there is x* e 4F - x such that
h-lim kd)k (xk ;) =®(x,) and gk(xk) = c(x).

(i) (y -ancillary tightness) @ is said to e/h-
converge y -ancillary tightly to @ in fv-biv (X xY)
if (b) of Definition 3 is fulfilled together with
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(a’-t) for all yeB, there is y* € B¥ >y such that
e-lim 4 (. ") =@(.y) and 7*(*) > () -

(ii1) (tightness) If both (b’-t) and (a’-t) are
satisfied, @ is called to e/h-converge (fully)
tightly to @.

Theorem 5 (Convergence of approximate
saddle points to any given saddle point) Suppose

that o e/h-converges (fully) tightly to @ in fv-
biv (X xY) . Then, the following statements hold.

(i) sdl® c A ,oqLiminfy (s - sdl %),
(ii) Therefore, for each &0, &,y esdio and
large k, there exists (3¥,7%)e&* - sdl @ such that

G- Ey) e,
(Ax B) A Liminf;. (£° - sdl o) 5 sdio.

Proof (i) For each (x,y)esdi®, the tightness

ensures the existence of ¥ ec4f¥ 5% and
y* e BX 5 5 such that
h—limp ®F (K ) = D(x,), F ) = @), )
e~limgd* (,5%) = gC.y), n* 55— n(3). )

It suffices to show that, for all positive ¢ and
large &,

of @, 552 sup oF &, p)-e, 3)
yeBk

oF & 55 < inp oF (5,75 + 4. 4)
xeAd

Suppose to the contrary to (3) that there is &,
and a subsequence k; such that
d)kj ()_ckj,}kj)< sup d)kj ()_ckj,y)fgo.
yeBkj
Taking liminf on both sides, (1) and (2) imply
that

. k. _k. _k, _
O(x,y) <liminf® 7 (x 7,y /)< sup O(x, ) - &,
J yeB

which is impossible since (x,y)esdi® . Inequality
(4) is similarly proved. (ii) Given £,10 and a fixed
u, by (i) one has a sequence (¥k.7%)ee, -sdlof
converging to (x,y) . Using the diagonal technique
we obtain the required sequence (x}.7f) and

complete the proof.

Example 2 Let o*(x,y)=y* on [01] for all

keN, with the convention that 0° =1. In Example 2
of [9], it was computed that all the bifunctions



112 SCIENCE & TECHNOLOGY DEVELOPMENT, Vol 20, No.K2- 2017

®, (r.y) =1 ¥ OV EOIE{00)),
T e ity =00,

for any ae[0,1], are e/h-limits of the sequence
(@} , i.e., they form the e/h-equivalence class. It is
easy to check that e/h-lim @ =@, fully tightly.
Evidently, each point in {(x,1)|0<x<1} is a saddle
point of all o and @, for all keN and a<[0.1].
So, the saddle points are preserved under tight e/h-

convergence and the saddle points are the same for
all limits in the e/h-equivalence class.

4 APPROXIMATIONS OF EQUILIBRIUM PROBLEMS
Consider the following equilibrium problem
(EP) find xe 4 such that ®(x,y)<0 forall yeB,
where 4AxBc xxY and ®:4xB—>R. The (EP)
was shown to be a genuine generalization of many
optimization-related problems in [20], by pointing
out particular (EP) model which do not fit the
framework of variational inequalities, which are
also general but are special cases of (EP). Note that,
in fact, we have not seen papers arguing if a
solution of (EP) may be really a physical/technical
equilibrium point or not. But, the economical and
social meaning of “equilibrium" has been
confirmed by many considerations of practical
problems like traffic networks, non-cooperative
games, etc.

Assume that for (EP) we have a sequence of
approximating problems (EP¥) with
@F: 4¥xB¥ >R . Denote the solution set of (EP)

((EP¥), resp) by S (S*, resp).

Proposition 3 If e¢/h-lim ,&F = or e-
lim @ =@, then
(AxB) r\Limsukak cSs,
i.e., any cluster point in 4xB of a sequence of
solutions of problems (EP ¥ ) is a solution of (EP).

