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Duc Tuan Ta**, Van Tuan Vu!
Linstitute of Techniques for Special Engineering, Le Quy Don Technical University

Abstract

Vibration-based damage identification methods have demonstrated significant potential for
structural health monitoring. Modal parameters, including natural frequencies and mode
shapes, serve as global indicators of a structure’s condition. Changes in these parameters
can be indicative of damage within the structure. This article proposes an enhanced
methodology for damage detection through shifts in natural frequencies. By precisely
determining the frequencies of both the intact and damaged structure, frequency shifts can
be computed, thereby transforming the damage detection process into a minimization of
error in the identification task. This approach involves comparing the measured frequency
variations with analytical values, which characterizes the frequency shifts resulting from
damage. The effectiveness of the proposed procedure is validated through numerical
simulations, followed by experimental testing.
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1. Introduction

Structural damage detection is crucial, particularly in the early stages, to prevent
sudden failures and enhance the safety and longevity of structures [1]. Vibration-based
fault detection methods, which rely on monitoring changes in dynamic properties such
as natural frequencies, mode shapes, and damping ratios, have shown significant
potential in mechanical systems [2], [3]. These methods are particularly advantageous in
practical applications, especially when operational modal analysis is employed, as they
enable continuous monitoring without disrupting the regular operation of structures.

Numerous studies have employed these dynamic parameters for damage
identification. Y. S. Lee and M. J. Chung [4] applied Armon's rank ordering method to
estimate the crack location in a cantilever beam, using the first four natural frequencies of
the damaged structure. D. P. Patil and S. K. Maiti [5] proposed a crack detection method
based on a rotational spring model to simulate the crack effect in a beam, with the damage
index representing the strain energy stored in the spring. G. R. Gillich et al. [6] suggested
comparing measured frequency changes with analytically derived values and employing
pattern recognition techniques to determine the damage location and severity. M. Dahak
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et al. [7] focused on using normalized natural frequencies to identify damage in a cantilever
beam. Sha et al. [8] combined relative natural frequency variations and measured data with
Bayesian inference for damage detection. C. Surace et al. [9] used frequency ratio
comparisons across different modes as indicators for damage characteristics.

Changes in mode shapes and modal curvatures have also been extensively studied
for damage detection. Mode shapes directly provide information about damage
location [10], and differences in modal curvatures between intact and damaged states
can be used to localize damage [11], [12]. R. Gorgin [13] developed a method for
damage localization based on the analysis of the first mode shape. However, these
methods typically require extensive measurements at multiple locations and are often
limited to damage localization.

To overcome these limitations, combined methods that integrate natural
frequencies and mode shapes (or their derivatives) have been proposed for more
comprehensive damage quantification. M. Dahak et al. [14] introduced a method that
uses the intersection of curves derived from the curvature of the intact mode shape and
measured frequencies. The use of the relationship between natural frequency shifts and
modal curvatures for damage detection was also explored in [15].

Recent advancements in computational power and sensor technology have
facilitated the application of machine learning techniques in damage detection [16]-[19].
While effective, these techniques often require significant computational resources,
making them time-intensive.

This study focuses on rapid damage identification methods, particularly effective
during the early stages of damage detection in beam-like structures. Among the methods
discussed, those that use natural frequency shifts and analytical modal curvatures are
particularly effective for detecting single cracks in beams [6], [14], [15]. The proposed
method involves generating curves based on relative natural frequency shifts and modal
curvatures along the beam's length. The intersection of these curves is then used for
damage localization. However, the intersection is not always obvious, complicating the
identification process. To address this challenge, an improved procedure is presented
that uses singular value decomposition technique to highlight the intersection, thus
simplifying the damage location identification. The proposed method is validated
through numerical simulations and experimental tests.

2. Vibration analysis
Consider an Euler-Bernoulli beam with the following equation of motion:
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where y(x,t) is the vertical displacement of the beam at a coordinate x and time t; E, p

are Young’s modulus and the density of the beam material; I, A are the inertia moment
and the area of the cross-section of the beam, respectively.

The root of the above equation can be represented:

y(x,t) = (x)sin(et + ) (2)
where ¢(x), ® and ¢ are the mode shape, the angular frequency, and the phase shift,
respectively.

