
IMPROVE FAULT TOLERANCE, SHORTEST PATH ROUTING IN HYPER DE
BRUIJN ASTER NETWORK

Nguyen Chi Ngoc, Nguyen Hong Thai, Pham Minh Tri
University of Technology, VNU-HCM

1.INTRODUCTION
The properties of de Bruijn network has shown it be the next generation after the hypercube

for parallel processing applications such as multiprocessor network, VLSI [1,2,4,6,7,8,12].
Hypercube has its own advantages including the degree and diameter are independent [4].
Therefore the combination between de Bruijn graph and Hypercube graph will make an ideal
topology for fault tolerance and shortest path routing. In this article, we first present a topology
named Hyper de Bruijn Aster and then communication on this topology is investigated.

Routing in de Bruijn graph has been investigated by Samantham, Liu and Mao [1,2,6], but
their algorithms cannot achieve shortest path if there is a fault node along the path [7].
Broadcasting in de Bruijn graph has also been investigated by Esfahanian, Ganesan, Ohring
[8,10]. However, only working on binary de Bruijn is their drawback. To address the problems of
fault tolerance in shortest path routing and broadcasting in high degree de Bruijn network, please
refer to the paper [7].

The combination of hypercube and de Bruijn as Hyper de Bruijn has been studied by Elango
Ganesan, Dhiraj K Pradhan [3,12]. However, their topology [12] is based on binary de Bruijn
graph, and their DeadLock-Free routing algorithm [3] can work in binary de Bruijn network only.
Wei Shi and Pradip K Srimani [5] have proposed a very good routing algorithm based on Hyper
Butterfy (the combination between Hypercube and Butterfly network). In their article, they
criticized that Hyper de Bruijn network (proposed by Ganesan [12]) is not regular, not optimally
fault tolerant, and complex routing. All of these criticisms are solved in our article. The Hyper de
Bruijn Aster proposed in this article can be used for load balancing and parallel processing. Our
fault tolerant properties and shortest path routing algorithm are proved to archive the best
performance among routing algorithms in Hyper de Bruijn network. Consequence, Hyper de
Bruijn Aster has shown to be the most suitable topology for multiprocessor, VLSI and parallel
processing networks.

Section 2 presents some background and properties of Hyper de Bruijn Aster. Section 3
presents shortest path routing algorithm and fault tolerant characteristics of Hyper de Bruijn
Aster. And in section 4 comes with the conclusion.

2.HYPER DE BRUIJN ASTER GRAPH

2.1.Hypercube Graph Hn and De Bruijn Graph Dn

Hypercube Graph order m, H(m) includes the set of node 2
mZ . For the two adjacent nodes,

address is different in one bit.

Binary de Bruijn Graph(undirected) order n, D(n) includes the set of vertices 2
nZ .

Given α,β ∈ Z2 and x ∈
2

2
nZ −

, each node is presented as αxβ, and linked by:
• xβα by shuffle arc

• xβα by shuffle-exchange arc
• βαx by inverse-shuffle arc

• β αx by inverse-shuffle-exchange arc

Similarly, if we extend α,β ∈ Zd and x ∈
2n

dZ −

(d ≥ 2, degree higher than 2), then the number
of link to each node and the number of adjacent nodes are increased. And hence, it improves fault
tolerant in de Bruijn graph.

010

111

100

000

110

101

011

001

Figure 1. Hypercube graph H(3).

Figure 2. de Bruijn graph D(2,4).

Figure 3. de Bruijn graph, D(3,2).

Corollary 1 D(d,n) is a symmetrical undirected graph, it has degree 2d, diameter n and total
number of nodes dn [7].

Corollary 2 H(m) is a symmetrical undirected graph, it has degree m, diameter m and total
number of nodes 2m [5].

2.2.Hyper de Bruijn Aster Graph HD*(m,d,n)
Definition: By extending de Bruijn graph to high degree (order) and combining with

hypercube, we invent a new topology Hyper de Bruijn Aster order (m,n) symbolized by
HD*(m,d,n), HD*(m,d,n) is a product of H(m)xD(d,n).

It is obviously to obtain links from a node 〈xm-1xm-2 …x0,yn-1yn-2…y0〉 to the following
nodes (in deBruijn part):

 〈xm-1xm-2 …x0,αyn-1yn-2…y1〉
〈xm-1xm-2 …x0,yn-1yn-2…y1α〉, α ∈ Zd
And link to following node (in Hypercube part):

〈xm-1xm-2 … ix xixi-1…x0,yn-1yn-2…y0〉 , 0 ≤ i ≤ m-1

Figure 4. Another presentation of HD*(2,2,2).

Theorem 1 HD*(m,d,n) is a symmetrical undirected graph with degree m+2d, diameter m+n
and total number of node N(HD*) = 2mdn.

