
Science & Technology Development, Vol 14, No.K4- 2011

Trang 16

AN APPROACH OF UBIQUITOUS DEVICES USING T-ENGINE IN VIETNAM

Nguyen Hoa Hung, Nguyen Quang Huy, Dinh Duc Anh Vu

University of Technology, VNU-HCM

(Manuscript Received on April 27th 2011, Manuscript Revised November 25th 2011)

ABSTRACT: The 21st century is the era of Ubiquitous Computing where computing devices are

present everywhere in our lives. To satisfy the development of this tendency, many hardware platforms

have been proposed for developing Ubiquitous devices. Among them, T-Engine, an open standardized

development platform for embedded systems, is one of the most popular platforrms. It is nowadays

compatible with embedded equipments for a wide range of fields. In Vietnam, T-Engine has just been

introduced for 4 years. However, most of the ubiquitous applications using T-Engine are developed

restrictively based on the standard hardware of T-Engine. One issue that arises is the necessity of a

solution to expand T-Engine hardware and use it to control automatic systems to satisfy different types

of Ubiquitous devices. This research is to propose an approach to use T-Engine in the Ubiquitous

Devices that require the attachment of the additional hardware as well as the complicated control

mechanism with real time constraints. In this research, we proposed an expanding solution T-Engine

through the extension bus. Besides that, we consider the timing problems in bus transaction and

problems in real-time programming. A simple robot demonstration has also been designed and

implemented to prove the feasibility of our model. This approach will open up a new tendency of

developing complicated Ubiquitous devices using T-Engine in Vietnam.

1. INTRODUCTION

Ubiquitous computing is a post-desktop

model of human-computer interaction. The

typical characteristic to distinguish ubiquitous

computing with other model is that computing

takes place everywhere for everyone. The

computing devices will be embedded in the

environment. In this model, computer was kept

in the background presence.

There are three essential elements of

ubiquitous computing those are embedded

processor and embedded platform, wireless

communication, sensor. These three elements

also give rise to appropriate research trends

besides several application developments. For

the network communication, they are security

wireless networking, network media, etc; for

the sensor, we have developing different kinds

of sensor, wireless sensor networking; and

finally, they are developing low-power and

high-performance processor, developing and

utilizing standard platforms for ubiquitous

computing.

Each ubiquitous computing system has to

possess the following characteristics. Those are

the ability of remember events, ability to aware

the surrounding environment through various

kind of sensors. Especially, this system should

be responsive to other ubiquitous computing

TAÏP CHÍ PHAÙT TRIEÅN KH&CN, TAÄP 14, SOÁ K4 - 2011

Trang 17

systems. Therefore, it is required to have the

ability to handle a number of complex tasks.

In our research, we concentrate on the last

of the mentioned above research trends. That is

utilizing standard platforms, particularly, it is a

famous platform called T-Engine. We propose

a model for using this platform in ubiquitous

devices to fulfill the characteristic of ability to

handle a number of complex tasks.

T-Engine is an embedded-device standard

development platform specified by T-Engine

Forum, an industry organization consisting of

500 corporations. It supports various kinds of

CPUs. It is equipped with T-Kernel which is a

high real-time performance and resource saving

operating system. T-Engine is compatible with

ubiquitous devices for a wide range of fields.

The research contains the following issues:

proposing a model for expanding T-Engine

hardware, carrying out timing problems in the

bus transaction, the real-time operating system

T-Kernel and building a demonstration that

proves the correctness of the research. The

research is carried out on the T-Engine SH7760

which is equipped with the CPU SH7760. The

proposed model is implemented using the CPU

local bus as the communication method

between T-Engine and expansion hardware.

This paper contains four parts. The first part

describes the hardware and software model

using and explains the reason why the model is

selected. The timing problems of bus

transaction will be considered in the second

part. The third part discusses the main features

of T-Kernel, a real-time operating system of T-

Engine, and some problems when

programming on T-Kernel. The last part

describes the robot demonstration using the

proposed model.

