ALPHA-GLUCOSIDASE INHIBITORY LIMONOIDS FROM THE LEAVES OF AZADIRACHTA INDICA A. JUSS GROWN IN NINH THUAN PROVINCE

Nguyen Thi Y Nhi, Tran Kim Qui, Tran Le Quan

University of Science, VNU-HCM

(Manuscript Received on January 05th, 2011, Manuscript Revised October 25th, 2011)

ABSTRACT: Two new limonoids, named nimbandiol A (1) and azadirachtolid E (2) were isolated from the leaves of Azadirachta indica, along with deoxyazadirachtolid (3), a known compound. Their structures were determined by spectroscopic methods and compared with literatures. Three compounds (1-3) showed moderate α -glucosidase inhibitory activities against Saccharomyces cerevisiae α -glucosidase with IC₅₀ values of 38.7 μ M, 85.76 μ M and 48.24 μ M, respectively.

INTRODUCTION

 α -Glucosidase inhibitors are oral antidiabetic drugs used for diabetes mellitus type 2 that work by preventing the digestive hydrolysis of carbohydrates into monosaccharides such as D-glucose, which can be absorbed through the intestine. So, α glucosidase inhibitors reduce the impact of carbohydrates on blood sugar^{1,2}. The leaves of neem tree (*Azadirachta indica*) has been used in traditional medicine both for treating and preventing diabetes. As a part of our continuing efforts in the discovery of effective α glucosidase inhibitors from natural sources, we have isolated three limonoids (**1-3**) from the leaves of neem tree, *Azadirachta indica*, grown in Ninh Thuan Province, Vietnam, and test for their inhibitory effect on α -glucosidase acitivity. This paper reports their structure elucidation and α -glucosidase inhibitory activities.

EXPERIMENTAL

General

Optical rotations were measured on a A. Krüss Optronic. Melting points were determined on a Polytherm A hot stage microscope. UV spectra were on NMR spectra were recorded on Bruker Avance at 500 MHz (¹H) and 125 MHz (¹³C) at the Institue of Chemistry, Vietnamese Academy of Science and Technology, Cau Giay Dist., Ha Noi, Vietnam.

HR-ESI-MS spectra were recorded on Bruker MicrOTOF-Q II, at Central Laboratory of Analysis, University of Science, HCM City.

Saccharomyces cerevisiae α -glucosidase, p-nitrophenyl- α -D-glucopyranosid (PNP-G) and glutathione were purchased from Sigma Aldrich. The other chemicals used in this study were of analytical grade.

Plant material

The leaves of *A. indica* were collected in Ninh Thuan province, Vietnam.

Extraction and isolation

The air-dried leaves (7.5 kg) was extracted with MeOH to give 1.30 kg residue after removal of the solvent. This residue was suspended in H₂O and then extracted with petroleum ether, ethyl acetate and n-butanol, respectively. The petroleum ether, ethyl acetate and n-butanol layer were concentrated after filtration and evaporation of solvent under reduced pressure to give 470 g, 125 g and 138 g of respective extracts. The ethyl acetate extract was repeatedly chromatographed over silica gel eluted with CHCl₃-MeOH in order of increasing polarity to give 19 fractions (A1-A19). Compounds 1 (94 mg, fraction A16), 2 (230 mg, fraction A12) and 3 (239 mg, fraction A12) were obtained as white needles,

after purifying by silica gel chromatography methods.

Assay for α -glucosidase inhibitory activities

The assay was performed according to the Sigma Quality Control Test Procedure³. The enzyme inhibition studies were carried out in test-tube. A reaction mixture containing 500 µl of 67 mM phosphate buffer (pH 6.8), 20 µl of 3 mM glutathione, 20 μ l of 0.3 U/ml α glucosidase in cold deionized water and 20 µl of sample was pre-incubated in thermoregulator for 5 minute at 37°C, and then 50 µl of 5 mM PNP-G solution was added to the mixture. After further incubation at 37°C for 30 min, the reaction was stopped by adding 2440 µl of 100 mM Na₂CO₃ (pH 9.6). The released PNP was monitored spectrophotometrically by measuring the absorbance at 400 nm. Acarbose were used as positive control. The percentage of α glucosidase enzyme inhibition by the sample was calculated by the following formula: % inhibition = $[AC - AS]/AC \times 100$, where AC is the absorbance of the control and AS is the absorbance of the tested sample. In order to evaluate the type of inhibition using the Lineweaver-Burk plot, this enzyme reaction was carried out with many concentrations of the tested sample.