Proof:
• Hypercube and de Bruijn graph are symmetrical (corollary 1,2). A Hyper de Bruijn Aster

HD*(m,d,n)=H(m) x D(d,n), each node of hypercube contains a de Bruijn graph D(d,n).
Therefore, HD*(m,d,n) is symmetrical.

• The total number of node in HD*(m,d,n) = total number of node in Hypercube H(m) x
total number of node in de Bruijn D(d,n). The total number of node in Hypercube is 2m [4], the
total number of node in de Bruijn is dn [1,2,7]. So N(HD*) = 2mdn

• Degree is the total number of link connecting to a node [4], because degree of hypercube
H(m) is m (corollary 1), degree of de Bruijn D(d,n) is 2d (corollary 2) and HD*(m,d,n) is the
combination of H(m) and D(d,n) (H(m) is the base cluster), each node in HD*(m,d,n) connects to
H(m) and D(d,n) network, so the degree of HD*(m,d,n) is 2d+m.

• Diameter is the shortest distance between 2 farthest vertices in a graph [4]. Routing in
HD*(m,d,n) from a vertex v(h,d) to a vertex v(h’,d’) can be done by 2 way: v(h,d) à v(h’,d) à
v(h’,d’) or v(h,d) à v(h,d’) à v(h’,d’), and diameter of H(m) is m, diameter of D(d,n) is n.
Therefore, diameter of HD*(m,d,n) is m+n.

Figure 5. Hyper de Bruijn Aster HD*(2,3,2).

Corollary 3 Address of a node in HD* includes 2 parts: the first part is the address of

Hypercube graph and the second part is the address of de Bruijn graph.
Proof: this is a corollary directly inferred by definition of Hyper de Bruijn Aster.

3.SHORTEST PATH ROUTING AND FAULT TOLERANCE IN HD*(M,D,N)

3.1.Shortest path routing
Shortest path routing from a vertex v(h,d) to a vertex v(h’,d’) can be established as follows,
• Shortest path from v(h,d) à v(h’,d) can be achieved by shortest path routing scheme in

hypercube graph, algorithms and proof are shown in references [4,5,12].
• Shortest path from v(h’,d) à v(h’,d’) can be achieved by shortest path routing scheme in

de Bruijn graph, algorithms and proof are shown in references [2,7].
• Or we can do the above steps inversely (routing in de Bruijn first and then routing in

Hypercube)
Therefore, we have new theorem,
Theorem 2 ShortestRouting(HD*) = ShortestRouting(H) + ShortestRouting(D) (*)
 Or ShortestRouting(HD*) = ShortestRouting(D) + ShortestRouting(H)
By theorem 2, we see that Shortest Path routing in HD* is its advantage in comparison to

Hypercube, de Bruijn, Butterfly… In the next section, we will present a shortest path routing
algorithm in Hyper de Bruijn Aster. By applying our algorithm, nodes in the network can perform
smoother, faster and especially efficient in Fault Tolerant, Routing and Load Balancing.

The following compare some of properties of Hyper de Bruijn Aster to others,

• Suppose Hyper de Bruijn Aster HD*(m1,d1,n1), m1 is hypercube’s order(diameter), n1 is
de Bruijn’s order(diameter), and d1 is deBruijn’s degree (d1 ≥ 2). Hyper Butterfly HB(m2,n2),
m2 is hypercube’s order, n2 is Buterfly’s order. HD* and HB have the same total number of
node.

• We have,
1 1 2 2

1 2 1 1 2 1 2 2 2 22 2 log log (1)m n m nd n m n d m n n+= ⇔ + = + +
Degree of HD*: dHD* = m1 + 2d1 ≥ m1 +4 because of d1 ≥ 2. This makes HD* network

performs better in fault tolerant routing and broadcasting.
Besides, diameter of HD*: DHD* = m1+n1= m2+n2 + log2n2 - n1log2d1 + n1
Increase d1 à decrease DHD* (total number of node is not change) and if d1 ≥ 2n2 then

DHD* ≤ DHB. It proves that HD* network is more efficient than HB in Shortest Path routing and
broadcasting.

For Fault Tolerance HD* is proportional to m1 + 2d1 ─ 2(2). Obviously, increasing d1 will
improve Fault-Tolerance of HD*. While, Fault-Tolerance of HB is proportional to m2 + 4.

By the above discussion, we see that Hyper de Bruijn Aster performs better than Hyper
Butterfly in Fault Tolerant routing, Shortest path routing and Broadcasting.

The following table shows comparison among Hyper de Bruijn Aster to others,

Table 1. Hyper de Bruijn Aster in comparison to others.

