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1. INTRODUCTION

The study of approximate solutions of optimization problems has been received attentions of
many authors (see [6], [7], [9], [10], [11], [12] and references therein). Many of these papers ded
with convex problemsin finite/infinite dimensional spaces and finite number of convex inequality
constraints and affine equality constraints. The others deal with Lipschitz problems or vector
optimization problems. In order to establish approximate optimality conditions the authors often
used Slater type constraint qualification (see, e.g., [7], [11], and [12]). Recently, Scovel, Hush
and Steinwart [13] introduced a general treatment of approximate duality theory for convex
programming problems (with a finite number of constraints) on a locally convex Hausdorff
topological vector space.

In the recent years, convex problems in infinite dimensional setting with possibly infinite
number of constraints were studied in [2], [3], where the optimality conditions, duality results,
and saddle-point theorems were established, based on the conjugate theory in convex analysis and
anew closedness condition called (CC) instead of Sater condition.

In this paper, we consider amodel of convex infinite programming problem, that is, a convex
problem in infinite dimensional spaces with infinitely many inequality constraints. We study the
necessary and sufficient conditions for a feasible point to be an e -solution, approximate duality
and approximate saddle-points, using the tools introduced in [2] and [3]. These results will be
established based upon a new Farkas type result in [3] and under the closedness condition (CC).

The paper is organized as follows: Section 2 is devoted to some basic definitions and basic
lemmas which will be used later on. In Section 3, several e -optimality conditions of Karush-
Kuhn-Tucker type for an approximate solution of a class of convex infinite programming
problems are established. In particular, an optimality condition for (exact) solution of these
problems are derived as a consequence of the corresponding approximate result. Finally, results
on approximate duality and on approximate saddle-points are established in the last section,
Section 4. An example is given to illustrate the significance of the results.

2. PRELIMINARIES

Let T be an arbitrary (possibly infinite) index set and let R" be the product space

with product topology. Denote by R™ the space of all generalized sequences | =(I ),
suchthat |, T R for each t1 T and the setsuppl :={tT T|I,* 0}, the supporting set of | ,
isafinite subset of T . Set

RV ={l = )T R| 1,2 0tl T}.
Notethat R{" isaconvex conein R™ (see[5], page 48).

We recall some notations and basic results which will be used later on. Let X be a localy
convex Hausdorff topological vector space with its topological dua, X, endowed with weak -
topology. For a subset D1 X, the closure of D and the convex cone generated by D are
denoted by ¢l D and coneD , respectively.



Let f: X ® RU{+¥} be a proper lower semi-continuous (l.s.c.) and convex function. The
conjugate functionof f, f”, isdefined as
f': X" ® RU{+¥},
fi(v):= sup{v(x)- f(x)| xI domf},
where dom f :={XT X|f(x)< +¥} is the effective domain of f. The epigraph of f is
defined by
epi f:={(xr) X" R| f(X)Er}.
The subdifferential of the convex function fat al dom f isthe set (possibly empty)
T (@):={vi X" |f(x)- f(a)3 v(x- a)," xI X}.
For e 3 0, the e -subdifferential of fat al dom f isdefined asthe set (possibly empty)
T.f(@):={vl X" [f(x)- f(a@)3 v(x- a)- e," xI domf}.
If e>0then Y, f(a) is nonempty and it is a weak*-closed subset of X. Whene =0,
1, f (a) collapsesto If (a).
Forany al dom f , epi f* has arepresentation as follows (see [8]):
epi = U{ (v.v(@) +e- f(@)IV 1. (a)} (21)

e30

Noting that, for e,,e, 3 0 and zI dom f Cdomg,

1. f(D+1,9D1 1., (f +9)(2)
andfor m>0,e3 0,z1 domf (see[14], page 83),

M. f(2) =T (nf)(2), (2.2)
Let usdenote by d (X) the indicator function of a subset B of X, i.e.,
i0, xI B,
ds(X):=1 -
+() 1+¥ xi B.

Let C be aclosed convex subset of X. For € 3 0, the e -normal cone of C at z, denoted by
N, (C,2), isdefined by
N, (C,2) ::{uT X" Ju(x- 2)£e," xI1 C} :
Itis easy to seethat N,(C,2) =1.d.(2). Let f: X ® RU{+¥},t1 T, be proper, |.sc.
and convex functions. We shall dea with the following convex system:
s ={f,(0£0,"t1 T,xI C}.
Denote by A the solution set of s , that is, A:={xI X|xI C,f,(x)£0,"tl T}. The
system S issaid to be consistent if A® f . The cone
i . * . * U
K :=conej |J epi f, Uepldct’J
TaT KV)
is called the characteristic cone of S . A consistent system S is said to be a Farkas
Minkowski system (FM) if K isweak -closed. The (FM) condition was introduced recently in [2].



