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Abstract 

The paper presents a multi-stage homogenization method to determine the effective properties 

of layered materials which have n elastic isotropic layers or elastic transversely isotropic (in 

the direction of the layers) ones. The homogenization procedure uses (n-1) times an explicit 

analytical formula for the layered material with n layers. The normal stress and strain at the 

interface between two material layers are assumed to be continuous, i.e., no slip and no 

detachment. The results obtained from this method are compared with the existing analytical 

four-sub-matrix method and they show good agreements. The multi-stage homogenization 

method is a powerful tool that can be used to quickly identify the effective properties of the 

layered materials. 

Keywords: Multi-stage homogenization method; four-sub-matrix method; layered materials; 

transversely isotropic; effective elastic properties. 

1. Introduction  

Layered material is a quite common form of material in civil engineering which 

has layers of material with different properties being stacked. Some examples of this 

type of material are floor panel, multi-layered wall panel, reinforced beam, bridge deck 

structure, road multi-layered pavement, stratified sedimentary rock. In computational 

practice, in order to simplify and reduce the computational cost, this layered material 

should be referred to an equivalent material with the effective properties determined 

from the properties of the component material layers. Besides, some methods such as 

experimental and simulation ones, the analytical method of homogenization has become 

a performance method, which gives explicitly results of overall properties of the 

material (effective properties) and proves its effectiveness [1-4].  

 

Figure 1. Multi-layered material. 
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The homogenization approach for layered materials in [1, 5] relies on a technique which 

is based on the partially inversed and reversed behavior law technique. If the component 

materials are homogeneous and isotropic in each layer, the stiffness matrix of each layer 

of size 6×6 is divided into four sub-matrices of the form as follows: 
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The overall stiffness matrix is obtained from the solution of the equilibrium 

equation . ( ) 0x  . If the interface between the material layers is perfect, i.e., no slip 

and no detachment at the contact between layers, the four sub-matrices are defined 

according to Eq. (2). Finally, the overall stiffness matrix (effective stiffness matrix) is that 

composed from these sub-matrices according to the principle of separation in Eq. (1). 
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In Eq. (2) the symbol *  denotes the average of * on a volume. 

From this feature, one can refer this method as four-sub-matrix method. Using the 

technique of inversion and partial reverse, only the final results of the overall stiffness 

matrix are given in [5] without an explicit solution of the equilibrium equation. Note 

that resolving the equilibrium equation requires technique of changing the position of 

the invariants as well as the manner to use four sub-matrices. Therefore, it is also 

difficult in practice. Despite this, the correctness of the homogenization method has 

been proven by comparing the numerical results obtained with the Voigt - Reuss 

boundary in the case of materials composed of three isotropic elastic layers. It has been 

shown that some material layers in the layered material are transversely isotropic can be 

encountered, for example, the geological layer with cracks and pores distributed in 

parallel or the unidirectional reinforcement layer of the reinforced material. This type of 

material has not yet been mentioned in [5]. 

This study will present a multi-stage homogenization method for layered materials 
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which gives an explicit analytical formula of the components in the effective 

compliance matrix. This method can be applied to both the elastic isotropic and 

transversely isotropic component materials. This procedure relies on the hypothesis that 

normal stress and strain at the contact surface between two material layers is 

continuous. In other words, the contact surface is considered perfect, i.e., no slip and no 

detachment at the contact between layers. Two cases of homogenization of two-layer 

and three-layer isotropic materials will be compared with the analytical method which is 

referred in [5] to prove the effectiveness of this multi-stage homogenization method. 

2. Homogenization method for layered materials 

2.1. Homogenization theory for 2 layers material 

Let us consider two-layer materials with different elastic properties and they obey 

Hooke law [6-8]: 

 
ij ijkl kl

                                                              (3) 

where , ,     are strain, stress, and compliance tensors of the th - material layer, 

respectively ( = 1.2). 

