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ABSTRACT: The ZnO – positron system is studied and its positron – electron correlation energy 

is estimated in its ground state. The positron binds with the outer shell electrons of Zinc and Oxigen to 

form the pseudo ZnO – positron molecule before it anihilates with one of these electrons. In this work, 

the single wave function for positron is modified according to the principle of linear superposition, and 

by using Variational Quantum Monte – Carlo method (VQMC) the correlation energy of this system is 

estimated with the value Ec
e-p = - 9.3 ± 1.1 eV. It turns out that the value is closer to results estimated by 

other methods than the value that we had done before. 
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INTRODUCTION 

There are many methods that have been 

used to estimate the positron-electron 

correlation energy [2]. In the article, we use the 

VQMC method to estimate the positron-

electron correlation energy. The method is 

more successful when we make the form of the 

trial wave functions of particles in a considered 

system are loser to that of the exact wave 

function. So, our main aim is to modify the 

form of the trial wave function of the positron. 

THEORY 

Variational Quantum Monte Carlo method 

The quantum mechanical system is 

represented by an exact wave function ( )ψ R  

and the average value of the system’s energy 

(we want to get the quantity in the process of 

estimating the electron, positron correlation – 

energy of the zinc oxide - positron system) is 

given by 

( ) � ( )
( ) ( )

*

*

dRψ R H(R)ψ R
H  = 

dRψ R ψ R
∫
∫

 

(1) 

However, we cannot properly construct the 

form of the exact wave function. This also 

means that we cannot exactly calculate � ( )H R  

in theory. Therefore, we must choose a trial 

total wave function ( )Tψ R, α  that depends 

on a set of parameters α. In the circumstance, 

we define two new quantities 

2
2T

T2

T

ψ (R, α)
ρ(R, α) =  = ψ (R, α)

dR ψ (R, α)∫  

(2) 
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H(R)ψ R, α
E(R, α) = 

ψ R, α
 

(3) 

With combining (1), (2) and (3) we can 

figure out the equation (4) 

( )
� ( )

( )
( ) ( )

T

T

*
T T

H(R)ψ R, α
dRρ R, α

ψ R, α
E  = 

dRψ R, α ψ R, α

∫

∫  

(4) 

can approach H  only if the trial wave 

function is close to the exact wave function. To 

satisfy this condition, we can vary values of α 

and search for the minimum value of E
 

which corresponds to the exact wave function. 

The calculations are solved by using techniques 

from the Variational Quantum Monte Carlo 

method. 

Model of the zinc oxide - positron 

In this paper, the electron, positron 

correlation – energy of the zinc oxide - positron 

system which shown in figure 1 is estimated by 

applying to the VMC method in which the 

Hamiltonian and the trial total wave function 

were used. 

With the Born – Oppenheimer 

approximation [3], the Hamiltonian for the 

system is then 

 

�
6 6 6

2 2 Zn O Zn O
i p

i = 1 i = 1 j = 1 Zn O Zn Oi j
j  i

6 4 6
Znp OpZne Oe

i = 5 i = 1 i = 1iZn iO pZn pO ip

Z Z Z Z1 1 1 1 1 1
H  = -  -  +  +  + 

2 2 2 2 d - d 2 d - dr - r

Z ZZ Z 1
       -  -  +  +  - 

r r r r r

≠

∇ ∇∑ ∑ ∑

∑ ∑ ∑
 

(5)

 

 

where 

- 2
i

1
- 

2
∇ , 2

p

1
- 

2
∇  is alternatively the 

kinetic operators of the i-th electron and 

the positron. 

- riZn (riO) is the distance from the position of 

the i-th electron to the position of zinc 

atom (oxygen atom). 

- rpZn (rpO) is the distance from the position 

of the positron to the position of zinc atom 

(oxygen atom). Similarly, rip is the 

distance from the position of the i-th 

electron to the position of the positron. 

- ri (rj) is the distance from the position of 

the i-th (j-th) electron to the coordinate 

angle. 

- dZn (dO) is the distance from the position of 

zinc atom (oxygen atom) to the coordinate 

angle. 

