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ABSTRACT: In this study, a multi-block structured grid deformation code based on a hybrid of 

transfinite interpolation algorithm and spring analogy has been developed. The combination of spring 

analogy for block vertices and transfinite interpolation for interior grid points helps to increase the 

robustness and makes it suitable for distributed computing. Elliptic smoothing operator is applied to the 

block faces with sub-faces to maintain the grid’s smoothness and skewness. The capability of the 

developed code is demonstrated on a range of simple and complex configuration such as airfoil and 

wing body configuration. 
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1. INTRODUCTION 

The numerical simulation of unsteady flow 

with multi-block structured grid arises in many 

engineering applications such as fluid-structure 

interaction (FSI), control surface movement 

and aerodynamic shape optimization design. 

One critical part in these applications is 

updating computational grid at each time step. 

The new mesh can be either regenerated or 

dynamically updated. The first approach is a 

natural choice that consists in regenerating 

computational grid at each time step during 

time integration. However, grid generation for 

complex configuration is by itself a nontrivial 

and time-consuming task. Even though there 

are still some robustness problems for large 

deformation to be solved, the second approach 

is inexpensive and appropriate for practical 

problems. 

Development of an efficient and robust 

grid deformation methodology that still 

maintains the quality of the initial grid 

(smoothness, skewness,…) generated by a 

commercial grid generation package is the 

subject of various studies in the past. Many 

methodologies such as transfinite interpolation 

(TFI), isoparametric mapping, elastic-based 

analogy and spring analogy have been 

proposed [1-7]. Some of them are 

computationally efficient but less robust with 

respect to the crossover cells while others are 

more robust but very computationally 

expensive. An algebraic method was used by 

Bhardwaj et al. [1] to deform the grid by 

redistributing grid points along grid lines that 
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are in the normal direction of the surface. Jones 

et al. [1] had used transfinite interpolation 

(TFI) method to regenerate the structured grid. 

Dubuc et al. [7] had provided the detail 

analysis of TFI method and discussed pros and 

cons of this method for multi-block structured 

grids. Algebraic methods are fast but work well 

only for small deformation [2]. Large 

deformation may cause the crossover of grid 

lines or produce poor quality grid. A spring-

analogy method initially proposed by 

Nakahashi and Deiwert [4] was applied to aero-

elasticity problems by Batina [11]. The 

comparison between spring-analogy and 

elliptic grid generation approach was presented 

by Bloom [4]. It is well known that the 

standard spring analogy will result in the 

inversion of elements for large deformation. To 

overcome this drawback, numerous schemes 

such as torsional, semi-torsional and ortho-

semi-torsional spring analogies have been 

suggested [5,6]. This method as well as the 

elastic analogy can adapt to significant surface 

deformations but their computational cost is 

expensive for complex problems with large 

number of grid points. It has been also widely 

applied to unstructured grid deformation [4,11]. 

Hybrid approach, a useful compromise 

between algebraic and iterative approaches, is 

proposed in the recent years [1-3,8,9]. Tsai et 

al. [1] provided a new scheme which combines 

the spring analogy and TFI method in 

Algebraic and Iterative Mesh 3D (AIM3D) 

code. Based on this scheme, Spekreijse et al. 

[2] introduced a new methodology which 

replaces spring-analogy by volume spline 

interpolation. Although these schemes provide 

relatively good results, there is still a major 

drawback involving sub-faces problem, which 

has been not solved yet. To overcome this 

disadvantage, Potsdam and Guruswamy [3] 

have proposed a point-by-point methodology. 

Instead of computing the displacement of block 

vertices, the nearest surface distances is used to 

define the deformed surfaces of block. In order 

to improve the orthogonality of the grid lines 

near the configuration surfaces, Samareh [9] 

introduces quaternion methodology. Although 

many algorithms were developed, considerable 

effort has been devoting to the development of 

robust and efficient general techniques for grid 

deformation. Reference [8] proposed a new 

methodology that combines the definition of 

material properties and transfinite interpolation 

to generate the deformed mesh. 