Proof Let xednLimsup, S*, ie., there

. k.o k. . _
exists a sequence {x /} in S / converging to Xx.
For any (fixed) yeB, by (a) of Definition 3, there
. k.o k, .
is a sequence {y /}; in B/ converging to y such

.. k., k. k, _ i
that liminf ;& /(x /.,y /)2 0(%, ) . Since
k; k. k. k. k.
® /(x,y)<0 forall j and yeB/, @ /(x 7,y /)<0
. k., k, k,
for all j and hence liminf;, @® /(x /,y /)<0. Thus,
7

®(x,y)<0 for any yeB,i.e., x is in S. The proof

for the case where ®f epi-converges is similar.
W

The above assertion improves Theorem 6.11 of
[21], where the e/h-convergence is replaced by the
stronger minsup-lop convergence, and it is assumed

further that 4= B, 4% = B¥ are closed, 4% xB* - 4xB

and @F @ are Isc-usc for the case of minsup-lop

convergence and Isc for the epi-convergence case.

The above statement can be extended to the case
of approximate solutions as follows. Let &:Xx >R
be continuous such that &(x)>0 if x=0. Consider
(EP) with m=n and 4=38. Following Definition
7.1 in [21], for £>0, a point xe4 is called an
(,¢) -approximate solution  of  (EP) if
O(x,y)<eé(x-y) for all yed. Denote the set of all
(¢,£) -approximate solutions of (EP) by S , - .

Proposition 4 If :%1e>0 and e/h-lim ;@ =@ or
e-lim ;% =@, then

(AxB)A Limsukal;k = Se.es

i.e., any cluster point in 4xB of a sequence of
(¢*,&) -solutions of problems (EPk) is an (¢,&) -
solution of problem (EP).

The proof is similar to that of Proposition 3.

We consider also the dual equilibrium problem,
introduced in [22],

(DEP) find yeB such that @(x,y)>0 for all
xed.

Observe that (EP) and (DEP) are dual to each
other, i.e., the dual of (DEP) is just (EP). To see
clearer the essence of duality of these problems, we
reformulate them as

(EP) find xe 4 solving min , ; sup ,cz®(x,») <0,

(DEP) find
max g inf .. 4®(x,3)>0 .

yeB solving

We have the following evident assertion, which
is stronger than corresponding statements in many
other duality schemes: x is a solution of (EP) and
also y is that of (DEP) if and only if (x,y) is a
saddle point of ® in 4xB and @(x,y)=0. Hence,
we have zero duality gap for any couple of
solutions x,y of (EP) and (DEP), resp. Similarly,

X.¢ 18 an (e,¢) -approximate solution of (EP) and
Ve,e 1s that of (DEP) if and only if (x, ¢,y ) is an
(¢,&) -approximate saddle point of ® in 4xB and
—e£(x-y)<D(¥,y) < ef(x - y) . Here, we naturally call
(X2 Ve,2) AN (&, -approximate saddle point of @
if
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O(xgz,0) =66 (xp g =) SDP(x, g £) +E6(x =Yg £)
for all (x,y)e AxB.
Suppose that (EP) and (DEP) have the
approximating problems, called (EP kY and

(DEP*), are stated in terms of ®f and 4%, BF
instead of o and 4, B. The following
approximation result is an immediate consequence
of Theorems 3 and 4.

Proposition 5 Let e/h-lim ,®F = .

(i) If £¥1e>0 and ¥ and y*, arean (5,8 -
&8 &g

approximate solution of (EP¥ ) and (DEPX), resp,
then the two components of any cluster point

(%;,6.75¢) in 4xB of the sequence (3%, )
’ ’ e7.8 .8

are an (¢ ¢&) -approximate solution of (EP) and
(DEP), resp, and one has

- oawk<k =k
<O N =lim; ® N <e.
(xg,&5Ye,£) = limy (xgk’§ ygk,é)
(i) In particular, for £=0 (i) becomes: if x*,
&8
and }"k are an (¢¥,&) -approximate solution of
&g

(EP¥ ) and (DEP ¥ ), resp, then the two components
of any cluster point (x,7) in 4xB of the sequence

{(}:‘k {:,;’g‘k {:)} are a solution of (EP) and (DEP),

resp, and one has
- o oawk<k =k
D(x,y) = lim®" (x s ).
g , ke ysk,é

Denote the set of the solutions (the (¢,¢)-
approximate solutions, resp) of (DEP) by DS
(DS ., resp). Proposition 5 (ii) can be rephrased
as follows: if £*]0 then

(A% B) A Limsupy (S, E Ds*, 5) = SxDS.

To have equality and with the “full" Lim instead

of Limsup, i.e., to have additionally
(Ax B) N Liminf(S*, xDs*  )5SxDs,
&8 .6

we impose tightness conditions and apply
Theorem 5 to obtain the following.

