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1. INTRODUCTION  

The study of approximate solutions of optimization problems has been received attentions of 
many authors (see [6], [7], [9], [10], [11], [12] and references therein). Many of these papers deal 
with convex problems in finite/infinite dimensional spaces and finite number of convex inequality 
constraints and affine equality constraints. The others deal with Lipschitz problems or vector 
optimization problems. In order to establish approximate optimality conditions the authors often 
used Slater type constraint qualification (see, e.g., [7], [11], and [12]). Recently, Scovel, Hush 
and Steinwart [13] introduced a general treatment of approximate duality theory for convex 
programming problems (with a finite number of constraints) on a locally convex Hausdorff 
topological vector space. 

In the recent years, convex problems in infinite dimensional setting with possibly infinite 
number of constraints were studied in [2], [3], where the optimality conditions, duality results, 
and saddle-point theorems were established, based on the conjugate theory in convex analysis and 
a new closedness condition called (CC) instead of Slater condition.  

In this paper, we consider a model of convex infinite programming problem, that is, a convex 
problem in infinite dimensional spaces with infinitely many inequality constraints. We study the 
necessary and sufficient conditions for a feasible point to be an ε -solution, approximate duality 
and approximate saddle-points, using the tools introduced in [2] and [3]. These results will be 
established based upon a new Farkas type result in [3] and under the closedness condition (CC).  

The paper is organized as follows: Section 2 is devoted to some basic definitions and basic 
lemmas which will be used later on. In Section 3, several ε -optimality conditions of Karush-
Kuhn-Tucker type for an approximate solution of a class of convex infinite programming 
problems are established. In particular, an optimality condition for (exact) solution of these 
problems are derived as a consequence of the corresponding approximate result. Finally, results 
on approximate duality and on approximate saddle-points are established in the last section, 
Section 4. An example is given to illustrate the significance of the results. 

2. PRELIMINARIES  

Let T be an arbitrary (possibly infinite) index set and let TR  be the product space 
with product topology. Denote by )(TR the space of all generalized sequences ( )t t Tλ λ ∈=  

such that t Rλ ∈  for each t T∈  and the set { }0|:supp ≠∈= tTt λλ , the supporting set of λ , 
is a finite subset of T . Set  

{ }( ) ( ): ( ) 0,T T
t tR R t Tλ λ λ+ = = ∈ ≥ ∈ . 

Note that ( )TR+  is a convex cone in ( )TR (see [5], page 48).  

 We recall some notations and basic results which will be used later on. Let X be a locally 
convex Hausdorff topological vector space with its topological dual, X*, endowed with weak*-
topology. For a subset D X⊂ , the closure of D  and the convex cone generated by D  are 
denoted by cl D  and cone D , respectively.  



Let { }∞+→ URXf :  be a proper lower semi-continuous (l.s.c.) and convex function. The 
conjugate function of ,, *ff  is defined as  

{ }
{ },dom)()(sup:)(

,:
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fxxfxvvf
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∈−=
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where { }+∞<∈= )(|:dom xfXxf  is the effective domain of f. The epigraph of f is 
defined by  

{ }rxfRXrxf ≤×∈= )(|),(:epi . 
The subdifferential of the convex function f at fa dom∈ is the set (possibly empty)  

{ }XxaxvafxfXvaf ∈∀−≥−∈=∂ ),()()(|:)( * . 
For 0≥ε , the ε -subdifferential of f at fa dom∈  is defined as the set (possibly empty)  

{ }fxaxvafxfXvaf dom,)()()(|:)( * ∈∀−−≥−∈=∂ εε . 

If 0>ε then )(afε∂  is nonempty and it is a weak*-closed subset of X*. When 0=ε , 
)(0 af∂  collapses to ).(af∂  

For any fa dom∈ , epi f* has a representation as follows (see [8]): 

{ }U
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Noting that, for 0, 21 ≥εε  and gfz domdom ∩∈ ,  
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and for fz dom,0,0 ∈≥> εµ  (see [14], page 83),  

))(()( zfzf µµ µεε ∂=∂ ,                                             (2.2) 

Let us denote by )(xBδ  the indicator function of a subset B of X, i.e., 
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Let C be a closed convex subset of X. For ,0≥ε  the ε -normal cone of C at ,z  denoted by 
),,( zCNε  is defined by  

{ }CxzxuXuzCN ∈∀≤−∈= ,)(|:),( * εε . 