2. SOLUTION OF EXPANDING T-

ENGINE HARDWARE

Three problems must be solved when

expanding T-Engine hardware: accessing a

separated address location, accepting interrupt

requests and direct memory access to the

expansion part.

In the T-Engine SH7760 hardware

specification in figure 1, there is an extension

bus interface that is connected directly to

SH7760 local bus. This bus interface provides

the fast and direct connection to the CPU

system bus for the complicated controlling

application. Configuration parameters for the

bus transaction of CPU SH7760 are managed

by Bus State Controller. This block allows

changes by setting up the bus parameter such

as: address area, memory type, output control

signals, bus width, timing waveform, etc.

Science & Technology Development, Vol 14, No.K4- 2011

Trang 18

Figure 1. Block diagram of T-Engine SH7760.

Figure 2. Virtual address space of CPU SH7760

In programming aspect, to access the

devices that are attached to the extension bus

interface, the application has to have the way to

access directly the external address space. CPU

SH7760 is equipped with the Memory

Management Unit and Cache that is shown in

figure 2. The 32-bit virtual address space

enhances with the ability of accessing the

external memory by different methods. This

ability is implemented by dividing the 32-bit

virtual space into five areas. Each area owns a

specific way of mapping between virtual

address space and external address space.

P2 area is the one that allows the accessing

without Memory Management Unit and Cache.

It means that the virtual address space and

external address space are mapped directly.

However, P2 area accessing requires the

privileged authority with two ways to access.

The first one is to set the type of the task that

contains the accessing code to system level. By

this way, the task will have right to use all

other kinds of resource of the system besides

TAÏP CHÍ PHAÙT TRIEÅN KH&CN, TAÄP 14, SOÁ K4 - 2011

Trang 19

the right of accessing the external address

space. As the result, system resources may be

unintentionally damaged by this task. The

second way is using device driver. All of the

program portions that contain the external

address space will be place in the device driver.

The user task will access the external address

space through some device driver interface

function.

The second problem is accepting interrupt

requests from the expansion part. CPU SH7760

supports an interrupt controller with three types

of interrupt request: non-maskable interrupt

request, IRQ interrupt request, IRL interrupt

request. Four lines of IRL interrupt request are

encoded by built-in FPGA to become sixteen

external IRQ interrupt requests. Four of them

are available for external using. As the result,

T-Engine SH7760 provides four IRQ type

interrupt requests with fixed configuration. To

prevent the use this interrupt requests, the

external interrupt signal have to be processed

before being inputted to T-Engine. The

processing includes restricting the activating

period of an input signal as well as encoding

the input signals if there are more than four

interrupt requests.

The third problem is direct memory access

to the expansion part. By the assist of direct

memory access controller, direct memory

access can be done with changing of different

parameters such as: channel, data length,

transfer mode, address mode, transfer request,

bus mode, etc.

3. TIMING PROBLEMS

Timing problems affect the correctness and

the speed of the transaction. Figure 3 describes

the timing waveform of a standard bus cycle

and a bus cycle with wait cycles.

Figure 3. Standard bus cycle (left), bus cycle with wait cycles (right)

A standard bus cycle is the shortest bus

cycle. It contains two clock cycles. The first

clock cycle is used to activate the address

signals and the control signal. The second

clock cycle is the time that data signal is

activated. Because there are various types of

devices that can be connected to the bus

interface, the standard timing waveform is not

Science & Technology Development, Vol 14, No.K4- 2011

Trang 20

always applicable. The bus state controller

provides four 32-bit registers to adjust the

timing waveform of bus transaction. This

allows various types of wait cycle that can be

inserted into the standard bus cycle. The first

type is the wait cycle that is inserted between

two bus cycles. The second type is the one that

is inserted into a bus cycle after all the control

signals are activated and before the data signals

is activated. The third type is external wait

cycle which is inserted when the bus state

controller receives a not ready signal of the

external device. The fourth type is inserted at

the time immediately before read-signal or

write-signal is activated. The fifth type is

inserted at the time after the address signals

and control signal are deactivated but the data

signals still present on the bus.

