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1. INTRODUCTION  
The mobile target tracking is one of new researches which appear in the next 

generation of mobile communication, where all the mobile system requires higher 
performances in operation. In the real mobile system, the positions of object are not 
known exactly and directly but we can detect them through a time sequence of 
measurements. This shows that there are two processes in parallel: the first process 
involves the real movement of the target which has to recognize and the other is the 
accumulated observation sequences which are provided by the first one. Such problems 
are the same for speech recognition or video tracking. This paper uses the results of 
works based on image sequences obtained by fixed surveillance cameras, or by oriented 
signals from BTS or by sensor array to find the series of positions of the target versus 
time.      

While the target moves, the eventual motions and the object position are updated and 
so the data-base is changed. For the motion on a plane surface, e.g. mobile target moving 
on roads, the 2D_tracking is sufficiently used. Since the positioning data are directly 
updated, one smoothing path process is activated and then applied the HMM. These data 
are now used as the input parameters of HMM system.    

In this paper, we only focus on a Hidden Markov Model with discrete hidden states 
and discrete observations from the states; the signal processing is not involved here. The 
simulations of the model, implementing on Matlab, shows the results of tracking paths 
and the respective accuracies according to the learning or non-learning modes.       

2. SYSTEM OVERVIEW 
The input system is presented in Fig. 1[1]. Its inputs are the signals transmitted by 

target. A sensor receives these signals and then conveys them into database as the input 
of a smooth function. The output of a smooth function is the crude position measurement 
which will be considered as parameters of HMM system. 

In the smooth functions, the parameters whose happening probabilities, when they are 
extracted from signal processing, is highest are regarded as the primary location of the 
target.    

Besides, the medium noise plays an important effect on the input signals which can 
influence much on the accuracy of the model. The HMM is also able to decrease this 
effect due to its training capacity.   
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The block scheme of the HMM system is shown in Fig.2 [3], where the smoothened 
input signals are used to characterize the object motion and to generate the observations. 
The HMM provides the estimated locations of the target and then produces its tracking 
path. 

 
 
 
 
 
 
 
 
 
 

In tracking time, while the target is moving from state to another state, it will send its 
changed location signals (azimuth angle, elevation angle, TOA, range error,) to BST 
which, in turn, processes signals and then transmits its data to the “Server”. The server 
does calculate the coarse positions of the target before giving the HMM system. [1][5].   

3. OVERVIEW HIDDEN MARKOV MODEL  
A Hidden Markov Model (HMM) consists of a set of N states, each of which is 

associated with a set of M possible observations. The parameters of the HMM include: 
-  An initial matrix of state probabilities: 
                                                        [ ]T

Nppp ,...,, 21=π                                         (1)  

whose elements [ ]Nipi ,1, ∈  describe the position distribution probabilities of the 
target over the initial state set at the beginning t = 1. 

- A transition matrix A and an observation matrix B: 
 



















=

NNNN

N

N

aaa

aaa
aaa

K

MOMM

K

K

21

22221

11211

A ;                         



















=

NMNN

M

M

bbb

bbb
bbb

K

MOMM

K

K

21

22221

11211

B    (2) 

whose elements [ ]Njiaij ,1,; ∈  are the transition probabilities from state i to state j, and 
elements imb  are the probabilities of observing symbol m ∈ [1, M] given that the system 
is at the state i ∈ [1, N].  

Figure 2. HMM system 
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- Finally, the HMM parameter set is denoted by ( )πλ ,,BA= .  
As usual, the HMM have three problems [4]: 

- Evaluating problem: what is the probability of the observation O, given the 
modelλ, i.e. ( )λOP ? ⇒ Solution: Forward or Backward algorithm. 

- Decoding problem: What is the most likely state sequence given the observation 
O, i.e. ( )[ ]λOSPS ,maxarg ? ⇒ Solution: Viterbi algorithm. 

- Estimating problem: How can we estimate parameters given the training 
observation sequences, ( )[ ]λλ λ OPmaxarg* =  ?⇒ Solution: Baum-Welch algorithm. 

