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ABSTRACT:The ZnO - positron system is studied and its pmsitr electron correlation energy

is estimated in its ground state. The positron bindth the outer shell electrons of Zinc and Oxigen

form the pseudo ZnO — positron molecule beforailhikates with one of these electrons. In this work

the single wave function for positron is modifiegt@ding to the principle of linear superpositicand

by using Variational Quantum Monte — Carlo meth¥@MC) the correlation energy of this system is

estimated with the value.® = - 9.3 £1.1 eV. It turns out that the value lsser to results estimated by

other methods than the value that we had done befor
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INTRODUCTION

There are many methods that have been

used to estimate the positron-electron
correlation energy [2]. In the article, we use the
VOMC method to estimate the positron-

electron correlation energy. The method is
more successful when we make the form of the
trial wave functions of particles in a considered
system are loser to that of the exact wave
function. So, our main aim is to modify the

form of the trial wave function of the positron.

THEORY

Variational Quantum Monte Carlo method
The quantum mechanical system is
represented by an exact wave functi\pr(R)

and the average value of the system’s energy

(we want to get the quantity in the process of

estimating the electron, positron correlation —
energy of the zinc oxide - positron system) is

given by
(H) = dew*(R)@i(R)q;(R)
Jary (R)v(R)
)

However, we cannot properly construct the

form of the exact wave function. This also

means that we cannot exactly calculgle(R)

in theory. Therefore, we must choose a trial
total wave functioan(R, (x) that depends
on a set of parametess In the circumstance,

we define two new quantities

(R, a) = |‘VT (R, (1)|

- R Rof @
ToRly, (R.of v (R, @)
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With combining (1), (2) and (3) we can

figure out the equation (4)

HR)y; (R, )
aRp(R. )=
J (Ra)

IdR\VT (R, a)wT(R a)

(E) =

can approacl<H> only if the trial wave

function is close to the exact wave function. To

satisfy this condition, we can vary valuescof
and search for the minimum value (§E>

which corresponds to the exact wave function.

The calculations are solved by using techniques

from the Variational Quantum Monte Carlo

method.

Model of the zinc oxide - positron

In this paper, the electron, positron
correlation — energy of the zinc oxide - positron
system which shown in figure 1 is estimated by
applying to the VMC method in which the
Hamiltonian and the trial total wave function

were used.

With  the

approximation [3],

Born —  Oppenheimer
the Hamiltonian for the

system is then

12,7,
2|dZn dol

172,72,

"2, -4l
©)

distance from the position of the i-th

electron to the position of the positron.

- 1 () is the distance from the position of

the i-th (j-th) electron to the coordinate

ﬂ _ 1 6 . ) _ED ) _1 6 _6 1
ZZ:: ' 2 ° ' 2;112::1"]""
P #i
_GZZne _4ZOe+ZZ”p +ZOp _6:1:
gs |rizn| |Z |r|o| ‘rpZn ‘rpo‘ igl‘rip‘
where

- _EDiz,-EDpz is alternatively the

2 2

kinetic operators of the i-th electron and

the positron.

- Tz (rio) is the distance from the position of
the i-th electron to the position of zinc

atom (oxygen atom).

- TIpzn (1p0) is the distance from the position
of the positron to the position of zinc atom

(oxygen atom). Similarly, i is the

angle.

- dz, (do) is the distance from the position of
zinc atom (oxygen atom) to the coordinate

angle.

- Zze (Zog) is the effective nuclear charge of

zinc (oxygen) atom for the electrons.

- Zzyp (Zop) is the effective nuclear charge

of zinc (oxygen) atom for the positron.
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Zo is the effective nuclear charge of the nuclear charge of zinc atom for oxygen

oxygen atom for zinc atom. Conversely;, 75 atom.

v

Fig.1. The schematic of the zinc oxide — positron system

The trial total wave function for the system
used in this work is a product of single —
particle wave functions multiplied by a Jastrow
factor (an

exponent of many particle

correlation factors)

4 2 6 6
— e-e e-
Vr = I_l Yo |_|| Vizn | |V i I_J v Fi)p\lfp (6)
=1 = = =

i
i

with
VY, is the single — particle wave function

for the i-th electron belonging to oxygen
atom. With the Slater's approach [4], it
takes the following form

_ P i AMzn'lizn
- Vio= Nolo€ oo + Ny Bn g'a'e )

- Vg is the single — particle wave function

for the i-th electron belonging to zinc
atom. With the Slater’s approach, it takes

the following form

—_ 4 - Aznlizn 3ol
- Vizn = Nan iZne o+ NZn IAio € (8)

V;* is the Jastrow factor that reflects the

correlation between the i-th electron and
the j-th electron. With the Pade’s approach
[1], it takes the form