Figure 4. Connection model to the extension bus interface.

There are two main problems that arise

when we carry out this research. The first

problem involves the incompatibility of timing

waveform between T-Engine and devices. This

is overcome by stretching the waveform of T-

Engine until it is compatible with the one of

device by adding wait cycles into the bus cycle.

The second problem is the synchronization of

bus signal after crossing intermediate devices.

Figure 4 describes connection model using the

extension bus interface.

In this model, T-Engine and device are

connected by address, data and control signals.

The most significant address signals are input

into address decoder to divide the address area.

After that, they are coordinated with control

signals to produce the compatible signal for the

destination device. The other address signals

and data signal cross the buffer to the

destination device. The intermediate devices in

this model are the signal coordinator, address

decoder and the bus buffer.

We assume that the timing waveform of T-

Engine and destination device have been made

compatible with each other. Normally, bus

buffers are faster than address decoder and

signal coordinator. As the result, control

signals arrive at the destination device later

than address and data signals. The bus

transaction will be fail or will be wrong.

The solution is either adding more buffer

devices to the address and data signals to

lengthen the delay time or replace the faster

address decoder and signal coordinator.

TAÏP CHÍ PHAÙT TRIEÅN KH&CN, TAÄP 14, SOÁ K4 - 2011

Trang 21

4. REAL-TIME OPERATING SYSTEM T-

KERNEL

T-Engine has a pre-specified real-time

operating system T-Kernel. This is the next-

generation real-time operating system of

TRON project. T-Kernel is the combination of

three parts: a scheduler, objects and services

with the following kinds of functions: task

control functions, task communication

functions, memory management functions,

exception control functions, time management

functions, subsystem management functions.

T-Kernel scheduler is implemented based

on the preemptive priority-based scheduling

algorithm. The independent thread of execution

is defined as a task. Besides task, T-Kernel also

provides other types of object to manage the

synchronization and the communication

between tasks. Those are: semaphore, event-

flag, mailbox, mutex, message buffer,

rendezvous port.

There are some problems that need

considering when programming with T-Kernel.

The first problem is resource sharing, the

common problem of multitasking operating

system. Resource sharing is a function of task

priority. The higher priority task has

precedence over other tasks when accessing

shared resources. However, if higher priority

tasks always take resources, lower priority

tasks will be in starvation state.

The second problem is deadlock. Deadlock

happens when the following conditions are

present: mutual exclusion, no preemption, hold

and wait, or circular wait.

The third problem is priority inversion.

Priority inversion is a situation in which a low-

priority task executes while a higher priority

task waits on it due to resource contentions. T-

Kernel provides two type of mutex object:

priority inheritance mutex and priority ceiling

mutex.

The solutions for these problems can be

found in [1], in which the authors give out

several models to overcome specific problems

when programming with real-time operating

system.

5. DEMONSTRATION

A robot is a typical automatic system

application so we design a simple robot to

demonstrate our approach. It is implemented

using two T-Engines. The first T-Engine

controls the action of the robot while the

second T-Engine is in the remote control

device and controls the interaction with user.

Robot can be controlled manually using remote

control device. Besides that, robot can run

automatically and solve the block-world

problem. The block-world problem is a typical

artificial intelligence problem. In this problem,

the robot has to recognize the order structure of

some blocks. In this demonstration, we

implement with four blocks. After recognizing

the structure, the robot will carry out the

planning process and find out the solution to

reorder the block to the expected structure.

Robot includes several components such

as: run-motor card, lift-motor card, hold-motor

card, sensor modules and communication

Science & Technology Development, Vol 14, No.K4- 2011

Trang 22

modules. Those are connected to T-Engine

through the external bus interface.

Figure 5 describes how a motor card can

communicate with T-Engine external bus

interface. The motor card acts like a peripheral

module of T-Engine. T-Engine controls its

operation by setting the value of three registers.

When it has finished doing a command, it

sends an interrupt signal to T-Engine.

Robot is controlled by six concurrent tasks.