Another important problem of multi-block 

structured grid deformation is the handling of 

blocks, in general connected in an unstructured 

fashion, in distributed computing context, 

wherein the blocks are usually distributed over 

different processors. Therefore, a grid 

deformation method should allow deformation 

to be accomplished on each processor without 

having to gather all of the blocks on one 

processor and with little communication 

between processors. This problem was first 

discussed and solved by Tsai et al. [1]. Another 

problem that one must face to is the matching 

between block faces in the matched multi-

block structured grid concept. 

Comment [HMT1]: Đưa reference 
vào vị trí này 
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In this study, an efficient and robust 

deformed grid code, substantially based on the 

technique proposed by Tsai et al. [1], is 

developed. This algorithm is the combination 

of spring analogy and TFI methods and can 

also be easy to implement in distributed 

parallel computing context. In the first step, the 

configuration surface is parameterized using 

Bezier surface. The second step consists in 

determining the displacement of all blocks’ 

corner points by using the spring analogy. In 

general, the number of blocks, and thus, the 

number of vertices are far fewer than the 

volume grid points so that the computational 

cost for this step is small. Once new 

coordinates of the corner points are determined, 

TFI method will be used to compute the 

deformation of edges, face and volume grid 

points in each block separately. The current 

approach does not ensure the quality of block 

faces which are constituted by several patches 

having different boundary conditions. To solve 

this problem, instead of block faces, TFI 

method is applied to each patch of block faces. 

Elliptic smoothing operator with only one or 

two iterations is applied to these patches to 

improve the grid quality on these block faces. 

To ensure the matching on the block interfaces, 

mesh points are redistributed using an 

averaging of mesh point coordinates between 

two neighboured interfaces. 

In the next sections, the shape 

parameterization, the spring analogy technique, 

and then the arc-length-based TFI technique 

will be presented. Various numerical results of 

grid deformation of some simple and complex 

configurations such as airfoil and wing-body 

configuration will be presented to demonstrate 

the capability of developed grid deformation 

code. 

2. SHAPE PARAMETERIZATION 

In design optimization problem, 

parameterization of configuration is one of the 

most outstanding issues of concern. One must 

compromise between the accuracy of 

parameterization technique and the number of 

required parameters. Among these techniques, 

Bezier curve/ surface is one of the most 

popular approaches. The design parameters for 

this case are the positions of control points of 

Bezier curves. 

A Bezier curve/surface [10] in dℜ  

( 2=d or 3 ) of degree n  supported by a 

control polygon of 1+n control points 
d

kp ∈ℜ  (with nk Κ,1,0= ) is: 

0
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−
 and the parameter t varies 

from 0 to 1  

The procedure used to compute the 

coordinate of control points from configuration 

surfaces is proposed in [13]. The formula of 

Bezier curve can be written in matrix form: 
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,[ ( )] [ ][ ]i i k kX t B p=   (2) 

Multiplying the transpose of matrix B to 

this equation yields: 

, , ,[ ] [ ][ ] [ ] [ ( )]T T
i k i k k i k iB B p B X t=       (3) 

Solution of this system of linear equations 

is the coordinates of control points. For the 

Bezier surface, similar process can also be 

applied. 

To demonstrate the capability of this 

approximation method, Bezier curves are used 

to represent the upper and lower surfaces of 

RAE2822 airfoil. Seventeen control points are 

used for each surface. The condition that the 

first and last control points of two Bezier 

curves are the same ensures the coincidence of 

two surfaces. 
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Figure 1. RAE2822 airfoil, 16-degree Bezier curve-fits, and control polygons of upper and lower surfaces 

To examine the accuracy of shape 

parameterization technique, the tolerance 

between the Bezier curves and initial RAE2822 

airfoil is formulated as: 

( ) ( )2 2

1

n
B i B i

i

x x y y
TOL

N=

− + −
= ∑  

in which N is number of discrete points of 

airfoil (4) 

In this example the tolerance is about 1E-

3. It has been demonstrated that this error is 

adequate for optimization design [10].  

