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1.INTRODUCTION 
The properties of de Bruijn network has shown it be the next generation after the hypercube 

for parallel processing applications such as multiprocessor network, VLSI [1,2,4,6,7,8,12]. 
Hypercube has its own advantages including the degree and diameter are independent [4]. 
Therefore the combination between de Bruijn graph and Hypercube graph will make an ideal 
topology for fault tolerance and shortest path routing. In this article, we first present a topology 
named Hyper de Bruijn Aster and then communication on this topology is investigated. 

Routing in de Bruijn graph has been investigated by Samantham, Liu and Mao [1,2,6], but 
their algorithms cannot achieve shortest path if there is a fault node along the path [7]. 
Broadcasting in de Bruijn graph has also been investigated by Esfahanian, Ganesan, Ohring 
[8,10]. However, only working on binary de Bruijn is their drawback. To address the problems of 
fault tolerance in shortest path routing and broadcasting in high degree de Bruijn network, please 
refer to the paper [7]. 

The combination of  hypercube and de Bruijn as Hyper de Bruijn has been studied by Elango 
Ganesan, Dhiraj K Pradhan [3,12]. However, their topology [12] is based on binary de Bruijn 
graph, and their DeadLock-Free routing algorithm [3] can work in binary de Bruijn network only. 
Wei Shi and Pradip K Srimani [5] have proposed a very good routing algorithm based on Hyper 
Butterfy (the combination between Hypercube and Butterfly network). In their article, they 
criticized that Hyper de Bruijn network (proposed by Ganesan [12]) is not regular, not optimally 
fault tolerant, and complex routing. All of these criticisms are solved in our article. The Hyper de 
Bruijn Aster proposed in this article can be used for load balancing and parallel processing. Our 
fault tolerant properties and shortest path routing algorithm are proved to archive the best 
performance among routing algorithms in Hyper de Bruijn network. Consequence, Hyper de 
Bruijn Aster has shown to be the most suitable topology for multiprocessor, VLSI and parallel 
processing networks. 

Section 2 presents some background and properties of Hyper de Bruijn Aster. Section 3 
presents shortest path routing algorithm and fault tolerant characteristics of Hyper de Bruijn 
Aster. And in section 4 comes with the conclusion. 

 

2.HYPER DE BRUIJN ASTER GRAPH 

2.1.Hypercube Graph Hn and De Bruijn Graph Dn 

Hypercube Graph order m, H(m) includes the set of node 2
mZ . For the two adjacent nodes, 

address is different in one bit. 

Binary de Bruijn Graph(undirected) order n, D(n) includes the set of vertices 2
nZ . 

Given α,β ∈ Z2 and x ∈
2

2
nZ −

, each node is presented as αxβ, and linked by: 
• xβα by shuffle arc 

• xβα  by shuffle-exchange arc 
• βαx by inverse-shuffle arc 



• β αx by inverse-shuffle-exchange arc 

Similarly, if we extend α,β ∈ Zd and x ∈
2n

dZ −

(d ≥ 2, degree higher than 2), then the number 
of link to each node and the number of adjacent nodes are increased. And hence, it improves fault 
tolerant in de Bruijn graph. 
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Figure 1. Hypercube graph H(3). 

 

Figure 2. de Bruijn graph D(2,4). 

 

 

Figure 3. de Bruijn graph, D(3,2). 

Corollary 1 D(d,n) is a symmetrical undirected graph, it has degree 2d, diameter n and total 
number of nodes dn [7]. 



Corollary 2 H(m) is a symmetrical undirected graph, it has degree m, diameter m and total 
number of nodes 2m [5]. 

2.2.Hyper de Bruijn Aster Graph HD*(m,d,n) 
Definition: By extending de Bruijn graph to high degree (order) and combining with 

hypercube, we invent a new topology Hyper de Bruijn Aster order (m,n) symbolized by 
HD*(m,d,n), HD*(m,d,n) is a product of H(m)xD(d,n). 