The mode shape ¢(x) is represented by the following form:

#(X) = &, sin(ax) +a, cos(arx) + a, sinh(ax) + a, cosh(ax) 3)

in which
A’
a= \/Z 4

The second derivative (modal curvature) of the mode shape has the following form:
¢ (X) =’ (—a, sin(ax) —a, cos(ax) +a, sinh(ax) + a, cosh(ax) ) (5)

2.1. Cantilever beam

Apply the boundary condition of the cantilever beam with ¢(0) =0, ¢'(0) =0,

#¢"(L)=0,¢"(L) =0 where a1, a2, az, and as can be obtained as follows:
cos(eL)+cosh(eL)

: . (6)
sin(eL) +sinh(aL)

& =838, =-8,,8 =-8

The values « for modes can be determined from the following characteristic equation:
1+cos(eaL)cosh(al) =0 @)
The mode shapes and modal curvature of a cantilever beam are shown in Fig. 1.

1 v 1
-==-Mode 1[; ----Mode 1
ﬁ -==Mode 2 _“H Ty -—~Mode 2
* Mode 3 7 e B, A Mode 3
05 i Y woxe Mode 4 05 iy S F| = Mode 4
3 % Mode 5 i X Mode 5
3 LT 3 'S AN
2 2 S
S 0 = 0 —
E | R T £
< A, S~ 9 I << T e
3 N ~ o z & / % ~% F
% R, F N £ £ T4 3 F
0.5 5 S Sd ko F 05| &, Pt 3
SR A KT AV
-1 e 4=
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
X X

Fig. 1. Mode shapes (left) and modal curvature (right) of a cantilever beam.
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2.2. Clamped-clamped beam (2-ends fully fixed beam)

Apply

the

boundary condition

=i =i =8, T

of

the fully fixed-fixed beam with
#(0)=0,¢(L)=0,¢'(0)=0, ¢'(L) =0 where a1, az, as and a4 are obtained as follows:

cos(aL) —cosh(alL)

(8)

The values « for modes can be determined from the following characteristic equation:

1—cos(aL)cosh(al) =0

9)

Figure 2 shows the mode shapes and modal curvature of a fixed-fixed beam.
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Fig. 2. Mode shapes (left) and modal curvature (right) of a fully fixed-fixed beam.
2.3. Damage analysis

The relationship between relative natural frequency shift and damage at location
Xo is obtained as [20]:

A=A _fiof s 400 5 A )

B T U1 A

where f, and Tiare the natural frequencies of the i"" mode of the intact and damaged

ABIAL g 5 Al

El 24
bending stiffness and mass, respectively; ¢ and ¢ are the intact mode shape and the

intact modal curvature of the i"™ mode.

(10)

states, respectively; o, = are the relative local variation of

In the case of damage due only to a change in bending stiffness and neglecting the
effect of mass changes, a simplified expression for the relative natural frequency
variation can be expressed as a function of the squared modal curvature [6], [8]:
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Af, =872 (%) (12)

where ¢ represents the damage coefficient and depends on the severity of the damage.

The damage coefficient can be expressed by the relative change in natural
frequency as follows:

AT,
8% (%)

Each damage coefficient ¢ is a constant for all modes. Therefore, the damage

¢~ (12)

location x, can be determined by the mutual intersection of the curves obtained from the
intact modal curvature and the relative natural frequency shift of the modes.

3. Damage detection technique

To accurately calculate the position of the mutual intersection of these curves, a
approach based on singular value decomposition (SVD) technique is proposed as follows:

- Divide the length of the beam into n positions. For each mode i at each location
Xj One gets:

A : , :
G ® 7 ' ) with i =1:mand j = 1:n with m << n where m is the number of modes.
: "
( i
- Define the following matrix AQ for each location x;:
1 1 .. 1 .1

G Gu G lm

g"lyj é/l’j é’l'j é’lyj
gl,j §2,j gi,j gm,j

gz,j é/z,j gz,j 4/2.1'
AD | N (13)

(m+1)xm

gl,j gz,j gi,j gm,i
_é/m,j gm,j gm,j gm:j

- Take a singular value decomposition of matrix A® to obtain m singular values
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for each location x;:
s >sl >...5>s0 50 (14)

When x — x,, all elements in matrix A® tend to be 1, and thus:

s? >0 and s{” s, sV -0 (15)

— over the length of the beam. Then, the peak at

- Plot the curve p(xj)=(i
S2

location x = Xo is observed.

Summarizing the above analysis, Figure 3 presents a schematic diagram outlining
the process of identifying single damage in beam-like structures.