Explanations for algorithm in figure 6:
• Step 1: use shortest path routing algorithm in de Bruijn graph[2,7] to find all shortest

paths from (hS,dS) to (hS,dD).
• Step 2: check fault tolerant characteristics of these paths from step 1.
• Step 3: if there exist a fault free shortest path from dS to dD, then route from (hS,dS) to

(hS,dD). Otherwise, go to step 7.
• Step 4: use shortest path routing algorithm in hypercube [4,12] to find all shortest paths

from (hS,dD) to (hD,dD).
• Step 5: check fault tolerant characteristics of these paths from step 4.
• Step 6: if there exists a fault free shortest path from hS to hD, then route from (hS,dD) to

(hD,dD), go to END. Otherwise, ignore node, go to step 7.
• Step 7: use shortest path routing algorithm in hypercube [4,12] to find all shortest paths

from (hS,dS) to (hD,dS).
• Step 8: check fault tolerant characteristics of these paths from step 7.
• Step 9: if there exists a fault free shortest path from hS to hD, then route from (hS,dS) to

(hD,dS). Otherwise, go to END.

Graph Node Degree Diameter Fault-
Tolerance

Hypercube H(m+n) 2m+n m+n m+n m+n
Butterfly B(m+n) (m+n)2m+n 4 3n/2 4
de Bruijn D(d,m+n) dm+n 2d m+n 2d-2
HyperButterfly
HB(m,n) n2m+n m+4 m+3n/2 m+4

Hyper de Bruijn Aster
HD*(m,d,n) 2mdn m+2d m+n m+2d-2

• Step 10: use shortest path routing algorithm in de Bruijn graph[2,7] to find all shortest
paths from (hD,dS) to (hD,dD).

1 START
2 IF Node(hS,dS) = Node(hS,dD) THEN GOTO END;
3 ELSE
4 Node = Node(hS,dS)
5 Shortest Path Routing in de Bruijn from dS to dD
6 ENDIF
7 i,j belong to the set of nodes of shortest path routing in
Line 5
8 CALL CheckConnect(Node, Node[i,j])
9 IF CheckConnect(Node, Node[i,j]) = True THEN
10 CALL Routing(Node, Node[i,j])
11 i = i+1
12 Node(hS,dS) = Node[i,j]
13 GOTO START
14 ELSE
15 IF (j<maxPath) THEN
16 j=j+1
17 GOTO Line 3
18 ELSE
19 Shortest Path routing in Hypercube
20 k belongs to the set of nodes of shortest path
routing in Line 19
21 CALL CheckConnect(Node, NodeCube[k])
22 IF CheckConnect(Node, NodeCube[k]=True THEN
23 CALL Routing(Node, NodeCube[k])
24 Node(hS,dS)=NodeCube[k]
25 GOTO START
26 ELSE
27 IF (k<maxBit) THEN
28 k=k+1
29 GOTO Line 19
30 ELSE
31 CALL IgnoreNode[i]
32 RESET i,j
33 GOTO START
34 ENDIF
35 ENDIF
36 ENDIF
37 ENDIF
38 END

Figure 6. Shortest Path routing algorithm.

• Step 11: check fault tolerant characteristics of these paths from step 10.
• Step 12: if there exist a fault free shortest path from dS to dD, then route from (hD,dS) to

(hD,dD). Otherwise, go to END.
• END.

Corollary 3 from the formula (*), the total number of shortest path cross N nodes (including
source and destination node, with the difference between source and destination address is M (in
digit)) is N.M path.

Corollary 4 routing in Hypercube and de Bruijn in fault free mode can base on the difference
between the source and destination address [4][2].

Corollary 5 Hyper de Bruijn Aster can be mapped following hypercube’s edge (as presenting
in figure 7). Therefore, if there is a fault when routing from a node to its adjacent node in the
same cube then we can move this routing to the neighbor cube. However, we still keep address
and routing direction in de Bruijn network

Hypercube01

00

10

01

00 10

1111

Hypercube 00 Hypercube 01

Figure 7. Mapping of each vertex of Hypercube 00 to Hypercube 01.

Example: to route from node (00,01) to node (01,11) in HD*(2,2,2) (figure 4), we do as

follows,
• Use shortest path routing for de Bruijn graph in the same cube, i.e. (00,01) à (00,11) à

(01,11).
• If node (00,11) is fault then it routes (00,01) à (01,01) à (01,11)
Corollary 6 by routing follows our shortest path routing algorithm, there is a proportion of

path length and total number of shortest path, and it belongs to the difference in the number of
digit between source and destination address.(Increasing the number of different digit makes
longer path and hence increasing the total number of shortest path and fault possibility along the
path).