While this method offers the acceptable 

accuracy and the small number of required 

parameters, it still has a minor drawback. If 

design surface is represented by a finite number 

of patches, the matching between these patches 

must be guaranteed. Because of the 

computational error, Bezier surface can not 

handle this problem. In order to solve matching 

problem, special coding logic should be written 

to eliminate this error. 

3. MULTI-BLOCK STRUCTURED GRID 

DEFORMATION APPROACH 
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The grid deformation code developed in 

this study is substantially based on the 

combination of algebraic and iterative methods 

proposed by Tsai et al. [1]. Algebraic method 

such as transfinite interpolation (TFI) is 

inexpensive to run but they can not solve large 

deformation problems. This drawback can be 

surmounted by using iterative method such as 

spring analogy. Unfortunately, this method 

requires expensive computational cost. A 

hybrid approach, combining these two 

approaches, will naturally inherit the 

robustness of iterative method and the 

efficiency of algebraic one. 

The first step of hybrid method used in 

this study consists in computing the 

displacement of all vertices of each block. In 

multi-block structured grid context, the 

arrangement of blocks is generally unstructured 

so that the motion of these corner points will be 

determined by spring analogy. TFI is then 

applied to compute the displacement of the 

interior grid points in each block. 

3.1. Spring analogy 

The concept of spring analogy as proposed 

in [4] is adopted for determining the moving of 

blocks’ vertices. Spring analogy models are 

categorized into two types: vertex model and 

segment model. In this study, the segment 

model was adopted. The corner points are 

viewed as a network of fictitious springs with 

the stiffness defined as follows: 

( ) ( ) ( )2 2 2ij

i j i j i j

k
x x y y z z

β

λ
=

− + − + − 
 

  (5) 

Spring stiffness is computed for all 12 

edges and 4 cross-diagonal edges of a block. 

These cross-diagonal edges are used for 

controlling the shearing motion of grid cells. 

The coefficients λ and β are used to control the 

stiffness of grid cells. Typically, the 

coefficients λ and β are taken to be 1 and 0.5, 

which means that the stiffness is inversely 

proportional to the length of connecting edges 

[1].  

It is assumed that the displacement of the 

configuration surface is prescribed. The motion 

of the corner points of each block is determined 

by solving the equations of static equilibrium: 

( )
1

0
eiN

n n
ij i j

j

k δ δ
=

− =∑   (6) 

The static equilibrium equations are 

iteratively solved as follows: 
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  (7) 
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Figure 2. Strategy for parallel multi-block structured grid deformation 

3.2. Transfinite interpolation (TFI) 

After computing the moving of all blocks’ 

vertices, the volume grid in each block can be 

determined by using the arc-length-based TFI 

method described below. It has been 

demonstrated [1] that this method preserves the 

characteristics of the initial mesh. The process 

to implement TFI method proposed in [1] 

includes following steps: 

- Parameterize all grid points. 

- Compute grid point deformations by 

using one, two and three dimensional arc-

length-based TFI techniques. 

- Add the deformations obtained to the 

original grid to obtain new grid. 

A multi-block structured grid consists of a 

set of blocks, faces, edges and vertices. Each 

block has its own volume grid defined as 

follows: 

{ }, , | 1,..., max; 1,..., max; 1,..., maxB
i j kX x i i j j k k= = = =

r

 

In parameterization process, the 

normalized arc-length-based parameter for 

each block along the grid line in i  direction is 

defined as follows: 
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− − − −

=
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=

  (8) 

Similarly, the parameters kjiG ,,  and 

kjiH ,,  for j and k directions can be defined. 