B
1 +oar;

v =e @

y,.? is the Jastrow factor that reflects the

correlation between the i-th electron and
the positron. With the Pade’s approach, it
takes the form

Prp

Y, =€ o)

v, is the single — particle wave function

for the positron. When the positron moves
into Zinc oxide molecule, the positron may
belong to either zinc atom or oxygen atom.
So, we assume that positron exists in some
allowed state supported by either the
nucleus of Zinc atom or the nucleus of

oxygen atom. According to the principle
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of linear superposition, the single -

particle wave function for positron takes Applying the Hamiltonian in eq. (5) to

form eq.(6), the total energy takes the following
form:
1 Apolpo 1 A pzd pzn J
Vo = 2Nprp0e +_2 Npr;Zne (11) E:;(ZK—I?) +2K -F vV (12)
where
6
K, =20y, =2 0% (img,) +07) Sy |+ (i) | a9
ER
1 — 1| = = p
I:i :_ZDiIrN/T :ﬁ Diln(pe +Dizln(\v'l )+E“n(\ljp_) (14)
j=1
J#i
_ 1 2 _ 1— 2 2 & e
Kp__ZDPInWT__Z Dp(ln\vp) +Dp(;ln\vip_p (15)
1 _ 1 — [ e o
Fp = —ZmeqlT = ﬁ Dp[gln(‘l’ﬁp)} + Dpln(wp)j (16)
Z, 2,

(17)

V= zz ZZZne _24209 + ZZ“P z
|dZn_dO| ‘r

| lj 1‘r r‘ i= 5|an| i:1| rO| ‘rpZn ‘rpo‘

|p‘

The form of the electron, positron correlation gyawhich is extract from (12) is as then

£ = 32k () + 2 5 &

i=1

where

Ke-P = -% Diz(m\vi;—p)

e —_ 1 2 & e
and K- = - Zmp(glnwip—pj (19)
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CALCULATING

In calculation, we will generate 8 sets of
data by varying one of the eight parametefs
Aos o B, Apzn Mo, o, Band keeping the other
seven parameters as constants. Runs were
performed with N = 300 walkers and MCSteps
=10000 times (Monte Carlo steps).
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Fig.2a.The average energy is in the term.gf
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Fig.2b. The relative error is in the term bf,

Varying the parametekz,: First, we will
vary the parametet,, from Az,win = 3 t0Aznmax
6.8 withdiz, = 0.2 whiledo = 3.2,0 = 0.14,
=0.5zn=0.21,A,0=0.72,0' = 0.88 and®

-1.5 are considered as constants.

=

The

(F~) =% 20, In(w-) Ong, + 20 In(y,-) 0

(20)

following plots show results for the average
energy <E> and its relative error as functions

of the variational paramet&g,.

The average energy and the relative error is
minimum atkz, = 4.2 which corresponds to the

optimized solution for the ground state.

Varying the parametéiy: Second, we will
vary the parameteély from Aomin = 4 t0Aomax =
6.8 withdio = 0.2 whilerz, = 4.2,a = 0.14,p
0.5,Apzn = 0.21,A50 = 0.72,0’ = 0.88 andp

= -1.5 are considered as constants.

The
following plots show results for the average
energy <E> and its relative error as functions

of the variational paramet&p.
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Fig.3a.The average energy is in the term.gf
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Fig.3b. The relative error is in the term of

The average energy and the relative error is
minimum atio = 5.2 which corresponds to the

optimized solution for the ground state.

Varying the parametef: Next, we will
vary the parametd from Byin = 0.32 tOByax =
0.7 with6p = 0.02 whileho = 5.2,Azn = 4.2,a.
= 0.14,420 = 0.21,00 = 0.72,0’ = 0.88 andp
= -1.5 are considered as constants. The
following plots show results for the average
energy <E> and its relative error as functions

of the variational paramet@r
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Fig.4b. The relative error is in the term pf

The average energy and the relative error is
minimum atp = 0.58 which corresponds to the

optimized solution for the ground state.

Varying the parametes: Next, we will

vary the parameter from oy, = 0.06 tOoay =

0.48 withda = 0.02 whileho = 5.2,37 = 4.2,B
= 0.58,4pz0 = 0.21,00 = 0.72,0’ = 0.88 andp

= -1.5 are considered as constants. The
following plots show results for the average

energy <E> and its relative error as functions

of the variational parameter
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Fig.5a. The average energy is in the termuof
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Fig.5b. The relative error is in the term of

The average energy and the relative error is
minimum ato. = 0.18 which corresponds to the

optimized solution for the ground state.

