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1.INTRODUCTION  

In Finite Element Method (FEM), an important work to compute the stiffness matrix is often 
to use mapped elements, such as the well-known isoparametric elements through Gauss 
quadrature rule. Then the element stiffness matrix is evaluated inside element instead of along 
boundaries of element. In using a mapped element, a one – to – one coordinate transformation 
between the physical and natural coordinates of each element has to be ensured. To satisfy this 
requirement, the convex element is not broken and a violently distorted mesh is not permitted.  

Purpose of this paper is: 1) to construct the element stiffness matrix along its boundaries via 
a strain smoothing method, 2) to utilize a stabilized method with selective cell-wise strain 
smoothing when solving nearly incompressible elastic problems, 3) to estimate the reliability of 
presented method through numerical examples. 

2. GOVERNING EQUATIONS AND WEAK FORM 

Let Ω 2⊂ ℜ  be a bounded domain with a polynomial boundary Γ. The body force b is acting 
within the domain. The governing equilibrium equation for isotropic linear elasticity writes 

. 0∇ + =σ b   in  Ω  (1) 

where σ  is the symmetric Cauchy stress tensor. The compatibility equation is 

1 ( )
2

T
s= ∇ ∇ ∇ε u = u + u   in  Ω  

(3) 

The displacement field satisfies the Dirichlet boundary conditions  

ii uu =  on Γu  (4) 
and the stress field satisfies the Newman boundary conditions 

ij j in t=σ   on  Γt     (5) 
where , ,Γ = ∂Ω Γ = Γ ∪ Γ Γ ∩ Γ = ∅u t u t . 

The virtual work equation is of the form  

: : : ( . ) . .dev d K d d d
Ω Ω Ω Γ

Ω + ∇ Ω = Ω + Γ∫ ∫ ∫ ∫µ
t

ε D ε ε u1 b u t u  (6) 

 
The stress field is split into two parts: the deviatoric stress s , and the pressure p   

devp µ K .= + + ∇σ s 1 = D ε u1  (7) 

where 1  is the rank two identity tensor, which can be presented by [ ]1 1 0 T=1 ,  devµD  is the 
deviatoric projection of the elastic matrix D , µ  is the shear modulus and K is the bulk modulus 
defined by K=E/3(1-2ν), E  is Young’s modulus, and ν  is Poisson’s ratio. 
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Assume that the bounded domain Ω  is discretized into n non-overlapping elements, 

1

en
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e=

Ω ≈ Ω = ΩU . The standard finite element solution hu of a finite element displacement model 

is expressed as follows 
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np
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N q
=

= =∑u Nq  (8) 

where np  is total number of nodes of mesh, iN  is the shape function of node i , iq  are the 
associated degrees of freedom at that node.  The discrete strain field is  

h h
s= ∇ =ε u Bq  (9) 

where s= ∇B N  is the strain – nodal displacement matrix (the discretized, symmetric gradient 
operator).   
By substituting Eq. (8) - (9) into Eq. (6), we obtain a linear system for q,  

q =K g  (10) 
where the element stiffness matrix given by 

e e

T T
dev d K d

Ω Ω
Ω ΩλµK B D B B D B= +∫ ∫  (11) 

with  
4 2 0

1 2 4 0
3
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dev
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 = − 
  

D , 
1 1 0
1 1 0
0 0 0

λ

 
 =  
  

D  (12) 

and the load vector is   

e e

T Td d
Ω Γ

= Ω + Γ∫ ∫
t

g N b N t  (13) 

3. THE STRAIN SMOOTHING METHOD 
The strain smoothing method was proposed by Chen et al. [1] and Yoo et al. [3] as a 

normalization of the local strain field. This technique is also known as strain smoothing 
stabilization, through which the nodal strain is computed through the divergence of a spatial 
average of the standard local strain field. In mesh-free methods [2], this is sufficient to eliminate 
defective modes through smoothed strains. The derivatives of the shape functions are not required 
at the nodes. Applications of strain smoothing to the FEM can be seen as a stabilized conforming 
nodal integration method as defined in Galerkin mesh-free methods. Strain smoothing at an 
arbitrary point writes 