Discretize the beam into locations x;

v

’ Determine natural frequenciesf, , f, ‘

v

Calculate natural frequency shifts A_fI

’ Estimate curves & (X) for corresponding modes ‘

v

Determine the intersection xo using SVD

Fig. 3. Flowchart for damage identification.

Discretizing the beam into smaller segments in the first step, this can achieve a
higher level of detail in the analysis. This leads to more accurate results, particularly in
regions where the intersection of curves may happen.

4. Numerical tests

This section aims to provide a comprehensive assessment of the beam's integrity
and the efficacy of the proposed method for evaluating structural damage. The validation
of the proposed procedure is conducted through the analysis of a structural model
simulated in ANSYS Workbench. The numerical investigations focus on a steel beam
characterized by a Young’s modulus of 200 GPa and a mass density of 7850 kg/m?®. The
beam, with dimensions of 800 mm in length, 40 mm in width, and 6 mm in height, is
subjected to various boundary conditions to assess its structural response. All simulated
imperfections are represented as damage sites of 2 mm in width.

4.1. Cantilever beam
In the context of a numerical cantilever beam analysis, exploring various damage
30
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scenarios is crucial for understanding the beam's structural integrity under different
damage locations. The model is presented in Fig. 4. Three damage cases are considered,
differing in crack location and depth (see Tab. 1). Following the proposed procedure, the
intersection point is determined to represent the damage location as shown in Figs. 5-7.
The results are presented in Tab. 2.

o N
- 800 y
~ : Is A o
s o .
N e
Al AA
Fig. 4. A cantilever beam.
Tab. 1. Damage scenarios of the numerical cantilever beam
Case Damage Natural frequency (Hz)
Xo (cm) d (cm) Mode 1 Mode 2 Mode 3 Mode 4
Intact 0 0 7.6850 48.149 134.79 264.08
1 20 1.0 7.6447 48.145 134.33 263.03
2 30 1.5 7.6629 47.579 134.77 261.06
3 60 2.0 7.682 47.753 131.69 258.98
Tab. 2. Results estimated from the numerical tests
No Exact damage location Identified damage location Error
' (cm) (cm) (%)
20 19.54 2.3
30 29.79 0.7
60 59.51 0.8
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: Cz(x) - - = -Actual damage
G400
; 0
. - - - *Actual damage R
100} : z
: L
10-5 1 L L : T T
0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8
x (m) X (m)

Fig. 5. Curves and identified damage location for case 1 (cantilever beam).
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Fig. 6. Curves and identified damage location for case 2 (cantilever beam).
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Fig. 7. Curves and identified damage location for case 3 (cantilever beam).
4.2. Fixed-fixed beam

In this section, a fixed-fixed beam model is studied as shown in Fig. 8. Three
damage cases are considered, differing in crack location and depth (see Tab. 3).
Following the proposed procedure, the intersection point is determined to represent the
damage location as shown in Figs. 9-11. The estimated results are presented in Tab. 4.
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Fig. 8. A fixed-fixed beam.
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Tab. 3. Damage scenarios of the numerical fixed-fixed beam

Case Damage Natural frequency (Hz)
Xo (cm) d (cm) Mode 1 Mode 2 Mode 3 Mode 4
Intact 0 0 49.142 135.41 265.35 438.47
1 15 1.0 49.125 135.26 264.36 436.64
2 20 15 49.131 134.36 263.06 437.68
3 35 2.0 48.491 134.79 261.9 433.15
10°
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Fig. 9. Curves and identified damage location for case 1 (fixed-fixed beam).

Tab. 4. Results estimated from the numerical tests

No Actual damage location Identified damage location Error
' (cm) (cm) (%)
15 14.94 0.3
20 19.78 11
35 35.09 0.3
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Fig. 10. Curves and identified damage location for case 2 (fixed-fixed beam).
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Fig. 11. Curves and identified damage location for case 3 (fixed-fixed beam).
5. Experimental validation

The physical dimensions of beams used in experimental studies can be chosen
randomly. In this experiment, a readily available beam was used to conduct the
experimental research. It has the following physical parameters: length L = 1005 mm,
width B = 42 mm and height H = 10 mm. The material of the beam has Young's
modulus E = 200 GPa and density = 7850 kg/m?.