4. APPLICATION OF HMM IN TRACKING TARGET 
It finds out that the process of tracking target is likely to solve these three problems of 

HMM. Therefore, this research proposes three steps in tracking a target as follows:  

4.1. Initiating the model 
Firstly, we assume that the target is moving in a known surveillance area. The 

discrete model makes the area be divided into N cells corresponding to the states of the 
object. For instance, when the target is in cell i at time t, its model is in the state qi(t).  

The movement of the target from the state i to the state j is described by transition 
probabilities aij in matrix A. Their values often depend on the speed distribution of the 
target, on the geographical feature of  the  area and on the allowed transitions. 

The state qi of the target will emit an observation symbol o(t). The observation 
symbol probability distributions B=[bij] are estimated from the observed signals from 
sensors. In this paper, we suppose these signals are available. The number of symbols of 
each state M is set equal to N. 

Finally, we establish the initial state distribution π, which is the probability that the 
model is in states at beginning. For easy tracking, we assume that the initial state is 
known. 

4.2.Training the model 
Once the model has been established, we wish that the observations received from 

model  are of the highest probability. That is why we change the HMM’s parameters for 
their matching to reality as much as possible. Now, we use forward-backward procedure 
to calculate ( )λOP  [5].  

Forward procedure: 
- Initial forward variable:     ( ) ( ),. 11 Obi iiπα =      1≤ i ≤ N                                      (3)         

- Forward steps:  ( ) ( ) ( )1
1
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Backward procedure: 



- Initial backward variable:        ( ) 1=jTβ ,      1≤ j ≤ N                                          (6)                    

- Backward steps: ( ) ( ) ( )1
1
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ijtt Obaji ββ , with 2 ≤  t  ≤  T, 1 ≤  i ≤  N      (7)            

- And  the result:                 ( ) ( )∑
=
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N

i
iOP

1
1βλ                                                         (8) 

The effectiveness in forward and backward procedures is almost identical. The result 
( )λOP  is mainly used for criterion of training model. 

The Baum – Welch algorithm: 

- We define :                  ( ) ( ) ( ) ( )
( )λ

βα
ξ

OP
jObai

ji kkjijk
k

11 ...
, ++=                                    (9) 

In which                    ( ) ( ) ( )∑ +++ = 121 .. kjijkk Obaji ββ ;       ( ) 1=iKβ                            (10) 
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The result :                  
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Equation (12) produces a new set of training parameters of HMM system. The trained 
model { }',','' πλ BA= has a property ( ) ( )λλ OPOP ≥' . This means that the trained model 
parameters are more suitable to observations than the former model. Furthermore, we can 
learn model parameters from K observation sequences in [4]. It is proven that the model 
λ’ is becoming the real one when a range of K observation sequences is used.  

4.3. Extracting the target’s track 
Commonly, HMM is only a model of tracking which is based on observations with an 

optimal algorithm. Hence, the more accurate observations, the better target’s tracking is. 
In real system, HMM, therefore, is used after the primary estimator (for extracting the 
observations).  

We can obtain the target’s trajectory through two algorithms: 

• The former is deriving the most likely state tq  at each time step individually: 

                                               ( )[ ] Tiiq t
Ni

t ≤≤=
≤≤

1,maxarg
1

γ                                        (13)    

If the matrix A has the transition state probability 0=ija , the best state sequence may 
not be valid. Therefore, it is required to find an algorithm estimating the single best state 
sequence over the entire observation time: the Viterbi algorithm.  



• Viterbi algorithm: We define the quantity: 

( ) ( )λδ tittqqqt oooSqqqqPi
t

...,,...max 21121,...,, 121

== −
−

 

( )itδ  is the highest probability along a single path at time t, which accounts for  the first t 
observations and ends in state iS .  

By induction, we have  

                                                    ( ) ( )[ ] ( )11 .max ++ = tjijtit obaij δδ                                      (14)           

The whole Viterbi algorithm is described as follows [5]: 

o Initialization: 
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o Recursion: 
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o Termination: 
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o State sequence backtracking: 

                                                    ( ) 1,,2,1,*
11

* K−−== ++ TTtqq ttt ϕ                           (18) 

The study shows that Viterbi algorithm creates a better trajectory than the traditional 
algorithm because Viterbi algorithm decides the real states depended on all states. We 
suppose a parallel program, in which many state sequences are tracked concurrently. The 
final one is the most likelihood states.  