RESULTS AND DISCUSSION

Isolation of Chemical Constituents

The molecular formula of $1\ was$ established to be $C_{26}H_{32}O_9$ by (+)-HR-ESI-MS

with an $[M+H]^+$ ion signal at m/z 489.2157 (the theoretical ion $C_{26}H_{33}O_9^+$ is at m/z 489.2119), mp. 192-195°C, $[\alpha]_{D}^{25}$ +452° (*c* 0.2, MeOH). The ¹H-NMR data were indicative of the terpenoidal nature of 1 with the presence of four tertiary methyl singlets at δ 1.77 (3H, s, H-18); 1.22 (3H, s, H-19); 1.59 (3H, s, H-29); 1.32 (3H, s, H-30), an –OMe singlet at δ 3.75 (3H, s, 12-OMe); a pair of doublets of an AB system at δ 5.75 (1H, d, J=10.5Hz, H-2) and 6.54 (1H, d, J=10.5Hz, H-3) could be assigned to the olefinic protons of the enone system in ring A. The ¹H-NMR further showed the presence of signals at δ 5.38 (1H, brs, H-15), 4.01 (1H, d, H-7) along with signals of carbon in ¹³C-NMR at δ 86.6 and 88.0 attributable to C-15 and C-7, respectively. These signals indicated the presence of the ether bridge between C-15 and C-7 in 1. Moreover, the signals of a furan ring, the characteristic feature of limonoids were missing in the NMR spectra (¹H and ¹³C-NMR, Table 1) and, instead, the signals of a hydroxybutenolide ring were observed. A critical comparison of the spectral data of 1 with those of two C-seco nortriterpenes nimbanal⁴ and isomargosinolide⁵ isolated from A. indica suggested that 1 is a Cseco nortriterpene with hydroxybutenolide ring. However, the signal at C-28 were missing in the NMR spectra (¹H and ¹³C-NMR, Table 1), instead, HMBC spectrum indicated the presence of a hydroxyl function at C-4 in compound 1 which has been confirmed by signal at δ 71.2 (C-4). Its ¹H and ¹³C-NMR assignments were made through 2D-NMR studies including HMBC, HSQC and ¹H -¹H COSY data. This is enabled its identification as a C-seco limonoid with γ -hydroxybutenolide ring, According to SciFinder, this compound had not been reported before, so it is a new natural compound and named nimbandiol A.

Figure 1. HMBC correlation of 1 and 2

The molecular formula of **2** was determined to be $C_{31}H_{44}O_7$ by (+)-HR-ESI-MS with a $[M+H]^+$ signal at m/z 529.3210 (the theoretical ion $C_{31}H_{44}O_7^+$ is at m/z 529.3159),

mp. 168.6-172.0°C, $[\alpha]_{D}^{25}$ -359.4° (*c* 0.22, MeOH). The ¹H-NMR data were indicative of the terpenoidal nature of **2** with the presence of four tertiary methyl singlets at δ_{H} 0.97 (3H, s,