In this work, a cut 2 mm wide and 5 mm deep is made by machining. It is located
at a distance of 220 mm from the support. The five accelerometers were placed at
different locations on the beam to capture responses (as shown in Fig. 12). Once the
time response was collected, the Rational Fraction Polynomial (RFP) method in B&K
Connect™ was used to convert the time domain data into the frequency domain. This
helps determine the natural frequency of the beam. The natural frequencies of the intact
beam were measured first. These frequencies served as a baseline for understanding the
structural integrity of the beam. After introducing a damage scenario, modal testing was
repeated to determine the new natural frequencies. The damage leads to lower natural
frequencies due to a reduction in stiffness (Tab. 5). The identified location of the
damage is shown in Fig. 13. The identified results are presented in Tab. 6. They are
close to real values which confirms the proposed method.

Tab. 5. Frequencies of the experimental test for the cantilever beam

No. Damage Natural frequency (Hz)
Xo (Cm) Mode 1 Mode 2 Mode 3 Mode 4
Intact 0 7.769 48.366 137.350 277.269
Damage 22.0 7.767 48.365 137.339 277.240
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d

Fig. 12. A whole system view (left) and damage area (right) of the test.
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Fig. 13. Damage detection for the experimental test.

Tab. 6. Results estimated from the experimental test

No Actual damage location Identified damage location Error
' (cm) (cm) (%)
1 22.0 20.8 5.4

The size of the crack can affect the detection capability of the proposed method.
Generally, very small cracks are more challenging to detect because they may produce
less distinguishable changes compared to larger cracks.

Besides, this method requires at least three modes to obtain accurate results. Using
more vibration modes can enhance damage detection accuracy in structural health
monitoring. Effective identification requires careful measurement and analysis
techniques to estimate the multiple modes of the structure.
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6. Conclusion

This study presents an innovative approach for detecting localized damage in
beam-like structures. The method begins with the construction of damage coefficient
curves along the length of the beam, which are derived from shifts in relative natural
frequencies and analytical modal curvatures. The location of the damage is identified by
precisely determining the intersection point of these coefficient curves. To ensure
accurate localization of this intersection, the procedure utilizes a numerical technique
based on Singular Value Decomposition (SVD) applied to matrices constructed from
the ratios of the damage coefficient curves. The proposed method was first validated
through numerical simulations on cantilever and fixed-fixed beam models,
demonstrating high accuracy in identifying the damage location when compared to the
known damage conditions. Finally, the method was experimentally tested on a
cantilever beam, where the results of damage detection closely matched the actual
damage, thus confirming the effectiveness and reliability of the proposed approach for
detecting localized damage in beam-like structures.

In the case of multiple cracks in a structure, the effects of multiple cracks are
assumed to follow the superposition principle. If each crack is independent, then the
individual effects will be added together. This identification process requires additional
steps, which will be published in future work.
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NHAN DANG HU HONG TRONG KET CAU DANG DAM
THONG QUA SU THAY BOI TAN SO RIENG TUONG POl

Ta Puc Tuan', Vi Van Tudn?
1Vién Ky thudt cong trinh ddac biét, Truong Pai hoc Ky thudt Lé Quy Pon

Tém tit: Cac phuong phap xac dinh hu hong dua trén phan tich dao dong da dugc ching
minh hiéu qua trong viéc quan tric trang thai k¥ thudt cong trinh. Cac tham sé dao dong, bao
g0m tan s6 tu nhién va dang dao dong, dong vai trd 1a cac chi bao tong thé vé trang thai ciia két
cAu. Nhimg thay d6i ctia cac tham s6 nay c6 thé chi ra hu hong bén trong két cau. Bai bao dé
xuit mot phuong phap nang cao dé phat hién hu hong thong qua su thay doi tan sé dao dong
riéng. Bang cach xac dinh su thay ddi tan sb giita két cdu con nguyén ven va bi hu hong, co thé
tinh toan dugc, qua trinh phat hién hu hong trong két ciu dugc thyc hién bang cach ude luong
sai s6 nho nhat twong tmg tai tat ca cac vi tri trén két cau. Phuong phap nay thyc hién so sanh
céc thay doi tan s6 dao dong do dugc voi cac gia tri giai tich, dic trung cho sy thay d6i tin s6
do hu hong gay ra. Hiéu qua ciia phuong phap dé xuat dugc xac thuc thong qua mé phong sé va

thir nghiém trén két cau thyc.

Tir khéa: Nhdn dang hw hong; thay doi tan sé dao déng; dang dao dong.
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