Varying the parameter,z.. Next, we will
vary the parameteX,z, from Apzamin = 0.06 to
Apzamax = 0.48 WithdA,z= 0.02 whilekz, = 4.2,

Xo =5.2,0 = 0.18,f = 0.58,1p0 = 0.72,0’ =
0.88 andp = -1,5 are considered as constants.
The following plots show results for the
average energy <E> and its relative error as

functions of the variational parameigg..
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Fig.6a. The average energy is in the term\gf,
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Fig.6b. The relative error is in the term bf,

The average energy and the relative error is
minimum ati,z, = 0.22 which corresponds to

the optimized solution for the ground state.

Varying the parametek,o: Next, we will
vary the parametek,o from A,omin = 0.1 to
Apomax = 0.48 withdi,o= 0.02 whiledz, = 4.2,

Ao =5.2,a = 0.18,f = 0.58,kpz, = 0.22,0' =
0.88 andp = -1,5 are considered as constants.
The following plots show results for the
average energy <E> and its relative error as

functions of the variational parameige.
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Fig.7a.The average energy is in the termgf
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Fig.7b. The relative error is in the term &fo

The average energy and the relative error is
minimum ati,o = 0.14 which corresponds to

the optimized solution for the ground state.

Varying the parametep: Next, we will
vary the parametd¥ from B yin = 0.02 tOB yiax
= 0.38 withdp = 0.02 whilerz, = 4.2,10 = 5.2,
a = 0.18,B = 0.58,kyzy = 0.22,1y0 = 0.14 and
o = 0.88 are considered as constants. The
following plots show results for the average
energy <E> and the variance as functions of the

variational parameted .

The average energy and the relative error is
minimum atp’ = 0.04 which corresponds to the

optimized solution for the ground state.
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Fig.8b. The relative error is in the term pf

Varying the parametes: Next, we will
vary the parameter from o i, = 0.2 t00 yax =
0.38 withda = 0.2 whiledz, = 4.2,00 = 5.2,a
= 0.18,4 = 0.58,A,z, = 0.22,}50 = 0.14 andy’
= 0.04 are considered as constants. The
following plots show results for the average
energy <E> and its relative error as functions
of the variational parameter.
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Fig.9a. The average energy is in the termuof

Fig.9b. The relative error is in the term of

12 The average energy and the relative error is
é | D2\ /\’ minimum ate’ = 1.2 which corresponds to the
A4 v o .
© o—f U optimized solution for the ground state.
0.8
0.8 ' ' Finally, we get the values of the optimized
’ 9
0 é, - parameters listed in the following table 1
Table 1.The values of exact parameters
Ao Azn ) B )\pZn XpO o B
5.2 4.2 0.18 0.58 0.22 0.14 1.2 0.04

After varying alternately the parameters,
we continuous to estimate the correlation —
energy EP with the set of the optimized
parameters by applying to the formula (18) and
the result is EP = -9.3+ 1.1 (eV).

CONCLUSION

In this article, we described the Variational
Quantum Monte Carlo method, the technique
that was used to estimate the value of the

electron, positron correlation - energy of ZnO

molecule. The Hamiltonian and the many
electron, positron wave function were also
discussed.
With
programming language C++, performing the
configuration with 300 walkers and 10000

building a code based on

MCSteps, the electron, positron correlation
energy of ZnO molecule was estimatefi’ E -

9.3 £ 1.1 (eV). It turns out that the value is
closer to results estimated by other methods [2]

than the value that we had done before.
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KHAO SAT NANG LUQNG TUONG QUAN ELECTRON — POSITRON TRONG ZnO
VOI SU HIEU CHINH HAM SONG POSITRON

Chau Vin Tao®, Trinh Hoa Lang®,
Nguyén Anh Tuan®, Lé Hoang Chén®, Nguyén Hiru Loc
(1) Truong Bai hoc Khoa loc Ty nhién

(2) Trung tam Nghiénia va Trén khai Cong nghBic xa

TOM TAT: Trong bai b4o nay, chang tdi tinkimg keong trong quan electron — positron trong

phan i kém oxit (ZnO), trongi6 gia thiét rang positron lién & véi cac electron thdc phan &p ngoai

cung @ia cac nguyénit kém va oxi tiréc khi né hiy wi mgt trong cac electron?d. Vi viéc s dung

phuirong phap hén phan Monte - Carlaong tr (VQMC),dong thyi hiéu chinh ham séngu@ positron

theo nguyén ly aing chit nhiéu trgng thai, ning krong trong quan electron—positrodizoc tinh toan va

né co giatrla ESP=-9,3 £1,1 eV. Kt qui nay (- 9,3 eV) @n Wi cac kt qui cia mst s chat diroc

tinh bvi cac phrong phép khac én so Vi truong hop ma chiing t6i da tinh trude day.

(1].

Tur khéa: Positron, Bn phan Monte - Carlarbng tir

(2].
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