The second stage is computing the 

displacement of the edges, surfaces and block 

points based on one, two and three dimensional 

TFI formula, respectively. From the 

Block corner points to local 
nodes 

Block(s) on node 1 
Block(s) on node 2 … 

Block(s) on node n 

Master node: 
Motions of the block corner points 
are determined by unstructured spring 
analogy  

Arc-length-based TFI is  
used to update the surface  
and volume meshes 
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displacement of the configuration surfaces, the 

interpolated values of the deformation is 

created by using TFI method and so that the 

new grid, which is obtained by adding the 

deformations to the initial mesh, can maintain 

the quality of the original grid. 

The one dimensional TFI in the i direction 

is simply defined by: 

( ),1,1 ,1,1 1,1,1 ,1,1 max,1,11i i i iE F P F P∆ = − ∆ + ∆   (9) 

Here P∆  is the displacement of the two 

corner points of block’s edge. The 

displacement of block’s surface (for example 

the surface in the plane 1=k ) is computed by 

the two dimensional TFI formula: 
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( ) ( )( )

( )( )

, ,1 , ,1 1, ,1 , ,1 max, ,1

, ,1 ,1,1 , ,1 1,1,1 , ,1 ,1,1
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1
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1

i j i j j i j i j

i j i i j i j N
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  (10) 

After computing the deformation of all surfaces and edges, a standard three dimensional TFI 

formula is used to determine the displacement of all volume grid points: 

, , 1 2 3 12 13 23 123i j kV V V V V V V V∆ = + + − − − +    (11) 

where   
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3.3. Smooth operator: elliptic differential 

equation 

There are cases in which only a certain 

portion(s) of a surface is distorted extremely. 

To accommodate such problem, a smooth 

operator is locally applied to alleviate this 

distortion. In this study, elliptic different 

equation is used to smooth the deformed grid. 

22 11 11 22 12 122 0a r a r a r+ − =     (13) 
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Elliptic operator is used only for the sub-faces 

to eliminate possible distortions after applying 

TFI method. To maintain the efficiency of this 

code, only one or two elliptic smoothing 

iterations are used. Because TFI method is 

already used, one or two iteration is enough 

enhance the smoothness of deformed grid. 

When elliptic smoothing operator is applied, 

the computational time is in general just 5% 

higher than the original time required by 

standard methodology but the grid quality is 

drastically improved. 

4. COMPUTATIONAL RESULTS 

4.1. Airfoil deformation 

The following test cases demonstrate the 

efficiency and the robustness of developed grid 

deformation code. The performance of the 

developed grid deformation code is first 

demonstrated on the grid around RAE2822 

airfoil. The O-typed initial grid generated by 

commercial package GRIDGEN® has 5 blocks 

with 95790 grid points, and 85260 cells (see 

Figure 3(a)). In addition to this initial grid, 

information concerning the grid topology is 

required as input for grid deformation program. 

To evaluate the usability of this code for 

design optimization problem, one tries to adapt 

the grid for RAE2822 airfoil from the grid 

originally generated for NACA2412 airfoil. 

Figure 3(a) shows the grid around NACA2412 

airfoil and Figure 3(b) is the grid around 

RAE2822 airfoil obtained by simply replacing 

NACA2412 airfoil by RAE2822 airfoil into the 

original grid. The grid update takes only 

several seconds on a common desktop. 
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    (a) NACA2412 airfoil  (b) RAE2822 airfoil 

Figure 3. Multi-block grids around airfoil: five blocks, close-up view 

             
  (a) RAE2822 with 100 dgree pitch up (b) Trailing edge 

Figure 4. RAE2822 mesh with 100 pitch up: five blocks, close-up view and detail at the trailing edge 

To evaluate the performance of this code, a 

more difficult situation is tested. RAE2822 

airfoil is now rotated 100 around its quarter 

line. The grid around new configuration can be 

updated within several seconds (see Figure 

4(a)). In Figure 4(b), the close-up view at the 

trailing edge shows that there is no cross-over 

of cells for this case. In multi-block structured 

grid deformation concept, the matching 

between two blocks is a critical problem. 