It was known that (FM) condition is weaker than several known interior- type constraint
gualifications. The following closedness condition [2] will be used later on.

(CC): epif +clK is weak - closed.

Remark 2.1 1f s is(FM) and f is continuous at least one point in C then the condition (CC)
issatisfied (see Theorem 1in[3]; see also[1, 2]).

The following lemma will be used as a main tool to establish -optimality conditions and
related results for convex infinite problems. It is known as generalized Farkas' lemma and was
established recently in [3].

Lemma 2.1 [3] Suppose that S is (FM) and (CC) holds. For any a 1 R, the following
statements are equivalent:

@) xI C,f(X)EQ"tT T P f(x)2%a;
(i) (0,-a)T epi f" +K;
(i) $1 T R™:f()+g 1, f.(x)3a," xi C.
[N
3. APPROXIMATE OPTIMALITY CONDITIONS
Consider the following optimization problem:
P Minimize f(X)
subject to f(X)£0," tT T,
xI C,
where T is an arbitrary (possibly infinite) index set, X is a locally convex Hausdorff
topological vector space, f, f, : X ® RU{+ ¥}, tl T, are proper, |.s.c and convex functions, C
isaclosed convex subset of X. Denote by A the feasible set of (P), i.e.,
A={xi X|xI C,f,(x£0,"ti T}.
From now on, assume that A f and inf(P) is finite. The definition of e -solution for a

convex problem with finite number of constraints was presented in [12]. We present the
definition of e -solution for convex infinite problem (P) as follows.

Definition 3.1 For the problem (P), let e 3 0. A point zI ACdomf issadtobean e-
solution of (P) if f(2) £inf(P)+e,ie, f(2)£ f(x)+e foral xI A.
A It is worth noting that a point zI A is an e-solution of (P) if and only if
Ol 1. (f +d,)(2) . We now give acharacterization of e -optimality condition for (P).
Theorem 3.1 Lete 3 0 and let zZT ACdomf . Suppose that S is (FM) and that (CC)
holds. Then z isan -solution of (P) if and only if thereexist | =(1 )] R™,e, 3 0,e,3 0 and
e 3 0forall tT T, suchthat

ol 1. f(2+ a T (.f)@D+N,(C2), (3.1)
tl suppl
o o
e:e1+e2+Aaet' Aa|tft(2)- (3.2
tl suppl tl suppl

Proof. Supposethat zisan e -solution of (P). This means that
xI C,f()E£Q"tI T P f(X)3 f(2)-e. (3.3)



Since s is(FM) and (CC) halds, it follows from Lemma 2.1 that (3.3) is equivaent to
(0,e- f(2)1 epi f" +cone(Jepi f, Jepid.).
tT
Hence, thereexists | = (1 )T R suchthat
(Oe- f(2)T epi f" +3 | epi f +epid,. .
T

From this and (2.1) (applies to epi f ', epi f, and epid.), there exist u,v,u 1 X',

e, 0e,20,e30adul T, f(2), ul T f(2), vi 1,d(2) foral ti T suchthat

[¢]
0 =u+ gl.u+v,
tl suppl

e- f(@=u@+e- f@+ Al [u@+e- fi(2]+VD+e,- d.(2).

i
!
|
I )
] tl suppl

Thefirst equality gives Ol T, f (2 + a I, (9 + N, (C,2)

tT suppl

o] ' o]
and thesecondimplies e =, +e,+ ql.e - al.f(2).
tl suppl tl suppl

Lete, =1 tet' . Taking (2.2) into account, we get
ol 1. fD+ & T, (. f)@+N,(C,2),

t1 suppl
[] []
e=e+e,+ ae- al fi(2.
tl suppl tl suppl
The necessity has been proved.
Conversely, suppose that thereexist | =(I,)T R, e,3 0,e,3 0ande 3 0 foral tT T
satisfying (3.1) and (3.2). Then there exists
ul 1. f(@+ & 1. 0,f)(2 suchthat - ul N, (C,2).

tl suppl
Note that
-ul N, (C,2) U u(®®u(2)-e,"xiC.