Assume that the layers have the same surface size and differ only in thickness, the 

ratio of volume of each layer with respect to the total volume of the layered material is 

the one of the layer thickness. For the th layer, this ratio is denoted by  . It is noted 

that 
1

2

1






 . The homogenization method for layered materials is shown by the 

following overall relationship: 

 :                                                            (4) 

When 
ij

 , 
ij

  are mean strain, stress tensors of the th - material layer, respectively, we 

have the equation as follows: 

 
1 1

2 2

ij ij i kljkl

    

 

    
 

                                          (5) 

Note that, in the compliance form, their constitutive law reads: 

1
ij ijk kl kkl ij ij

E E

 
    

 


   





  . 

According to Eq. (4) and Eq. (5), ,   are also mean strain, stress tensors by volume 

( , )ij ij     . In other words, the mean stress is the overall stress determined by 

the relationship: 
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1,2

   


                                                           (6) 

When the layers are homogeneous, isotropic or transversely isotropic,  is an effective 

compliance matrix that is also transversely isotropic. According to [7, 8], equation (4) is 

rewritten as: 
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             

       (7) 

Therefore,  has 5 unidentified components 1111S , 1122S , 1133S , 3333S  and 1313S . For 

determination of these components, four cases of basic simple load are considered as 

illustrated in Fig. 1 [4, 7, 8]. 

 

Figure 2. Load cases to be considered: axial tensile load (a), axial symmetry loading (b),  

tensile load combined with shear load in one plane (c), longitudinal shear load (d). 

Case 1: Axial tensile load (see Fig. 2a) 

In this case, the mean stress in Descartes co-ordinate 
1 2 3( ,  ,  )e e e

 
is written  

as follows: 

 
33 3 3e e                                                           (8) 

From Eqs. (3), (4) and (8) one derives: 

 
0

11 22 1133 33 33 3333 33 23 13 12, 0,S S                                            (9) 

Alternatively, under the macroscopic loading, the behavior of each layer is assumed to 

be transversely isotropic. Therefore, the stress is determined by the following equation:  

e
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 33 3 3 1 1 2 2[ ( )]e e e e e e                                        (10) 

in which   are the coefficients identified with the continuous condition of stress and 

strain at the contact surface. 

 1 2

3 3  j j

     and 1 2   kj kj

    with ( , ) (1,1),(2,2),(1,2)k j                (11) 

Applying relations (8) and (10) to the Eq. (6) gives: 

 
2

1

0 



 


                                                             (12) 

From the relationships (9), (11) and (12), one can obtain two components 1133S  and 

3333S  by 

 

 

 
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
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with 
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;

)
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
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 
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Case 2: Axial symmetry loading (see Fig. 2b) 

The overall stress is determined by the formula: 

 33 3 3 1 1 2 2

1
[ ( )]

2
e e e e e e                                       (15) 

According to that, the relationship between the overall stress and strain is presented by 

Eq. (16): 
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In each layer, the local stress satisfies Eq. (10) by replacing   by  whereas the overall 

stress is determined from Eq. (6). Thus, Eq. (15) can be rewritten by: 
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 33 3 3 33 1 1 2 2

1

2

1

2

( )e e e e e e

 

      
 

                                       (17) 

The mean stress in expressions (6), (15) and (17) gives the expression: 

 
2

1

1

2

 



 


                                                   (18) 

Once again apply the continuous condition of strain at the contact surface, i.e.,

11 1

2

1

1     with the local strain determined by: 

 11 11 1133 1111 1122 33( )kl kl S S S                                                   (19) 

one obtains: 

 1133 1111 1

(1) (1) (1) (1) (2) (2) (2

122 1133 1111 112

) (2)

2( ) ( )S S S S S S                                    (20) 

The coefficients   are calculated from Eqs. (18), (20) and they were given as follows: 

 
   

   
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  
 
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 
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       (21)  

Substituting Eq. (18) in Eq. (19) and considering Eq. (16) one has the result: 

 1111 1122 1133 1133 1111

2

1122

1

2 2 ( )SS S S S S    



 


                                      (22) 

Case 3: Tensile load combined with shear load in plane 1 2( , )e e  (see Fig. 2c) 

The overall stress in this case is written by the form: 

 12 1 2 2 1 11 22 1 1 2 2

1
( ) ( )( )

2
e e e e e e e e                                     (23) 

Assuming that     with the condition of the continuity of stress, it is obtained 

from Eq. (6): 
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Using the continuous condition of strain 
2