Figure 4(a) and 3(b) show that grid lines are 

perfectly matched at block-to-block interfaces. 

These results confirm that the approach 

suggested by Tsai et al. [1] automatically 

guarantees the matching between blocks 

interfaces. This is however not the case if grid 

topology includes sub-faces, especially when 

block face is constituted by solid wall patches 

and non-solid patches. In these cases, the 

standard algorithm suggested by Tsai et al [1] 

can give inadequate result as shown in Figure 

5(a). One can observe clearly in Figure 5(a), 

non-matching between blocks interfaces with 

sub-faces. Because only solid-type patches of 

Comment [HMT3]: Chú thích hình 
ảnh không tương thích với câu trình bày 
phía trên 
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block face is deformed when applying TFI, the 

discontinuity occurs at the transition between 

solid and non-solid patches. This discontinuity 

will result in the inversion of mesh cells. In this 

study, in order to solve this non-matching 

problem, TFI method is applied to sub-faces 

rather than block face. Figure 5(b) shows the 

final grid obtained by using new technique is 

free of discontinuity and non-matching 

problems. 

  
(a) Standard TFI method (b) Modified TFI method 

Figure 5. RAE2822 mesh with 100 pitch up: five blocks (topology with sub-faces) 

Figure 6(a) shows another case, the grid 

update for RAE2822 airfoil after a pitch up of 

45o. In this case, O-type grid topology was 

used. The deformed grid is visibly subjected to 

a crossover at the trailing edge (see Figure 

6(b)). This can be avoided if C-grid topology is 

used. The detail at the trailing edge presented 

in Figure 6(d) shows a high quality grid 

without any crossover. These results clearly 

demonstrate that the quality of final grid 

partially depends on the grid topology 

originally adopted. This is understandable, 

since the spring analogy is used to determine 

the movement of block vertices before 

applying TFI. Further study is under progress 

to elevate grid crossover problem for large 

deformation problem. 

To evaluate the robustness of current code, 

more critical situations are tested. Figure 7 

demonstrates the grid update for RAE2822 

airfoil Navier-Stokes-typed mesh with 100 

pitch up. For Navier-Stokes calculations, where 

the mesh near the solid wall must be refined to 

resolve the high gradients of flow properties in 

these regions, the first mesh point’s distance to 

the solid wall is order of 10-6 mm for 

commonly encountered aerodynamic problems. 

To handle these fine grids are a delicate 

problem. Figure 7 however shows that the code 

can be used equally well for Navier-Stokes 

mesh. The close-up view of trailing edge 

region shows no cross-over of mesh cells. 
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  (a) O-type, 6 blocks (b) Detail at the trailing edge 

    
  (c) C-type, 4 blocks (d) Detail at the trailing edge 

Figure 6. RAE2822 mesh with 450 pitch up with different topology 

         

(a) Close-view at the trailing edge (b) Detail at the trailing edge 

Figure 7. RAE2822 Navier-Stokes mesh with 100 pitch up
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4.2. DLR-F4 wing body deformation 

This code has been also successfully tested 

for complex three-dimensional multi-block 

structured grids. Following is the deformation 

of grid around DLR-F4 wing-body 

configuration, which is used to evaluate the 

accuracy of Navier-Stokes solvers in the frame 

of AIAA CFD Drag Prediction Workshop. This 

grid has 24 blocks with 216678 grid points. 

The topology of grid generated by GRIDGEN 

package is shown in Figure 8.  

 
Figure 8. DLR-F4 wing body topology and mesh: 24 blocks, close-up view  

Figure 9(b) shows the deformed grid in 

which the wing-body configuration rotates 

about its latitudinal axis by 150. This result 

shows that this code can successfully update 

the grid of complex configuration with 

arbitrary grid topology. In this case, the 

advantage of grid deformation is demonstrated 

clearly. It takes about 2-3 weeks to generate the 

initial grid but it needs only 40 seconds to 

determine the deformed grid on a desktop. 