It is obviously to obtain links from a node 〈xm-1xm-2 …x0,yn-1yn-2…y0〉 to the following 
nodes (in deBruijn part): 

 〈xm-1xm-2 …x0,αyn-1yn-2…y1〉  
〈xm-1xm-2 …x0,yn-1yn-2…y1α〉, α ∈ Zd 
And link to following node (in Hypercube part): 

〈xm-1xm-2 … ix xixi-1…x0,yn-1yn-2…y0〉  , 0 ≤ i ≤ m-1 

 

Figure 4. Another presentation of HD*(2,2,2). 

Theorem 1 HD*(m,d,n) is a symmetrical undirected graph with degree m+2d, diameter m+n 
and total number of node N(HD*) = 2mdn. 

Proof: 
• Hypercube and de Bruijn graph are symmetrical (corollary 1,2). A Hyper de Bruijn Aster 

HD*(m,d,n)=H(m) x D(d,n), each node of hypercube contains a de Bruijn graph D(d,n). 
Therefore, HD*(m,d,n) is symmetrical. 

• The total number of node in HD*(m,d,n) = total number of node in Hypercube H(m) x 
total number of node in de Bruijn D(d,n). The total number of node in Hypercube is 2m [4], the 
total number of node in de Bruijn is dn [1,2,7]. So N(HD*) = 2mdn 

• Degree is the total number of link connecting to a node [4], because degree of hypercube 
H(m) is m (corollary 1), degree of de Bruijn D(d,n) is 2d (corollary 2) and HD*(m,d,n) is the 
combination of H(m) and D(d,n) (H(m) is the base cluster), each node in HD*(m,d,n) connects to 
H(m) and D(d,n) network, so the degree of HD*(m,d,n) is 2d+m. 

• Diameter is the shortest distance between 2 farthest vertices in a graph [4]. Routing in 
HD*(m,d,n) from a vertex v(h,d) to a vertex v(h’,d’) can be done by 2 way: v(h,d) à v(h’,d) à 
v(h’,d’) or v(h,d) à v(h,d’) à v(h’,d’), and diameter of H(m) is m, diameter of D(d,n) is n. 
Therefore, diameter of HD*(m,d,n) is m+n. 
 



 
Figure 5. Hyper de Bruijn Aster HD*(2,3,2). 

 
Corollary 3 Address of a node in HD* includes 2 parts: the first part is the address of 

Hypercube graph and the second part is the address of de Bruijn graph. 
Proof: this is a corollary directly inferred by definition of Hyper de Bruijn Aster. 

3.SHORTEST PATH ROUTING AND FAULT TOLERANCE IN HD*(M,D,N) 

3.1.Shortest path routing 
Shortest path routing from a vertex v(h,d) to a vertex v(h’,d’) can be established as follows, 
• Shortest path from v(h,d) à v(h’,d) can be achieved by shortest path routing scheme in 

hypercube graph, algorithms and proof are shown in references [4,5,12]. 
• Shortest path from v(h’,d) à v(h’,d’) can be achieved by shortest path routing scheme in 

de Bruijn graph, algorithms and proof are shown in references [2,7]. 
• Or we can do the above steps inversely (routing in de Bruijn first and then routing in 

Hypercube) 
Therefore, we have new theorem, 
Theorem 2  ShortestRouting(HD*) = ShortestRouting(H) + ShortestRouting(D) (*) 
 Or     ShortestRouting(HD*) = ShortestRouting(D) + ShortestRouting(H) 
By theorem 2, we see that Shortest Path routing in HD* is its advantage in comparison to 

Hypercube, de Bruijn, Butterfly… In the next section, we will present a shortest path routing 
algorithm in Hyper de Bruijn Aster. By applying our algorithm, nodes in the network can perform 
smoother, faster and especially efficient in Fault Tolerant, Routing and Load Balancing. 

The following compare some of properties of Hyper de Bruijn Aster to others, 



• Suppose Hyper de Bruijn Aster HD*(m1,d1,n1), m1 is hypercube’s order(diameter), n1 is 
de Bruijn’s order(diameter), and d1 is deBruijn’s degree (d1 ≥ 2). Hyper Butterfly HB(m2,n2), 
m2 is hypercube’s order, n2 is Buterfly’s order. HD* and HB have the same total number of 
node. 