3.2.Some fault tolerant characteristics of HD*
Fault Tolerance of network is the possibility to continuously work when there are failure

nodes in the network.
In HD*, for a pair of source and destination node, we can find several shortest paths (≥1).

Therefore, if there is a fault in a shortest path, then we can choose another shortest path to route.
This improves fault tolerant. By applying our shortest path routing algorithm in section 3, we can
avoid failure node along the path without reinitialize the whole process from the source node.
Moreover, combining with “discrete set” concept in [7], we can provide fault free shortest path
(optimum shortest path in the case of failure occurred) in HD*.

In any network, the requirement for a routing algorithm to be successful is that the adjacent
nodes of source node and cubes in the middle have to be in good condition (ready for
transmission the message). Otherwise, it cannot route the message. Some Shortest path routing
algorithms cannot work well in HD* because of the above circumstances. It leads our shortest
path routing algorithm to be optimum for fault tolerance.

Suppose, a node X <x0x1x2..xi…xn-1>, 0≤i≤n-1
In HD*(m,d,n) the total adjacent nodes of X, NHD* is:

* 22 | ,0 3(3)HD i i iN m d x x x i n+= + ↔ ∃ ≠ ≤ ≤ −

2
*

0 1

| , 0 3
2 1 (4)i i i

HD

x x x i n
N m d

x x
+∀ ≠ ≤ ≤ −

= + − ↔ ≠
* 12 2 | ,0 2(5)HD i i iN m d x x x i n+= + − ↔ ∀ = ≤ ≤ −

Therefore, fault tolerance of HD* network when applying our shortest path routing algorithm
is proportional to NHD* -1. By another mean, fault tolerance and time complexity of algorithm
routing between 2 nodes belong to position of the failure nodes in the network.

4.CONCLUSION

Through our study in parallel processing systems, VLSI, multiprocessor networks, we invent
a new topology called Hyper de Bruijn Aster HD*(m,d,n). Based on HD*, shortest path routing
and fault tolerance are investigated. Our HD* has shown its superior in size (low diameter but
large number of node), fault tolerance (because of the extending to high degree) and shortest path
routing (our topology can provide more shortest paths than others). Consequently, our HD* is the
best candidate for designing network of parallel processing systems, VLSI.

REFERENCES

[1]. Samantham, R. Maheswara , and D.K. Pradhan, The De Bruijn Multi-processor
Network: A Versatile Parallel Processing and Sorting Network for VLSI, IEEE Trans.
on Comp., Vol.38, NO.4, (1989).

[2]. Zhen Liu, Ting-Yi Sung, Routing and Transmitting Problem in de Bruijn Networks,
IEEE Trans. On Comp., Vol. 45, Issue 9, pp 1056 – 1062, Sept. (1996).

[3]. Elango Ganesan, Dhiraj K Pradhan, Wormhole Routing In De Bruijn Networks And
Hyper de Bruijn Networks, Circuits and Systems, 2003. ISCAS '03. Proceedings of the
2003 International Symposium on Volume: 3 , 25-28 May (2003).

[4]. J. A. Bondy and U. S. R. Murty, Graph Theory and Aplication.
[5]. Wei Shi and Pradip K Srimani, Hyper Butterfly Network: A Scalable Optimally Fault

Tolerant Architecture.
[6]. Jyh-Wen Mao and Chang-Biau Yang, Shortest path routing and fault tolerant routing

on de Bruijn networks, Journal of Networks,Vol. 35,Issue 3,Pages 207-215, (2000).
[7]. Ngoc Chi Nguyen, Nhat Minh Dinh Vo and Sungyoung Lee, Fault Tolerant Routing

and Broadcasting in de Bruijn networks, the 19th IEEE International Conference on
Advanced Information and Networking Applications (AINA’05), Mar (2005).

[8]. A.H. Esfahanian, G. Zimmerman, A distributed broadcast algorithm for binary De
Bruijn networks, Conference Proceedings, Seventh Annual International Phoenix
Conference on Comp. and Comm., 16-18 March (1988).

[9]. Dally, W. J., Performance analysis of k-ary n-cube interconnection networks, IEEE
Trans. on Computers, vol. 39, pp. 775-785, Jun (1990).

[10]. S.R.Ohring, D.H.Hondel, Optimal Fault-Tolerant Communication Algorithms on
Product Networks using Spanning Trees, IEEE Symposium on Parallel Distributed
Processing, October (1994).

[11]. Pradhan, D. K. and Reddy, S. M., A fault-tolerant communication architecture for
distributed systems, IEEE Trans. On Computers, vol. C-31, pp. 863-870, Sep (1982).

[12]. Ganesan, E. and Pradhan, D.K., The Hyper de Bruijn network: Scalable versatile
architecture, IEEE Trans. On Parallel and Distributed Systems, vol. 4, Sep. (1993).