Asul 1, f(2)+ a 7., (1 f)(2) . thereexist v, u T X foral tT suppl suchthat
tl suppl!

u=v+ au, vi 1. 1@, 4l 1. (,f)@," tT suppl .

tl suppl
Hence, forall xI X, f(x)- f(2)3 v(x- 2)- e, and
| f.(¥)-1.f(2)3u(x-2-e,"tl suppl .
Thus,
f9+ &l - f(@- &l @ vx- 2+ & ulx-2-(e+ ge)"x X.

t1 suppl 1l suppl tl suppl t1 suppl

Sinceu=v+ g u and u(x- 2)3 -e, foral xi C,
tl suppl



f)+ &1, f(0- f@- 1,523 - +e,+ §e) "Xl C

tl suppl tl suppl tl suppl
Combining this and (3.2) we get
f)+ Q! f(03 f(2)-e"xi C.
tl suppl!

Since 1,30 and f(X)£0 for al xI A and for al t1 T, f(x)3 f(2)-e for al
x1 A, which proves z to bean e -solution of (P).
We get the following result proved recently in [3] whentaking e =0.
Corollary 3.1 For the problem (P), let zI AC dom f. Suppose that s is (FM) and (CC)
holds. Then zisa solution of (P) if and only if there exists | T R{™ such that
ol f(2+Q ! (2 +N.(2), | f(2)=0"tT T.
T
Proof. Let e = 0. Itfollowsfrom (32 that 0=¢, +e,+ e - al. f.(2).
tl suppl tl suppl
The conclusion follows by taking the fact that |, f,(z) £0 for each tT T, e,,e,3 0 and
e 3 0 foral tT T intoaccount.

Corollary 32 Let €3 0 and let zI ACdomf. For the Problem (P), assume that
f, ft ,tT T, are finite-valued, continuous, and convex functions. Assume further that the system
s is (FM). Then 2z is an e-solution of (P) if and only if there exist
| =0 ) R”,e20e,30ande 20 foral tl T suchthat

ol 1., f(@+ a 1.0 f)@+N,(C2),

t1 suppl
[} [}
e=e+e,+ ae- a | tft(z)-
tT suppl tT suppl
Proof. The conclusion follows from Remark 2.1 and Theorem 3.1.
Example
Consider the problem
Q) Minimize x?
subject to tx* - x£0,tT [0],
xI C=[-1/2172].

The feasible set of (Q) is A=[0,1/2] and so a =inf(Q) =0. To illustrate Theorem 3.1,
take € =1/4 and z=1/2. We will show that there exist | T R(" e, 0,e, 3 0 ande, 3 O for
al tT T suchthat (3.1) and (3.2) hold.

Set f(x)=x% f(X)=tx*- x, tT T=[0]].A simple computation gives
1. 1@ ={u[1- 26, EuL1+2/e f and N, (C.Y2) ={v|v3- e},
If we choose

e =e, =18, u=18l 1, f@2),v=-181 N, (C12

then



O=u+vi T, f@/2)+N, (C.12).
Letting| =(1,)=(0,) and e, =0 fordl tT T, weobtain
ol ., fW2)+al g, f¥2)+N, (C12)
T
and

]/4:e:e1+62+é|tet- éltft(j/z)'

T T

Thus, (3.1) and (3.2) are satisfied and z=1/2 isan (1/4) -solution of (Q).

4. e -DUALITY AND e-SADDLE POINT

The study of e -duality and e -saddle points of an optimization problem was seen in many
papers (see [4], [9], [10], [11], [12], [13]). There, the problems in consideration have a finite
number of constraints. In this section we establish some results concerning € -duality and e -

saddle points of the convex infinite problem (P) introduced in Section 3. For the problem (P), the
Lagrangian function (see[2]) is

F+al f().xi cI TR,
L(x1)=7 0T
f+¥, otherwise
Sety (I)=inf;.L(xI1),I T R"”. The following optimization problem is called the
Lagrange dual problem of (P) [2]:
(D) supy (I')
subject to | T R,

Definition 4.1 For the problem (D), let €3 0 and let | beapoint of R™ . The point | is
said to be an e -solution of (D) ify (1 )2 sup(D)- e,ie,y (1)3y (I )-e fordl | T R™.

Theorem 4.1 Lete 3 0. Supposethat s is(FM) and (CC) holds. If z isane -solution of (P)
thenthereexists | T R suchthat | isan e -solution of (D).

Proof. Denote by S, and D, the sets of al e -solutions of (P) and (D), respectively. Since
S, 1 Al Cy(I)=inf;c L(x!)Einf; L(x1)£inf;g L(x1).