To perform Viterbi algorithm, we must obtain observation sequences. In order to get 
these data, we use an array of sensors; each sensor gives an observation at each time 
instant. A data fusion approach is then used for linking all observations. The final 
observation has the highest accurate state where the target occupies. The detection of a 
target on each sensor depends on the correlation between the target and the sensor; such 
as the range and Doppler, the TOA (Time of Arrival), the AOA (Angle of Arrival), [6] 
[7]. HMM is only a mathematical model so that many kinds of crude observations can be 
employed.  

5. THE MODEL SIMULATION AND RESULT 
 

A real model as in Fig. 3 is considered: 
In this model: 
 

       : the state i of the target S7 S

S10 S11 
S12 

S13 



 

 

 

 

 

 

For simulating the model, we initial its parameter as follows: 
• The transition probability is determined by the target’s kinematics constraints and 

the surveillance area constraints [8]. For example, aij approximates to 1 if the state j is 
near the state i and becomes less in case of farther states or aij equal to 0, on condition 
that the state i can not reach the state j at each time step. For saving the number of states, 
states should be defined at crossroads. 

• The observation probability distribution gets its value by the best quantity at the 
diagonal of matrix B which means that the target in the state i will produce the most 
observation i and bij (i ≠ j) has lower distribution. 

• The initial matrix can be simplified, because the initial state is supposed to be 

known.  For example, [ ]′= 0,,0,1,0,0 Kπ    means the first state is i = 3. 

The final diagram is depicted as the following Fig.5. Clearly, the estimated path 
without learning can not track the true path, while the estimated path with learning can. 
The learning method also depends on the number of recursive trainings. The program has 
applied statistics and probability theory into a practical situation which has a surprising 
result if some observations are distinct from others, especially the initial state 
observation. The research concludes that the sequence of estimated states depends 
strongly on the initial matrix, so it has to be decided carefully.  

In this research, much more observations from sensors surrounding the true initial 
state are employed in trained π. Moreover, matrix B can be attained by averaging the 
probabilities that sensors produce observations.     

Another factor that also influences the accuracy of observations is the surveillance 
area of a sensor. If the surveillance area is small, a sensor can detect the target’s 
appearance correctly; but this requires more sensors in the same area. Therefore, the 
observation probability distributions B depend on the distance between the sensor and the 
target.   
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Figure 3: A real model area 



 
 
 
 
 
 
Figure 4: The mobile target’s trajectory in the 
surveillance area with learning and non-
learning methods 

Figure 5: The estimated path in case of 
increasing the number of states. 

The algorithm is still valid when the number of states increases. However, if the 
number of states is overwhelming, the time spent for running the algorithm is not ensure 
for real-time applications. The tester calculates the distant errors versus time steps as in 
Fig.6. 

Nearly, the estimated path without learning produces more distant errors than the 
learning one all time steps. The results indicate that the learning model, in other words a 
model with its parameters matching the surveillance area, is better than the non-learning 
algorithm. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: The distant errors versus time steps 

7. CONCLUSION 
This paper realizes successfully a mobile tracking simulation based on full detailed 

analysis of HMM. All of three steps in searching target’s trajectory are done correctly by 
solving three problems of HMM. Furthermore, the programming of HMM is flexible 
allowing to widen the supervised area, i.e. examining many cases of the number of states 
and sensors. That the program is also recursive in order to obtain an acceptable error 
produces more accurate trajectories than the previous programs.      

From the error estimations, it asserts that the appropriate results can be achieved 
whenever accurate observation sequences and good model’s parameters. In addition, for 
the better accuracy of target’s positions, observations from sensors are associated. When 
an ergodic HMM (i.e. aij ≥ 0, and every transition is possible) is used, it takes much time 
to run the algorithm. However, time can be reduced by decreasing the number of states 
and/or preparing a sparse transition matrix that could have the target tracked in real time. 



Finally, this paper has set up a fundamental framework that can be continuously 
enhanced by later algorithms.  
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