H-18); 0.97 (3H, s, H-19); 1.07 (3H, s, H-30) and 1.14 (3H, s, H-29) and a senecioyl substituent is present at C-1 [$\delta_{\rm H}$ 4.95 (1H, t, H-1); 5.72 (1H, s, H-2'); 1.92 (3H, s, H-4'); 2.22 (3H, s, H-5'); $\delta_{\rm C}$ 72.6 (C-1), 164.7 (C-1'), 115.1 (C-2'), 159.5 (C-3'), 27.5 (C-4'), 20.4 (C-5')] and the oxygen at C-6 now forms an ether linkage between C-6 and C-28 [$\delta_{\rm H}$ 4.13 (1H, m, H-6), 3.61 (1H, d, J=7.5, H-28a), 4.08 (1H, d, J=7.5, H-28b); $\delta_{\rm C}$ 73.9 (C-6), 78.1 (C-28)]. Furthermore, the ¹H-NMR spectrum showed resonances for a olefinic hydrogens $\delta_{\rm H}$ 5.50 (1H, d, H-15); methylene hydrogens bonded to oxygenated carbons [$\delta_{\rm H}$ 3.91 (1H, t, J=9.5 Hz, H-21a), 4.40 (1H, t, J=8.0 Hz, H-21b)] and methine hydrogens bonded to oxygenated carbons [$\delta_{\rm H}$ 3.84 (1H, H-3), 4.15 (1H, H-7)] (Tabale 1). The ¹³C- and DEPT-NMR spectra gave the following other functionalities, a carbonyl of a lactone at $\delta_{\rm C}$ 176.6 (C-23), a carbonyl of a conjugated ester at $\delta_{\rm C}$ 164.7 (C-1'), two oxygenated methine carbons at $\delta_{\rm C}$ 71.3 (C-3), 73.1 (C-7), a oxygenated methylene carbons $\delta_{\rm C}$ 72.4 (C-21), a non-protonated olefins at $\delta_{\rm C}$ 159.6 (C-14). The interactions of H-1 with C-1' in the HMBC plot displayed the senecioyl moiety at C-1 (Fig 1). The foregoing account of the spectral data led to elucidate the structure of azadirachtolid E as **2**.

No.	1 (CDCl ₃ and CD ₃ OD)		2 (CDCl ₃)	
	$\delta_{\! m H}$	$\delta_{ m C}$	$\delta_{\! m H}$	δ _C
1	_	203.4	4.95 (1H, t, J= 2.5)	72.6
2	5.75 (1H, d, J = 10.0)	124.8	2.00 (1H, dt, J= 3.0; 16.0)	30.4
			2.28 (1H, dt, J= 2.5; 16.0)	
3	6.54 (1H, d, J = 10.0)	152.5	3.84 (1H, m)	71.3
4	-	71.2	-	43.8
5	2.65 (1H, d, J = 11.5)	49.7	2.55 (1H, m)	38.6
6	4.26 (1H, dd, J = 3.0; 12.0)	66.7	4.13 (1H, m)	73.9
7	4.01 (1H, d, J = 2.50)	88.0	4.15 (1H, m)	73.1
8	-	49.6	-	45.4
9	2.62 (1H, brs)	38.9	2.44 (1H, dd, J = 5.0; 11.5)	33.6
10	-	48.3	-	39.7
11	2.19 (1H, dd, J = 4.0; 16.5)	34.5	1.34 (1H, m)	15.4
	2.88 (1H, dd, J = 5.5; 17.0)		1.51 (1H, m)	
12	-	174.8	1.43-1.50 (2H, m)	34.2
13	_	132.1	-	46.6

Table 1. ¹H- and ¹³C-NMR Spectral Data of Compounds 1 and 2

Trang 39

Science & Technology Developmer	it, Vol	14,	No.T2	· 2011
---------------------------------	---------	-----	-------	--------