( ) ( ) ( )
h

h h
ij C ij C d

Ω
= Φ − Ω∫x x x x%ε ε  (15) 

where Φ  is a smoothing function.  There are several choices for this smoothing function. For 
simplicity, Φ  is assumed to be a step function as follows   
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( )
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A ∈ΩΦ − = 
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x
x x

x
 

(16) 

with CA  is the area of the smoothing cell, e e h
CΩ ⊂ Ω ⊂ Ω , shown in Figure 1. 
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Figure 1: Example of finite element meshes and smoothing cells 

Substituting Eq. (16) into Eq. (15), and using the divergence theorem, we obtain  

1 1( ) ( )
2 2e e

C C

hh
jh h hi

ij C i j j i
C j i C

uu d u n u n d
A x x AΩ Γ

 ∂∂
= + Ω = + Γ  ∂ ∂ 

∫ ∫x%ε  (17) 

Now, consider an arbitrary smoothing cell, e h
CΩ ⊂ Ω , illustrated in Figure 1 with 

boundary
1

nb
e b
C C

b=

Γ = ΓU , where b
CΓ  are the boundary segments of e

CΩ , and nb  the total number of 

edges of each smoothing cell. The relationship between the strain field and nodal displacement is 
corrected by replacing B  by B% :   

hε q= %% B  (18) 

The elemental stiffness matrix then writes 

e e

T T
devK d K d

Ω Ω
= Ω + Ω∫ ∫% % % % %

λµ B D B B D B  (19) 

Here, the integrands are constant over each e
CΩ  and the non-local strain displacement matrix 

is in the form  
1( )

e
C

T
i C ie

C

N d
A Γ

= Γ∫x%B n  (20) 

From Eq. (20), we can employ Gauss line integration along each segment, b
CΓ . If the shape 

functions are linear along the boundaries of the smoothing cells, one Gauss point is sufficient for 
exact integration of the weak form. In this case,   
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= ∑x x%B n  (21) 
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where G
bx  and C

bl  are the midpoint (Gauss point) and the length of C
bΓ , respectively.      

Considering a mixed variational principle based on an assumed strain field [4], the following 
system of linear algebraic equations is obtained  

q =%K g  (22) 

In strain smoothing technique, the element is subdivided into nc non-overlapping sub-
domains also called smoothing cells. For example, the element is partitioned into 1-subcell, 2-
subcell, 3-subcell and 4-subcell. Then the strain is smoothed over each sub-cell. While choosing a 
single subcell yields an element which is superconvergent in the H1 norm, and insensitive to 
volumetric locking, as shown in Reference [6, 7], if nc > 1, locking reappears. It is also shown in 
Reference [6] that the finite element method with strain smoothing is equivalent to a stress 
(equilibrium) formulated element for nc=1, and tends toward the standard displacement solution 
for +∞→nc . Consequently, as nc  approaches 1, the stress results become more accurate, while 
the displacement results deteriorate; and as nc  increases, displacement results gradually improve, 
while stress results deteriorate.  

The purpose of this article is to use a single subcell smoothing to compute the volumetric part 
of the strain tensor, while the deviatoric strains are written in terms of an arbitrarily high number 
of smoothing cells. The method may be coined a stabilized method with selective cell-wise strain 
smoothing [8]. 

The stiffness matrix is built 

1. Using nc > 1 subcells to evaluate the deviatoric term 

2. Using one single subcell to calculate the volumetric term 

This leads to the following elemental stiffness matrix  

1

nc
T T e
c dev c c

c
K A K A d

=

= + Ω∑% % % % %
λµ B D B B D B  (23) 

where cA is the area of the smoothing cell, CΩ .  

The resulting approach with selective smoothing cell brings out the stable and excellent 
convergence for compressible and nearly incompressible problems not only isotropic linear 
elasticity but also isotropic plasticity and viscoplasticity, etc.  