It is easy to see that )(),( zzCN Cδεε ∂= . Let { } TtRXft ∈∞+→ ,: U , be proper, l.s.c. 
and convex functions. We shall deal with the following convex system:  

{ }CxTtxf t ∈∈∀≤= ,,0)(:σ . 

Denote by A the solution set of σ , that is, { }TtxfCxXxA t ∈∀≤∈∈= ,0)(,|: . The 
system σ  is said to be consistent if φ≠A . The cone  
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is called the characteristic cone of σ . A consistent system σ  is said to be a Farkas-
Minkowski system (FM) if K is weak*-closed. The (FM) condition was introduced recently in [2]. 



It was known that (FM) condition is weaker than several known interior- type constraint 
qualifications. The following closedness condition [2] will be used later on. 

closedweakclepi:)CC( ** −+ isKf . 
Remark 2.1 If σ  is (FM) and f is continuous at least one point in C then the condition (CC) 

is satisfied (see Theorem 1 in [3]; see  also [1, 2]).  
The following lemma will be used as a main tool to establish -optimality conditions and 

related results for convex infinite problems. It is known as generalized Farkas’ lemma and was 
established recently in [3]. 

Lemma 2.1 [3] Suppose that σ  is (FM) and (CC) holds. For any R∈α , the following 
statements are equivalent:  

(i) α≥⇒∈∀≤∈ )(,0)(, xfTtxfCx t ; 

(ii) Kf +∈− *epi),0( α ; 
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3. APPROXIMATE OPTIMALITY CONDITIONS 

Consider the following optimization problem: 

,
,,0)(tosubject

)(Minimize)P(

Cx
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t

∈
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where T is an arbitrary (possibly infinite) index set, X is a locally convex Hausdorff 
topological vector space, { } TtRXff t ∈∞+→ ,:, U , are proper, l.s.c and convex functions, C 
is a closed convex subset of X. Denote by A the feasible set of (P), i.e., 

{ }TtxfCxXxA t ∈∀≤∈∈= ,0)(,| . 

From now on, assume that φ≠A  and inf(P) is finite. The definition of ε -solution for a 
convex problem with finite number of constraints was presented in [12]. We present the 
definition of ε -solution for convex infinite problem (P) as follows. 

Definition 3.1 For the problem (P), let 0≥ε . A point fAz dom∩∈  is said to be an ε -
solution of (P) if ε+≤ )inf()( Pzf , i.e., ε+≤ )()( xfzf  for all Ax ∈ . 

It is worth noting that a point Az ∈  is an ε -solution of (P) if and only if 
))((0 zf Aδε +∂∈ . We now give a characterization of ε -optimality condition for (P).  

Theorem 3.1 Let 0≥ε  and let fdomAz ∩∈ . Suppose that σ  is (FM) and that (CC) 
holds. Then z  is an -solution of (P) if and only if there exist )()( T

t R+∈= λλ , 0,0 21 ≥≥ εε  and 
0≥tε  for all ,Tt ∈  such that  
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Proof. Suppose that z is an ε -solution of (P). This means that  
ε−≥⇒∈∀≤∈ )()(,0)(, zfxfTtxfCx t .                           (3.3) 



Since σ  is (FM) and (CC) holds, it follows from Lemma 2.1 that (3.3) is equivalent to  
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From this and (2.1) (applies to ** epi,epi tff and *epi Cδ ), there exist ,,, *Xuvu t ∈  
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The first equality gives  ∑
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and the second implies  ∑∑
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Let ': ttt ελε = . Taking (2.2) into account, we get  
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The necessity has been proved. 
Conversely, suppose that there exist 0,0,)( 21

)( ≥≥∈= + εελλ T
t R  and 0≥tε  for all Tt ∈  

satisfying (3.1) and (3.2). Then there exists  
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Hence, for all Xx ∈ , 1)()()( ε−−≥− zxvzfxf , and  

λελλ supp,)()()( ∈∀−−≥− tzxuzfxf tttttt . 
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Combining this and (3.2) we get  
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Since 0≥tλ  and 0)( ≤xf t  for all Ax ∈  and for all Tt ∈ , ε−≥ )()( zfxf  for all 
,Ax ∈  which proves z  to be an ε -solution of (P).                                  