- ZZne (ZOe) is the effective nuclear charge of 

zinc (oxygen) atom for the electrons. 

- ZZnp (ZOp) is the effective nuclear charge 

of zinc (oxygen) atom for the positron. 
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ZO is the effective nuclear charge of 

oxygen atom for zinc atom. Conversely, ZZn is 

the nuclear charge of zinc atom for oxygen 

atom. 

 
Fig.1. The schematic of the zinc oxide – positron system 

The trial total wave function for the system 

used in this work is a product of single – 

particle wave functions multiplied by a Jastrow 

factor (an exponent of many particle 

correlation factors) 

4 2 6 6
e-e e-p

T io iZn ij ip p
i=1 i=1 i=1 i=1

j>i

ψ  = ψ ψ ψ ψ ψ∏ ∏ ∏ ∏
 

(6) 

with 

- iOψ  is the single – particle wave function 

for the i-th electron belonging to oxygen 

atom. With the Slater’s approach [4], it 

takes the following form 

- 
 

O iO Zn iZn- λ r - λ r
iO O iO O iZnψ = N r e  + N r e

 
(7) 

- iZnψ  is the single – particle wave function 

for the i-th electron belonging to zinc 

atom. With the Slater’s approach, it takes 

the following form 

- 
 

o ioZn iZn - λ r- λ r4 4
iZn Zn iZn Zn ioψ = N r e  + N r e (8) 

- e-e
ijψ  is the Jastrow factor that reflects the 

correlation between the i-th electron and 

the j-th electron. With the Pade’s approach 

[1], it takes the form 

- 
 

ij

ij

βr

1 + αre-e
ijψ  = e

 
(9) 

- e-p
ipψ  is the Jastrow factor that reflects the 

correlation between the i-th electron and 

the positron. With the Pade’s approach, it 

takes the form 

- 
 

'
ip
'

ip

β r

1 + α re-p
ipψ  = e

 
(10) 

- pψ  is the single – particle wave function 

for the positron. When the positron moves 

into Zinc oxide molecule, the positron may 

belong to either zinc atom or oxygen atom. 

So, we assume that positron exists in some 

allowed state supported by either the 

nucleus of Zinc atom or the nucleus of 

oxygen atom. According to the principle 

 



Science & Technology Development, Vol 14, No.T4- 2011 
 

Trang 80 

of linear superposition, the single – 

particle wave function for positron takes 

form 

 

pO pO pZn pZn- λ r - λ r4
p p pO p pZn

1 1
ψ  = N r e  + N r e

2 2 (11) 

 

 

Applying the Hamiltonian in eq. (5) to 

eq.(6), the total energy takes the following 

form:  

( )
6

2 2
i i p p

i = 1

E = 2K - F  + 2K - F  + V∑
     

(12) 

where 
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(17) 

The form of the electron, positron correlation energy which is extract from (12) is as then 

 
( )( ) ( )

6 2 2e_p e-p e-p e-p e-p
i i p p

i = 1

E  = 2K - F + 2K - F∑
                                                 

(18) 

 

where 

 
( )e_p 2 e_p

i i ip

1
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6
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(19) 



TAÏP CHÍ PHAÙT TRIEÅN KH&CN, TAÄP 14, SOÁ T4 - 2011 

Trang 81 

( ) ( ) ( ) ( ) ( )
6 22e_p e_p e_p e_e e_p

i i ip i e i ip i ij i ip
j = 1
j  i

1
F  = 2 ln ψ lnφ  + 2 ln ψ ln ψ  + ln ψ

2
≠

 
  ∇ ∇ ∇ ∇ ∇   
 

∑
uur uur uur uur uur

        

(20) 

( ) ( ) ( ) ( )
2

6 62e_p e_p e_p
p p ip p p p ip

i = 1 i = 1

1
F = 2 ln ψ ln ψ  + ln ψ

2

     
 ∇ ∇ ∇          

∑ ∑
uur uur uur

 

(21) 

 

6
e_p

i = 1 ip

1
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CALCULATING 

In calculation, we will generate 8 sets of 

data by varying one of the eight parameters λZn, 

λO , α, β, λpZn, λpO , α’, β’and keeping the other 

seven parameters as constants. Runs were 

performed with N = 300 walkers and MCSteps 

= 10000 times (Monte Carlo steps). 