4.NUMERICAL RESULTS  

4.1. Cantilever beam 
A 2-D cantilever beam subjected to parabolic loading at the free end is examined in this 

example as shown in Figure 3. The geometry is taken as length L, height D and thickness t, such 
that 8=L , 4=D  and 1=t .  The material properties are: Young’s modulus 7103xE = , and the 
amplitude of the parabolic shear force 250=P . The exact solution of this problem is available as 
given by Reference [5]. Figure 4 illustrates a uniform mesh with 512 quadrilateral elements.  
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Figure 3. A cantilever beam and boundary conditions 

The relative error in displacement norm is defined as 

( ) ( )2 2

1 1
Re /

ndof ndof
h exact exact

d i i i
i i

u u u
= =

= −∑ ∑  (24) 

The error in energy is defined by 

( ) ( )
1

2Th h h

e
Ω

 
− = − − 

 
∫ ε ε D ε εu u  (25) 

Under plane stress conditions, Poisson’s ratio 0.3=ν , Figure 4 shows the relative error and 
the rate of convergence in the displacement norm for a sequence of uniform meshes, respectively. 

 From Figures 4 – 5, the presented method gives reliable results compared with 4-node FEM. 
Figures 4b and 5b show that the 2-Subcell, 3-Subcell and 4-Subcell elements exhibit the same 
convergence rate in both the L2 and H1 (energy) norms as the standard FEM. Moreover, 
displacement results for the 3-Subcell and 4-Subcell discretization are more accurate than the 
standard bilinear Q4-FEM solution. The proposed elements also produce a better approximation 
of the strain energy. Additionally, the CPU time required for all elements presented here appears 
asymptotically lower than that of the FEM [6, 7], as the mesh size tends to zero.  

Figure 5 shows the convergence in energy and the rate of the cantilever beam.  Next we 
estimate the accuracy of the presented elements for the same beam problem, assuming a near 
incompressible material. Under plane strain condition, Figure 6 illustrates the displacements 
along the neutral axis for Poisson’s ratio, ν = 0.4999. The results show that FEM, 2–subcell, 3–
subcell and 4–subcell solutions yield poor accuracy as Poisson’s ratio ν tends toward 0.5. To 
remedy this locking phenomenon, selective integration techniques are considered. Figure 6b 
presents the results after of the selective integration method (SIM) to Q4-FEM element and using 
the selective cell-wise smoothing method for the FEM with strain smoothing [8]. 
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Figure 4: The convergence in displacement norm; a) the relative error, b) the rate 
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Figure 5. The convergence of the energy norm; a) the energy, b) the rate 
 

 

 

 

 

 

 

 

 

 

 
 

a) b) 

Figure 6: Vertical displacement for cantilever beam at the nodes along the x-axis (y =0): a) without using 
the selective technique, b) applying the selective method (ν = 0.4999) 

4.2  L-shaped domain with applied tractions   
Consider a L – shaped domain under plane stress condition applied tractions and boundary 

conditions are shown on Figure 7. The parameters of the structure are: 0.1=E , 3.0=ν , 1=t .  
In this example, a stress singularity occurs at the re-entrant corner.  
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The convergence behaviour of overall strain energies is shown in Figure 8a, and the 
convergence rates are shown for comparison in Figure 8b with 2/1

10 )(log  nodes of number . 
The accuracy of presented method is higher than that of the FEM-Q4. The 1-Subcell element 
provides the best solutions in strain energy for the coarser meshes. More particularly, an inversion 
of convergent energy for 2-Subcell and 3-Subcell is appeared. Two these Sub-cells lead to the 
less error than 4-Subcell and FEM do. Beside, a refined mesh towards to corner is necessary for 
purposing the reduction of error and computational cost. 

a) b) 
Figure 8: The convergence of the energy norm; a) the strain energy, b) the rate 

5. CONCLUSIONS 
In this paper, we present a global aspect of the smoothed strains in finite element method to 

solve compressible and incompressible linear elastic. The element stiffness matrix is completely 
calculated along the boundary instead of the inside of element that the traditional FEM is utilized. 
The shape functions are calculated in a simple form. The numerical results show that the present 
method is normally more accurate than FEM while computational cost is not increasing.  

Figure 7:  Domain problem and initial mesh 



Science & Technology Development, Vol 11, No.01 - 2008 
 

The method is illustrated in two – dimensional linear elasticity but it can be extended to 
more complex structures such as non-linear elasticity, elastic – plastic behaviour and 
viscoplastics, plates, shell, 3D-problems, etc. The results of this investigation will be shown in 
forthcoming papers. 
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