Four tasks are used to control motor cards. One

task controls the interaction with user. The

other task is the main processing task. These

tasks communicate with each other’s by a

message buffer.

Figure 5. Motor card block diagram.

6. CONCLUSION

The research is the first step in developing

the controlling application of T-Engine as well

as Ubiquitous Devices. A connection model

has been proposed for expanding hardware of a

complicated embedded platform. Besides that,

many issues have been introduced and partly

solved. This approach has opened up a new

tendency of developing complicated

Ubiquitous devices using T-Engine in Vietnam.

TAÏP CHÍ PHAÙT TRIEÅN KH&CN, TAÄP 14, SOÁ K4 - 2011

Trang 23

MỘT CÁCH TI ẾP CẬN VỚI THI ẾT BỊ UBIQUITOUS SỬ DỤNG T-ENGINE

TẠI VI ỆT NAM

Nguyễn Hoà Hưng, Nguyễn Quang Huy, ðinh ðức Anh Vũ

Trường ðại học Bách khoa, ðHQG-HCM

TÓM TẮT: Thế kỷ 21 là kỷ nguyên của Ubiquitous Computing trong ñó các thiết bị tính toán

xuất hiện ở khắp mọi nơi trong ñời sống của chúng ta. ðể ñáp ứng sự phát triển của xu hướng này,

nhiều nền tảng phần cứng ñã ñược ñề xuất ñể phát triển các thiết bị Ubiquitous. Trong số ñó, T-Engine,

một nền tảng chuẩn hoá mở cho hệ thống nhúng, là một trong những nền tảng phổ biến. Nó thích hợp

ñể phát triển những thiết bị nhúng ở nhiều lĩnh vực khác nhau. Ở Việt Nam, T-Engine ñược giới thiệu

cách ñây 4 năm. Tuy nhiên, hầu hết các ứng dụng trên T-Engine chỉ hạn chế ở phần cứng chuẩn. Một

vấn ñề nảy sinh ñó là sự cần thiết phải có một giải pháp ñể mở rộng T-Engine và sử dụng ñể ñiều khiển

các hệ thống tự ñộng ñể ñáp ứng các yêu cầu khác nhau của một hệ thiết bị Ubiquitous. Nghiên cứu này

ñề xuất một cách tiếp cận sử dụng T-Engine cho thiết bị Ubiquitous ñòi hỏi có thêm các thiết bị phần

cứng và yêu cầu về ñiều khiển phức tạp với các ràng buộc về thời gian thực. Chúng tôi ñề xuất giải

pháp mở rộng T-Engine thông qua extension bus. Bên cạnh ñó, vấn ñề timing trong giao tiếp bus và lập

trình thời gian thực cũng ñược xem xét. Một mô hình robot ñơn giản ñể minh hoạ tính khả thi của

nghiên cứu ñược hiện thực. Cách tiếp cận này sẽ mở ra một hướng mới trong phát triển các thiết bị

Ubiquitous dùng T-Engine ở Việt Nam.

REFERENCES

[1] Qing Li, Carolyn Yao, Real-Time

Concepts for Embedded Systems,

CMP book (2003).

[2] Phillip A. Laplante, Real-Time

Systems Design and Analysis, An

Engineer's Handbook, IEEE Press,

Piscataway (1993).

[3] Elaine Rich, Kevin Knight, Artificial

Intelligence, McGraw-Hill Higher

Education (1990).

[4] Nguyen Minh Phong, Vu Tuan Thanh,

Pham Tuong Hai, T-Engine - Kiến

trúc phát triển tiêu chuẩn mở cho các

hệ thống nhúng thời gian thực, Hội

nghị khoa học công nghệ trường ðH

Bách Khoa lần 9 (2005).

[5] SH7760 T-Engine Development Kit

User’s manual, T-Engine forum

reference document (2002).

[6] T-Kernel specification, T-Engine

forum reference document (2002).

[7] T-Engine/SH7760 Development Kit

Device Driver Manual, T-Engine

forum reference document (2002).

[8] T-Engine Forum website www.t-

engine.org