Figure 10 and Figure 11(a) show the detail 

of this deformed grid at the nose and tail of 

body. As mentioned in above sections, TFI 

method does not ensure the grid smoothness 

and orthogonality at the block interfaces with 

sub-faces. Figure 11(a) shows that there is 

some distortion in grid cell near the tail of wing 

body. In this study, the elliptic differential 

equation is applied as the smoothing operator 

to solve this problem. Figure 11(b) shows the 

final grid after applying the elliptic solver. It is 

clear that, with elliptic smoothing operator, the 

quality of deformed grid is drastically 

improved. In this case, the application of 

elliptic smoothing operator increases the 

computational time to 5%.  
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 (a) Initial mesh (b) 150 pitch down around latitudinal axis 

Figure 9. DLR-F4 wing body mesh 

 

Figure 10. Detail of grid in the nose region of DLR-F4 wing body configuration 
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 (a) Without smoothing operator                        (b) With elliptic smoothing operator 

Figure 11. Detail of grid in the tail region of DLR-F4 wing body configuration  

5. CONCLUSION 

A deformation grid code has been 

developed and tested for two and three 

dimensional multi-block structured grid. This 

code, which is based upon a hybrid of algebraic 

and iterative methods, is demonstrated to be 

very efficient and robust enough for moderate 

deformation. The deformed grid still maintains 

the qualities of the initial grid such as 

smoothness and skewness. Because spring 

analogy is used for computing the deformation 

of all blocks’ vertices and TFI technique is 

separately applied to the volume grid points 

(without having to gather all grid data on a 

processor), this code is easily to be applied for 

distributed computing context. This method 

also guarantees automatic matching of edges 

and surfaces between two blocks. Some 

modifications such as elliptic smoothing 
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operator (with only one or two iterations) and 

TFI for sub-faces are implemented to improve 

the quality of the deformed grid. It has been 

shown that adding smoothing operator does not 

penalize the computational time so much while 

the quality of deformed grid is drastically 

enhanced. Further researches have been under 

developing to improve the robustness of 

current code for large deformation problems. 
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XÂY DỰNG CHƯƠNG TRÌNH BIẾN DẠNG LƯỚI CẤU TRÚC ĐA KHỐI BA CHIỀU 

ÁP DỤNG CHO CÁC CẤU HÌNH PHỨC TẠP 

Hoàng Ánh Dương (1) , Nguyễn Anh Thi (2) 

(1) Đại Học Quốc Gia Gyeongsang, Hàn Quốc 

(2) Đại học Bách Khoa, ĐHQG-HCM 
(1) Giảng viên, Đại Học Bách Khoa Tp. Hồ Chí Minh, Việt Nam 

TÓM TẮT: Trong nghiên cứu này, chương trình biến dạng lưới dựa trên giải thuật lai xây dựng 

trên cơ sở hai giữa giải thuật TFI và giải thuật tương tự lò xo đã được phát triển. Kết hợp giữa phương 

pháp tương tự lò xo ứng dụng cho các đỉnh của các khối và TFI cho các điểm nội của các khối giúp gia 

tăng độ bền vững của giải thuật. Đồng thởi giải thuật sử dụng thích ứng cho ứng dụng trong môi trường 

tính toán phân bố. Toán tử làm trơn dạng elliptic được áp dụng cho các mặt của khối được làm bởi 

nhiều mảnh con nhằm bảo đảm tính trơn của lưới, đồng thời giảm sự nhọn hóa của lưới. Khả năng của 

chương trình phát triển đã được minh chứng cho một số trường hợp biến dạng từ đơn giản đến phức 

tạp. 

Từ khóa: giải thuật TFI, chương trình biến dạng lưới  
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