 
Fig.2a. The average energy is in the term of λZn 

 

Fig.2b. The relative error is in the term of λZn 

Varying the parameter λZn: First, we will 

vary the parameter λZn from λZnMin = 3 to λZnMax 

= 6.8 with δλZn = 0.2 while λO = 3.2, α = 0.14, 

β = 0.5, λpZn = 0.21, λpO = 0.72, α’ = 0.88 and β’  

= -1.5 are considered as constants. The 

following plots show results for the average 

energy <E> and its relative error as functions 

of the variational parameter λZn. 

The average energy and the relative error is 

minimum at λZn = 4.2 which corresponds to the 

optimized solution for the ground state. 

Varying the parameter λO: Second, we will 

vary the parameter λO from λOMin = 4 to λOMax = 

6.8 with δλO = 0.2 while λZn = 4.2, α = 0.14, β 

= 0.5, λpZn = 0.21, λpO = 0.72, α’ = 0.88 and β’  

= -1.5 are considered as constants. The 

following plots show results for the average 

energy <E> and its relative error as functions 

of the variational parameter λO. 

  

Fig.3a. The average energy is in the term of λO 
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Fig.3b. The relative error is in the term of λO 

The average energy and the relative error is 

minimum at λO = 5.2 which corresponds to the 

optimized solution for the ground state. 

Varying the parameter β: Next, we will 

vary the parameter β from βMin = 0.32 to βMax = 

0.7 with δβ = 0.02 while λO = 5.2, λZn = 4.2, α 

= 0.14, λpZn = 0.21, λpO = 0.72, α’ = 0.88 and β’  

= -1.5 are considered as constants. The 

following plots show results for the average 

energy <E> and its relative error as functions 

of the variational parameter β. 

 

Fig.4a. The average energy is in the term of β 

 

Fig.4b. The relative error is in the term of β 

The average energy and the relative error is 

minimum at β = 0.58 which corresponds to the 

optimized solution for the ground state. 

Varying the parameter α: Next, we will 

vary the parameter α from αMin = 0.06 to αMax = 

0.48 with δα = 0.02 while λO = 5.2, λZn = 4.2, β 

= 0.58, λpZn = 0.21, λpO = 0.72, α’ = 0.88 and β’  

= -1.5 are considered as constants. The 

following plots show results for the average 

energy <E> and its relative error as functions 

of the variational parameter α. 

 
Fig.5a. The average energy is in the term of α 

 
Fig.5b. The relative error is in the term of α 

The average energy and the relative error is 

minimum at α = 0.18 which corresponds to the 

optimized solution for the ground state. 

Varying the parameter λpZn: Next, we will 

vary the parameter λpZn from λpZnMin = 0.06 to 

λpZnMax = 0.48 with δλpZn= 0.02 while λZn = 4.2, 

λO = 5.2, α = 0.18, β = 0.58, λpO = 0.72, α’ = 

0.88 and β’ = -1,5 are considered as constants. 

The following plots show results for the 

average energy <E> and its relative error as 

functions of the variational parameter λpZn. 
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Fig.6a. The average energy is in the term of λpZn 

 

 

Fig.6b. The relative error is in the term of λZn 

The average energy and the relative error is 

minimum at λpZn = 0.22 which corresponds to 

the optimized solution for the ground state. 

Varying the parameter λpO: Next, we will 

vary the parameter λpO from λpOMin = 0.1 to 

λpOMax = 0.48 with δλpO= 0.02 while λZn = 4.2, 

λO = 5.2, α = 0.18, β = 0.58, λpZn = 0.22, α’ = 

0.88 and β’ = -1,5 are considered as constants. 

The following plots show results for the 

average energy <E> and its relative error as 

functions of the variational parameter λpO. 

 
Fig.7a. The average energy is in the term of λpO 

 
Fig.7b. The relative error is in the term of λpO 

The average energy and the relative error is 

minimum at λpO = 0.14 which corresponds to 

the optimized solution for the ground state. 