14	-	150.1	-	159.6
15	5.38 (1H, br.s)	86.6	5.50 (1H, d, J = 1.5)	120.2
16	2.05 (1H, dt, J = 3.0 ; 8.5 ;	38.6	2.1-2.2 (2H, m)	34.7
	12.0)			
	2.36 (1H, dd, J = 6.5; 12.0)			
17	3.68 (1H, s)	51.8	1.71 (1H, m)	58.1
18	1.77 (3H, s)	12.9	0.97 (3H, s)	20.5
19	1.22 (3H, s)	15.9	0.97 (3H, s)	15.3
20	_	170.2	2.69 (1H, m)	37.5
21	6.00 (1H, s)	98.8	3.91 (1H, t, J= 9,5)	72.4
			4.40 (1H, t, J= 8.0)	
22	5.87 (1H, s)	118.1	2.51 (1H, t, J= 9.5)	34.0
			2.24 (1H, m)	
23	-	171.0	-	176.6
28	_	-	4.08 (1H, d, J=7.5)	78.1
			3.61 (1H, d, J=7.5)	
29	1.59 (3H, s)	22.9	1.14 (3H, s)	19.8
30	1.32 (3H, s)	17.4	1.07 (3H, s)	26.1
12-	3.75 (3H, s)	52.1	-	-
OMe				
1'	_	_	-	164.7
2'	-	_	5.72 (1H, s)	115.1
3'	-	-	-	159.5
4'	-	-	1.92 (3H, s)	27.5
5'	-	_	2.22 (3H, s)	20.4

Compounds **3** were identified as deoxyazadirachtolide⁶ on the basis of extensive spectroscopic studies including 1D (¹H-, ¹³C-NMR) and 2D (COSY, HSQC, HMBC) NMR and comparison with the literatures.

Assay for α -glucosidase inhibitory activity

Three compounds 1, 2 and 3 showed in vitro α -glucosidase inhibitory activities with IC₅₀ of 38.7, 85.76 and 48.24 μ M, respectively,

comparable to that of acarbose (IC₅₀ 360.0 μ M), a clinically used drug for type-2 diabetes. The significant activity of **1** is probably due to the C-seco structure and it may the presence of two hydroxyl groups at C-4 and C-6. However, the activity of compounds **2** and **3** showed that the hydroxyl group at C-3 may reduce the α -glucosidase inhibitory activities of compound **2**.

Compounds	IC ₅₀ (μM)
Acarbose	360.0
Compound 1	38.7
Compound 2	85.76
Compound 3	48.24

Table 2. Inhibitory activity of compounds 1-3 and acarbose against α -glucosidase

CÁC HỢP CHẤT ỨC CHẾ ENZYME α -GLUCOSIDASE ĐƯỢC CÔ LẬP TỪ LÁ AZADIRACHTA INDICA A.JUSS TRỒNG Ở TỈNH NINH THUẬN.

Nguyễn Thị Ý Nhi, Trần Lê Quan, Trần Kim Qui Trường Đại học Khoa học Tự Nhiên, ĐHQG-HCM

TÓM TÅ**T**: Hai hợp chất limonoid mới, azadirachtolid D (1) và azadirachtolid E (2) cùng với một hợp chất đã biết là azdirachtolid (3) đã được cô lập từ lá cây azadirachta indica A.Juss. Ba hợp chất 1, 2 và 3 cho thấy có khả năng ức chế enzyme α -glucosidase. Cấu trúc của các hợp chất được xác định bằng các phương pháp phổ nghiệm và so sánh với các tài liệu tham khảo.

REFERENCES

[1]. J.M. Van Der Nat., W.G. Van Der Sluis., K.T.D. De Silva., R.P.

Labedie.,	Journal	of
Ethnopharmacolog	gy, 35, 1-24,	1991.

[2]. http://www.wellbeingranch.org/uploa d/neem.doc: Neem-The ultimate herb, neem association 1780 Oakhurst Ave., Winter park, FL 32789 USA, pp.21, 1998

- [3]. Sigma quality control test procedure, Sigma-aldrich.com
- [4]. Supada R. Rojakar., Vidya S. Bhat., Mandakini M. Kulkarni., Vimal S. Joshi., Bhimsen A. Nagasampagi., Phytochemistry, 28, 203-205, 1989.
- [5]. Salimuzzaman Siddiqui., ShaheenFaizi., Tariq Mahmood., Bina S.Siddiqui., Tetrahedron, 42, 4849-4856, 1986.
- [6]. 6. Consolacion Y. Ragasa, Zenaida D. Nacpil, Gaudencio M. Natividad, Masaru Tada, John C. Coll, John A. Rideout., Phytochemistry, 46, 555-558, 1997.