• We have, 
1 1 2 2

1 2 1 1 2 1 2 2 2 22 2 log log (1)m n m nd n m n d m n n+= ⇔ + = + +  
Degree of HD*: dHD* = m1 + 2d1 ≥ m1 +4 because of d1 ≥ 2. This makes HD* network 

performs better in fault tolerant routing and broadcasting. 
Besides, diameter of HD*: DHD* = m1+n1=  m2+n2 + log2n2 - n1log2d1 + n1 
Increase d1 à decrease DHD* (total number of node is not change) and if d1 ≥ 2n2 then 

DHD* ≤ DHB. It proves that HD* network is more efficient than HB in Shortest Path routing and 
broadcasting. 

For Fault Tolerance HD* is proportional to m1 + 2d1 ─ 2(2). Obviously, increasing d1 will 
improve Fault-Tolerance of HD*. While, Fault-Tolerance of HB is proportional to m2 + 4. 

By the above discussion, we see that Hyper de Bruijn Aster performs better than Hyper 
Butterfly in Fault Tolerant routing, Shortest path routing and Broadcasting. 

The following table shows comparison among Hyper de Bruijn Aster to others, 

Table 1. Hyper de Bruijn Aster in comparison to others. 

Explanations for algorithm in figure 6: 
• Step 1: use shortest path routing algorithm in de Bruijn graph[2,7] to find all shortest 

paths from (hS,dS) to (hS,dD). 
• Step 2: check fault tolerant characteristics of  these paths from step 1. 
• Step 3: if there exist a fault free shortest path from dS to dD, then route from (hS,dS) to 

(hS,dD). Otherwise, go to step 7. 
• Step 4: use shortest path routing algorithm in hypercube [4,12] to find all shortest paths 

from (hS,dD) to (hD,dD). 
• Step 5: check fault tolerant characteristics of these paths from step 4. 
• Step 6: if there exists a fault free shortest path from hS to hD, then route from (hS,dD) to 

(hD,dD), go to END. Otherwise, ignore node, go to step 7. 
• Step 7: use shortest path routing algorithm in hypercube [4,12] to find all shortest paths 

from (hS,dS) to (hD,dS). 
• Step 8: check fault tolerant characteristics of these paths from step 7. 
• Step 9: if there exists a fault free shortest path from hS to hD, then route from (hS,dS) to 

(hD,dS). Otherwise, go to END. 

Graph Node Degree Diameter Fault-
Tolerance 

Hypercube H(m+n) 2m+n m+n m+n m+n 
Butterfly B(m+n) (m+n)2m+n 4 3n/2 4 
de Bruijn D(d,m+n) dm+n 2d m+n 2d-2 
HyperButterfly 
HB(m,n) n2m+n m+4 m+3n/2 m+4 

Hyper de Bruijn Aster 
HD*(m,d,n) 2mdn m+2d m+n m+2d-2 



• Step 10: use shortest path routing algorithm in de Bruijn graph[2,7] to find all shortest 
paths from (hD,dS) to (hD,dD). 

 
1 START 
2 IF Node(hS,dS) = Node(hS,dD) THEN GOTO END; 
3 ELSE 
4     Node = Node(hS,dS) 
5     Shortest Path Routing in de Bruijn from dS to dD 
6 ENDIF 
7 i,j belong to the set of nodes of shortest path routing in 
Line 5 
8 CALL CheckConnect(Node, Node[i,j]) 
9 IF CheckConnect(Node, Node[i,j]) = True  THEN 
10     CALL Routing(Node, Node[i,j]) 
11     i = i+1 
12     Node(hS,dS) = Node[i,j] 
13     GOTO START 
14 ELSE 
15     IF (j<maxPath) THEN 
16    j=j+1 
17    GOTO Line 3 
18     ELSE 
19    Shortest Path routing in Hypercube 
20    k belongs to the set of nodes of shortest path 
routing in Line 19 
21    CALL CheckConnect(Node, NodeCube[k]) 
22    IF CheckConnect(Node, NodeCube[k]=True  THEN 
23         CALL Routing(Node, NodeCube[k]) 
24         Node(hS,dS)=NodeCube[k] 
25         GOTO START 
26    ELSE 
27         IF (k<maxBit) THEN 
28   k=k+1 
29   GOTO Line 19 
30         ELSE 
31   CALL IgnoreNode[i] 
32   RESET i,j 
33   GOTO START 
34         ENDIF 
35    ENDIF 
36     ENDIF 
37 ENDIF 
38 END 

Figure 6. Shortest Path routing algorithm. 