Proposition 6 If ® e/h-converges fully tightly
to @ and 10, then
(4xB)nLimg(8*,  xDsk, )=sxDs.
.8 .8
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5 APPROXIMATIONS OF MULTIOBJECTIVE
OPTIMIZATION

As aforementioned, it is well-known that
equilibrium  models encompass most of
optimization-related problems. However, in this
paper we restrict ourselves to the particular
equilibrium problem (EP), which is a single-valued
and scalar problem. So, in principle, it contains
only single-valued and scalar optimization-related
models. But, we can apply Propositions 3-6 for our
scalar  problem (EP) to the following
multiobjective  minimization  problem.  Let

Pl :Ac X >R and R™ be ordered partially by

RY . Our multiobjective minimization problem is

(OP)  findX € Ast.p(X)—(y) ¢ intRY forally e A.

Such a x is called a weak minimizer (or weakly
efficient point) of ¢ on 4. We can convert (OP) to
a special case of (EP) by setting, see, e.g., [20],

Q(x, y) = miny<j<m (93 () = 9i(¥)- )

Indeed, taking B=4, we have the three
equivalent assertions, for all ye 4,

Q(X,y) <0 < thereexistsi,p;(x) — p;(y) <0
o p(X)-p(y) e imRY.

The dual to (OP) according to the duality scheme
for (EP), ie., problem (DEP) for
Q(x, y) = miny<icp (9;(x) = 9 (), 18

(DOP) find ¥ such that ¢;(x)-¢;(y)>0 for all
xed, i=1,..m,

Such a solution y is called a strong/ideal
minimizer (or a strongly efficient point) of ¢ on
4. This duality scheme is different from the known
ones for multiobjective minimization, where the
dual for a minimization problem is a maximization
problem. From the definition of (OP) and (DOP),
we see that x,y are a solution of (OP) and (DOP),
resp, if and only if

Ac{xe X|p(x) € (p(x)+R" \ (=inR{ ) N (p(3) +RY)}.

By substituting ¥ and » in this inclusion, we
obtain ¢;(x)-¢;(y)e bdRY . Furthermore, y must
be unique, but x¥ not. Thus, we have a simple

geometric explanation in the objective space R™
for (OP) and (DOP).

Now we are interested in approximations of
these two dual-to-each-other problems.
Corresponding to the notion of (¢,£) -approximate
solutions for (EP) and (DEP), we define (¢,¢)-
approximate solutions for (OP) and (DOP) as
follows. With e:=(1,..,1)eR™, if

P(xg £)— ()-8 (xp g —y)e g iRy, forall ye A
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(P(x) = p(Vg,e) +&E(x~Yg £)e €RY, for all x € A,resp),
then x . ()¢, resp) is called an (5% -

approximate weak minimizer (an  (¢,&)-
approximate strong minimizer, resp) of ¢ on 4. In
fact, a little more general notion called an & -quasi
minimizer was already defined in [24] for
multiobjective optimization. Here, we formulate the
above two (¢,&) -approximate solutions as a special

case of the corresponding definitions for (EP) and
(DEP) and pay attention also on their duality.

To state consequences of Propositions 2-5 in
terms of the data of (OP), we need the following
definition.

Definition 6

(i) A sequence of m k

functions  {¢{’,..., Ptk »

defined on 4%, in fv-fen (x) is called to uniformly

epi-converge to m limits ¢,.,¢,, resp, if

Definition 1 (iii) is satisfied for all goik,goi and i,

with the sequence x* in (b) being common for all
1<i<m. The definition of uniform hypo-
convergence is similar.

(i) A sequence of m functions {pf...0f},

defined on 4* , in fv-fcn(X) is said to converge
uniformly graphically to m limits ¢,...,¢,, , resp, if
they all graphically converge and the condition ( 8 )
in Proposition 1 (i) is satisfied with the sequence
xF being common for all 1<i<m.

(Note that, in [21] and [23], there was already the
notion defined in Definition 6(i), but for the special
case where 4% — 4 and these sets are convex.) We
have a relation between Definition 6 and the

convergence of QF defined by the rule (5) as
follows. For the sake of completeness, we provide
also a proof of part (i), which is similar to that of
part (a) of Proposition 5.2 in [21], but we do not

assume that 4%, 4 are convex and 4% - 4.

Lemma 1 (i) If (plk ol uniformly epi-converge
10 .y, then QF defined by the rule (5) e/h-
converges to Q.