We get the following result proved recently in [3] when taking 0=ε . 
Corollary 3.1 For the problem (P), let .fdomAz ∩∈  Suppose that σ  is (FM) and (CC) 

holds. Then z is a solution of (P) if and only if there exists )(TR+∈λ such that  
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The conclusion follows by taking the fact that 0)( ≤zf ttλ  for each Tt ∈ , 0, 21 ≥εε  and 
0≥tε  for all Tt ∈ into account.                       

Corollary 3.2 Let 0≥ε  and let .fdomAz ∩∈  For the Problem (P), assume that 
Ttff t ∈,, , are finite-valued, continuous, and convex functions. Assume further that the system 

σ  is (FM). Then z  is an ε -solution of (P) if and only if there exist 
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Proof. The conclusion follows from Remark 2.1 and Theorem 3.1.                    
Example 
 Consider the problem 

].21,21[
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The feasible set of (Q) is ]21,0[=A  and so 0inf(Q) ==α . To illustrate Theorem 3.1, 
take 41=ε  and 21=z . We will show that there exist 0,0, 21

)( ≥≥∈ + εελ TR  and 0≥tε  for 
all Tt ∈ such that (3.1) and (3.2) hold. 

Set ]1,0[,)(,)( 22 =∈−== Ttxtxxfxxf t . A simple computation gives 

       { }11 2121)21(
1

εεε +≤≤−=∂ uuf  and { }2)21,(
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εε −≥= vvCN . 

If we choose 
       8121 == εε , )21,(81),21(81

21
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then  
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Thus, (3.1) and (3.2) are satisfied and 21=z  is an )41( -solution of (Q). 

4. ε -DUALITY AND ε -SADDLE POINT 

The study of ε -duality and ε -saddle points of an optimization problem was seen in many 
papers (see [4], [9], [10], [11], [12], [13]). There, the problems in consideration have a finite 
number of constraints. In this section we establish some results concerning ε -duality and ε -
saddle points of the convex infinite problem (P) introduced in Section 3. For the problem (P), the 
Lagrangian function (see [2]) is  
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Set .),,(inf)( )(T
Cx RxL +∈ ∈= λλλψ  The following optimization problem is called the 

Lagrange dual problem of (P) [2]: 
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)(sup(D)

)(TR+∈λ
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Definition 4.1 For the problem (D), let 0≥ε  and let λ  be a point of )(TR+ . The point λ  is 

said to be an ε -solution of (D) if ελψ −≥ )Dsup()( , i.e., ελψλψ −≥ )()(  for all )(TR+∈λ . 
 
Theorem 4.1 Let 0≥ε . Suppose that σ  is (FM) and (CC) holds. If z  is anε -solution of (P) 

then there exists )(TR+∈λ such that λ is an ε -solution of (D). 

Proof. Denote by εS  and εD  the sets of all ε -solutions of (P) and (D), respectively. Since 
,CAS ⊂⊂ε ),(inf),(inf),(inf)( λλλλψ

ε
xLxLxL SxAxCx ∈∈∈ ≤≤= . 

Hence,  
)(,),(),()( TRSxxfxL +∈∀∈∀≤≤ λλλψ ε .  

Since z is an ε -solution of (P),   
)(),()( TRzf +∈∀≤ λλψ .           (4.1) 

On the other hand, if z  is an ε -solution of (P) then  
.)()(,,0)( ε−≥⇒∈∈∀≤ zfxfCxTtxft  

Since σ  is (FM) and (CC) holds, by Lemma 2.1, there exists )(TR+∈λ such that 
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Hence, )()( λψε ≤−zf . This and (4.1) imply that )()( λψελψ ≤−  for all )(TR+∈λ . 