• Step 11: check fault tolerant characteristics of these paths from step 10. 
• Step 12: if there exist a fault free shortest path from dS to dD, then route from (hD,dS) to 

(hD,dD). Otherwise, go to END. 
• END. 



Corollary 3 from the formula (*), the total number of shortest path cross N nodes (including 
source and destination node, with the difference between source and destination address is M (in 
digit)) is N.M path. 

Corollary 4 routing in Hypercube and de Bruijn in fault free mode can base on the difference 
between the source and destination address [4][2]. 

Corollary 5 Hyper de Bruijn Aster can be mapped following hypercube’s edge (as presenting 
in figure 7). Therefore, if there is a fault when routing from a node to its adjacent node in the 
same cube then we can move this routing to the neighbor cube. However, we still keep address 
and routing direction in de Bruijn network 
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Figure 7. Mapping of each vertex of Hypercube 00 to Hypercube 01. 

 
Example: to route from node (00,01) to node (01,11) in HD*(2,2,2) (figure 4), we do as 

follows, 
• Use shortest path routing for de Bruijn graph in the same cube, i.e. (00,01) à (00,11) à 

(01,11). 
• If node (00,11) is fault then it routes (00,01) à (01,01) à (01,11) 
Corollary 6 by routing follows our shortest path routing algorithm, there is a proportion of 

path length and total number of shortest path, and it belongs to the difference in the number of 
digit between source and destination address.(Increasing the number of different digit makes 
longer path and hence increasing the total number of shortest path and fault possibility along the 
path). 

3.2.Some fault tolerant characteristics of HD* 
Fault Tolerance of network is the possibility to continuously work when there are failure 

nodes in the network. 
In HD*, for a pair of source and destination node, we can find several shortest paths (≥1). 

Therefore, if there is a fault in a shortest path, then we can choose another shortest path to route. 
This improves fault tolerant. By applying our shortest path routing algorithm in section 3, we can 
avoid failure node along the path without reinitialize the whole process from the source node. 
Moreover, combining with “discrete set” concept in [7], we can provide fault free shortest path 
(optimum shortest path in the case of failure occurred) in HD*. 

In any network, the requirement for a routing algorithm to be successful is that the adjacent 
nodes of source node and cubes in the middle have to be in good condition (ready for 
transmission the message). Otherwise, it cannot route the message. Some Shortest path routing 
algorithms cannot work well in HD* because of the above circumstances. It leads our shortest 
path routing algorithm to be optimum for fault tolerance. 

Suppose, a node X <x0x1x2..xi…xn-1>, 0≤i≤n-1 
In HD*(m,d,n)  the total adjacent nodes of X, NHD* is: 

* 22 | ,0 3(3)HD i i iN m d x x x i n+= + ↔ ∃ ≠ ≤ ≤ −  



2
*

0 1

| , 0 3
2 1 (4)i i i

HD

x x x i n
N m d

x x
+∀ ≠ ≤ ≤ − 

= + − ↔  ≠   
* 12 2 | ,0 2(5)HD i i iN m d x x x i n+= + − ↔ ∀ = ≤ ≤ −  

Therefore, fault tolerance of HD* network when applying our shortest path routing algorithm 
is proportional to NHD* -1. By another mean, fault tolerance and time complexity of algorithm 
routing between 2 nodes belong to position of the failure nodes in the network. 

4.CONCLUSION 

Through our study in parallel processing systems, VLSI, multiprocessor networks, we invent 
a new topology called Hyper de Bruijn Aster HD*(m,d,n). Based on HD*, shortest path routing 
and fault tolerance are investigated. Our HD* has shown its superior in size (low diameter but 
large number of node), fault tolerance (because of the extending to high degree) and shortest path 
routing (our topology can provide more shortest paths than others). Consequently, our HD* is the 
best candidate for designing network of parallel processing systems, VLSI. 
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