(i) If ¢f....¢}, uniformly graphically converge to
P1onom, then OF defined by the rule (5) epi-

converges to Q and 4% - 4.
Proof (i) We check first (a) in Definition 3 (of
e/h-convergence). For any x* e 4% — x , Definition 6

(i)(a) gives, for all i, liminf ,of (xF)> ¢;(x) if xe4.
By Definition 6 (i)(b), for all ye4, there exists
y*¥ e 4¥ -y such that limsup oK) <pi(y) for all
i. Hence, for all i,
liminf 1 (¢of ")~ 0¥ 2 0:()-;(») . On the other
hand, by the definition of oF, for all &, there is i
such that oF (%, )=, (¥ -0, (v¥) . Since the set
of indices i is finite (consisting of m elements),
there exists an index 4,  such that
=g =g 0F) for all &k (in a
subsequence of N). Therefore,
liminfi @ (5,5 = liminfi (o). 5= %))
201, ()= @i (1) 2Q(x, ).
If x¢d, of(*)—>+o for all i, and hence

OF(x¥,y¥) > +0. Thus, (a) of Definition 3 is
checked. Now consider (b). For all xe4 and all

yFedk 5y, (i)@) of Definition 6 yields
liminf ;. of F)>¢;(») for all i if yed, and (i)(b)
k k

gives xf ca* - x with limsup ;of F)<g;(x) for all

i . Consequently, for all ;,
limsup@* (*, y*) <limsupy (o (") - of (%)
< ;i (x) = @;(¥). Consequently,
limsup QF(xF, )5y <) . If yea, of (F)>+0
for all i, which implies that f(x* %) — . Thus,
Definition 3 is verified completely. (ii)) By
Proposition 1 (ii), golkgo,’ﬁ, both epi- and hypo-
converge uniformly to ¢....¢,, and 4% > 4. We
check first condition (a) for the epi-convergence of
oF . For all (x*,)%)e 4*x4* 5 (x,y) and indices i,
both

limsup kgo,k(yk)ﬁqo(y). Since the number m of

we  have liminf ; ¢ (%) > p(x) and
indices is finite, there is an index i, such that
Qk(kk=k ky_ ko k f 11
)= (=g 7)o a k up to
subsequences of N. Hence,
liminfi QX (F, %) = 1iminfi (0 (F) - (5))
0 0
2 @i, ()= @i () 2 Q(x, ).

Consider now condition (b). By the uniform
convergence (given by (ii)), for all (x,y)eAx4,
there exists (x¥,3%) - (x,y) such that, for all indices
i,

limsupp@® (+*, y*) < limsupy (of (*) - of (45))
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and then

<@;(x)—9; ()
limsup ,Q*(*, y¥) < Q(x, y) .
Denote the set of the weak minimizers and (s,&) -

approximate weak minimizers of ¢ on C by
WE(p,C) and WE  :(p,4). We have clearly the

following consequence of Proposition 3 for
stability of (OP).

Proposition 7 If X1c and (plk(p,’; uniformly

epi-converge to ¢i,...p,, , then

B

AnLimsupy WEX (%, 4F) c WE, (9. ),
&g

i.e., any cluster point in 4 of a sequence of
(¢¥,£) -approximate solutions of problems (OP )
is an (g,&) -approximate solution of problem (OP).
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Xap xi cac bai toan blen phan theo kiéu hdi tu
bién phan

Huynh Thi Hong Diém

Tém tit - Trwée hét chiing tdi trinh bay vé hoi
tu bién phin ciia hAm mdt thanh phan va tinh
chit co ban clia hdi tu nay. Trong phin tiép
theo, chiing t6i mé rong héi tu bién phan cho
ham c6 mién la tich ctia hai tap, ta goi la song
ham (ham hai thanh phin). Chung t6i dua ra
dinh nghia hdi tu bién phéin cia song ham xac
dinh trén khong gian metric gdm héi tu

epi/hypo, hoi tu minsup-lop va h§i tu maxinf-
lop. Tinh chit bién phan cia héi tu nay ciing
duoc xét dén & diy. Chuyén qua ndi dung chinh,
chiing t6i xét xAp xi ciia mdt s6 bai toan lién qua
dén toi wu hoéa quan trong va dién hinh: bai toin
cin bang va bai toan toi wu nhiéu muc tiéu. Khi
ap dung vao truwong hop dic biét 1a cac bai toan
twong ung trong khong gian hiru han chiéu, mot
s6 két qua ciia chung t6i ciing cai tién va lam siu
thém cac két qua twong wrng da cé trudc.

Tir khéa - Hpi tu bién phan, tinh chét bién phin,
diém yén ngura, bai toan cian bang, toi wu da muc tiéu