Hence,
y()ELXI)Ef(X),"xT S,"1'T R,
Since zisan e -solution of (P),
y()ETf(2,"1TRD, 4.1

On the other hand, if z isan e -solution of (P) then
f()EQ"tT T,xI C b f(x)3 f(2)-e.

Since s is(FM) and (CC) holds, by Lemma 2.1, thereexists | T R such that
f(2)-e£f(X)+g ! f(x), "xI C.

T



Hence, f(2)- e£y (). Thisand (4.1) imply that y (I )-e£y (I') foral | T R™.
Thus, | isan e -solution of (D).

Remark 4.1 Let €3 0 and letzl ACdomf . If there exists | T R™ such that
f(z)- e£y (1) thenitiseasy to seethat z isan e -solution of (P).

We now give adefinition of e -saddle points of (P).

Definition 4.2 Let e 3 0. A point (21 )T C” R is said to be an e -saddle point of the
Lagrange function L if L(z!)- e £L(z1)£L(xI)+e forany (x,I)I C~ R,

Theorem 4.3 Supposethat S is (FM) and (CC) holds. Let € 3 0 and let zI AC domf . If

z is ane -solution of (P) then there exists | T R™ such that (z,1 ) is ane -saddle point of the
Lagrange function L.

Proof. Supposethat zZI AC dom f isan e -solution of (P). Then
xI C,f(X)EQ"tTT P f(x)3 f(2)-e.
Since s is (FM) and (CC) holds, it follows from Lemma 2.1 that there exists
I T R satisfying
f)+ 1 ()3 f(2)-e, "xI C. (4.2)
T
An argument as in the proof of Theorem 4.1 shows that | isasoan e -solution of (D). Since
z1 A,weget f (x)£0foral tT T. Hence,

f)+Q 1 f()+e3 f(2)3 f(2+Q ! f(2)," x C,
T tT
or, equivalently, L(x,1)+e3 L(z1) for al xI C. On the other hand, since zi S,,
f.(2)£0foral tT T.Then,
Lzl )=f(@+q!,f(DEf(2),"1 T R, (4.3)
T
Moreover, it follows from (4.2) that, f(z) £ L(z,I_) +e. This, together with (4.3), implies
tha L(z!)-e£L(zl) foral | T R™. Consequently, for al xI Candforal | T R™,
L(z1)- e£L(z])EL(xI)+e.

Theorem 4.4 Let e 3 0. If (z, I_) isan (e/2)-saddle point of the Lagrange function L then
z is ane-solution of (P) and | is an e -solution of (D).Proof. Since (z,1 )1 C” R™ isan
(e/2)-saddle point of the Lagrange function L, we have
f(z)+é I, f.(2)- (e/2)£f(z)+ért f(2£ f(x)+ért f(x)+@€/2), " (xI1)I C" R".

T T T
Hence,
f()+Q !, fL@DEF)+Q T f (X +e, "(x1)] C” R, (4.4)
T T
If xI Athen f (xX)£0foral t] T,andhence, § I',f,(x) £0.

T



Taking | =0 and noting that f(x)+Q | «f,(X) £ f(x) for adl x1 Ait follows from

(4.9

T

that f(2) £ f(x)+e foral xI A,i.e, z isane-solution of (P). Since zi C,

nfacdf)+al fONEF@D+Q 1. f(2).

T T

It follows from (4.4) that
el FO)+a 1 FONEF@D+Q ! F(@EiInf LTI +Q T F (X} +e.

T T T

Hence,y (1 )- e £y (I ), i.e, | isan e -solution of (D).

PIEU KIEN XAP Xi TOI UU VA POl NGAU CHO BAI TOAN QUI HOACH LOI

VO HAN

Nguyén Pinh®, Ta Quang Son®

(1) B6 mén Toan, Truong Pai hoc Quéc té, Pai hoc Qudc gia Tp. H6 Chi Minh

(2) Truong Cao Biang Su Pham Nha Trang, Nha Trang

TOM TAT: Bai béo nay thiét Idp cac diéu kién can va dii téi wu cho nghiém xdp xi cia bai
to&n qui hogch 16i v6 han. Cac diéu kién nay thugc deng Kuhn-Tucker va nhdn diroc bang céch
s dung mot két qua dang Farkas duroc thi ét lap gan day. Mgt s két qua vé doi ngau Lagrange
Xap xi va diém yén ngua xap xi cho bai toan 16i v® han ciing duroc thiét Idp.

Tir khod: e -nghiém, e -doi ngau, diém e -yén ngua.
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