Varying the parameter β’: Next, we will 

vary the parameter β’ from β’
Min = 0.02 to β’

Max 

= 0.38 with δβ’= 0.02 while λZn = 4.2, λO = 5.2, 

α = 0.18, β = 0.58, λpZn = 0.22, λpO = 0.14 and 

α’ = 0.88 are considered as constants. The 

following plots show results for the average 

energy <E> and the variance as functions of the 

variational parameter β’. 

The average energy and the relative error is 

minimum at β’ = 0.04 which corresponds to the 

optimized solution for the ground state. 

 
Fig.8a. The average energy is in the term of β’ 

 
Fig.8b. The relative error is in the term of β’ 

Varying the parameter α’: Next, we will 

vary the parameter α’ from α’
Min = 0.2 to α’

Max = 

0.38 with δα’= 0.2 while λZn = 4.2, λO = 5.2, α 

= 0.18, β = 0.58, λpZn = 0.22, λpO = 0.14 and β’ 

= 0.04 are considered as constants. The 

following plots show results for the average 

energy <E> and its relative error as functions 

of the variational parameter α’ . 
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Fig.9a. The average energy is in the term of α’ 

 

Fig.9b. The relative error is in the term of α’ 

The average energy and the relative error is 

minimum at α’  = 1.2 which corresponds to the 

optimized solution for the ground state. 

Finally, we get the values of the optimized 

parameters listed in the following table 1 

Table 1. The values of exact parameters 

λO λZn α β λpZn λpO α’  β’ 

5.2 4.2 0.18 0.58 0.22 0.14 1.2 0.04 

 

After varying alternately the parameters, 

we continuous to estimate the correlation – 

energy Ee-p with the set of the optimized 

parameters by applying to the formula (18) and 

the result is Ee-p = -9.3 ± 1.1 (eV). 

CONCLUSION 

In this article, we described the Variational 

Quantum Monte Carlo method, the technique 

that was used to estimate the value of the 

electron, positron correlation - energy of ZnO 

molecule. The Hamiltonian and the many 

electron, positron wave function were also 

discussed. 

With building a code based on 

programming language C++, performing the 

configuration with 300 walkers and 10000 

MCSteps, the electron, positron correlation 

energy of ZnO molecule was estimated, Ee-p = -

9.3 ± 1.1 (eV). It turns out that the value is 

closer to results estimated by other methods [2] 

than the value that we had done before. 
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KHẢO SÁT NĂNG LƯỢNG TƯƠNG QUAN ELECTRON – POSITRON TRONG ZnO 

VỚI SỰ HIỆU CHỈNH HÀM SÓNG POSITRON 

Châu Văn Tạo(1), Tr ịnh Hoa Lăng(1),  

Nguyễn Anh Tuấn(2), Lê Hoàng Chiến(1), Nguyễn Hữu Lộc 

(1) Trường ðại học Khoa học Tự nhiên 

(2) Trung tâm Nghiên cứu và Triển khai Công nghệ Bức xạ 

TÓM TẮT: Trong bài báo này, chúng tôi tính năng lượng tương quan electron – positron trong 

phân tử kẽm oxit (ZnO), trong ñó giả thiết rằng positron liên kết với các electron thuộc phân lớp ngoài 

cùng của các nguyên tử kẽm và oxi trước khi nó hủy với một trong các electron ñó. Với việc sử dụng 

phương pháp biến phân Monte - Carlo lượng tử (VQMC), ñồng thời hiệu chỉnh hàm sóng của positron 

theo nguyên lý chồng chất nhiều trạng thái, năng lượng tương quan electron–positron ñược tính toán và 

nó có giá trị là Ec
e-p = - 9,3 ± 1,1 eV. Kết quả này (- 9,3 eV) gần với các kết quả của một số chất ñược 

tính bởi các phương pháp khác hơn so với trường hợp mà chúng tôi ñã tính trước ñây. 

Từ khóa: Positron, biến phân Monte - Carlo lượng tử
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