Thus, λ  is an ε -solution of (D).                                                             
Remark 4.1 Let 0≥ε  and let fAz dom∩∈ . If there exists )(TR+∈λ  such that 

)()( λψε ≤−zf  then it is easy to see that z  is an ε -solution of (P).                                                                           
 We now give a definition of ε -saddle points of (P). 
Definition 4.2 Let 0≥ε . A point )(),( TRCz +×∈λ  is said to be an ε -saddle point of the 

Lagrange function L if ελλελ +≤≤− ),(),(),( xLzLzL  for any .),( )(TRCx +×∈λ  
 
Theorem 4.3 Suppose that σ  is (FM) and (CC) holds. Let 0≥ε  and let fAz dom∩∈ . If 

z  is anε -solution of (P) then there exists )(TR+∈λ such that ),( λz  is anε -saddle point of the 
Lagrange function L. 

Proof. Suppose that fAz dom∩∈  is an ε -solution of (P). Then  

.)()(,0)(, ε−≥⇒∈∀≤∈ zfxfTtxfCx t  

Since σ  is (FM) and (CC) holds, it follows from Lemma 2.1 that there exists 
)(TR+∈λ satisfying 

.,)()()( Cxzfxfxf
Tt

tt ∈∀−≥+ ∑
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ελ                                   (4.2) 

An argument as in the proof of Theorem 4.1 shows that λ  is also an ε -solution of (D). Since 
Az ∈ , we get 0)( ≤xf t  for all .Tt ∈  Hence, 
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or, equivalently, ),(),( λελ zLxL ≥+  for all .Cx ∈  On the other hand, since εSz ∈ , 
0)( ≤zf t  for all Tt ∈ . Then,  
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Moreover, it follows from (4.2) that, .),()( ελ +≤ zLzf  This, together with (4.3), implies 

that ),(),( λελ zLzL ≤−  for all )(TR+∈λ . Consequently, for all Cx ∈ and for all )(TR+∈λ , 

.),(),(),( ελλελ +≤≤− xLzLzL                                                  

Theorem 4.4 Let 0≥ε . If ),( λz  is an )2/(ε -saddle point of the Lagrange function L then 

z  is anε -solution of (P) and λ  is an ε -solution of (D).Proof. Since )(),( TRCz +×∈λ  is an 
)2/(ε -saddle point of the Lagrange function L, we have 
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If Ax ∈  then 0)( ≤xf t  for all Tt ∈ , and hence, ∑
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≤
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Taking 0=λ  and noting that )()()( xfxfxf
Tt

tt ≤+ ∑
∈

λ  for all ,Ax ∈ it follows from 

(4.4)  
that ε+≤ )()( xfzf  for all Ax ∈ , i.e., z  is anε -solution of (P). Since ,Cz ∈  
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Hence, )()( λψελψ ≤− , i.e., λ  is an ε -solution of (D).                             

ĐIỀU KIỆN XẤP XỈ TỐI ƯU VÀ ĐỐI NGẪU CHO BÀI TOÁN QUI HOẠCH LỒI 
VÔ HẠN 

Nguyễn Định(1), Tạ Quang Sơn(2) 

(1) Bộ môn Toán, Trường Đại học Quốc tế, Đại học Quốc gia Tp. Hồ Chí Minh 
(2) Trường Cao Đẳng Sư Phạm Nha Trang, Nha Trang 

TÓM TẮT: Bài báo này thiết lập các điều kiện cần và đủ tối ưu cho nghiệm xấp xỉ của bài 
toán qui hoạch lồi vô hạn. Các điều kiện này thuộc dạng Kuhn-Tucker và nhận được bằng cách 
sử dụng một kết quả dạng Farkas được thiết lập gần đây. Một số kết quả về đối ngẫu Lagrange 
xấp xỉ và điểm yên ngựa xấp xỉ cho bài toán lồi vô hạn cũng được thiết lập.  

Từ khoá: ε -nghiệm, ε -đối ngẫu, điểm ε -yên ngựa. 
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