11 11

1     and 22 2

2

2
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at the contact 

surface and taking into account Eq. (23), one derives Eq. (25) below: 
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with  
   

(1)

1111 1122

(2) (1)

1111 1122 1

(1) (2) (2)
(2) (1)
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1
;
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S S S S
 



 


 





 
           (26) 

Case 4: Longitudinal shear load (see Fig. 2d) 

The expression of the overall stress in this case is: 

 13 1 3 3 1 23 2 3 3 2( ) ( )e e e e e e e e                                           (27) 

Supposing the local stress in each layer written by     , considering the mean 

stress to be the overall stress, i.e., 
2

1

 



  


 , brings the result: 

 
2

1

1 



 


                                                       (28) 

Combining with the continuous condition of stress at the contact surface 
1 1 2 2

13 13 13 13 ,             
 
one has: 

 1, 1,2                                                              (29) 

Owing to the hypothesis of homogeneous, isotropic or transversely isotropic layers, 

substituting Eq. (29) into Eq. (3) and Eq. (27) gives the following equation: 

 131313 1313 1331 13 1323 1332 23 13

1

( ) ( )
n

S S S S S   


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                             (30) 

and thus, it is obtained the result: 

 1313 1313

1

n

S S


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

                                                         (31) 

The equations (13), (22), (25) and (31) are sufficient to determine 5 independent 

components of the compliance matrix  of the homogenization problem of two material 

layers (32): 
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where ,,      are calculated from Eqs. (14), (21) and (26). 

 It should be noted that, if the materials are isotropic,

1122 2211 1133 3311 3322 2233S S S S S S      whereas if the materials are transversely 

isotropic, for example in plane 1 2( ,  )e e , 1122 2211 1133 3311 3322 2233S S S S S S     . 

2.2. Proposal of a homogenization method for layered materials with n layers  

With respect to the problem of determining effective elastic properties of layered 

materials with n layers of material, the multi-stage homogeneous method is proposed as 

shown in the diagram in Fig. 3. Concretely, in Step 1, homogenizing the first 2 layers 

(layer 1 and layer 2) according to Eq. (32) one obtains a new layer, a first homogeneous 

equivalent medium (HEM1). This HEM1 is considered the first layer of Step 2, layer 3 

becomes now the second layer in this step. Formula (32) gives us the homogeneous 

layer HEM2. This layer becomes to the first layer in Step 3 while layer 4 becomes the 

second layer of this step and so on until the end. 

 

                    Step 1                          Step 2 ….                      Step (i-1)                 Step (n-1)  

Figure 3. The process of homogenizing the layered materials with n layers. 

It should be noted that at the homogenization step (i-1), the value of the volume ratio 

i  (i = 1, 2) of layer 1 and layer 2 is redefined by the following formula with hi the 

thickness of the ith original layer: 

 
1

1 2

1 1 1

/ ; /
i i i

j j i j

j j j

h h h h 


  

                                                 (33) 

By doing so (n-1) steps to the last layer one obtains HEMn-1, which is also 

homogeneous layer of n different layers of HEM. 

3. Comparison of the proposed method with the four-sub-matrix method  

3.1. Case of two-layer material  

Considering a two-layer material which consists of two material layers with the 

properties given in Tab. 1.  

h
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Table 1. Properties of two layers in the layered material 

Layer 
Young modulus 

E (MPa) 
Poisson ratio  

 
h (cm)   

1 8000 0.3 

 

1 0.2 

2 2000 0.13 4 0.8 

Applying formula (32) then take the inversion of the effective compliance matrix  one 

obtains the effective stiffness matrix : 

 

3490,28 843,58 509,277

843,58 3490,28 509,277

509,277 509,277 2481,2

1031,99

1031,

0 0 0

0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 1323,35

99

 
 
 
 
 
 
 
  
 

    (34) 

According to the four-sub-matrix method [5], the stiffness matrix  is divided into 4 

sub-matrices as shown in formula (1), and then applying formula (2) the effective 

stiffness matrix obtained by this method as follows: 

 

3501,49 854,79 509,277

854,79 3501,49 509,277

509,277 509,277 2481,2

1031,99

1031,

0 0 0

0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 1323,35

99

 
 
 
 
 
 
 
  
 

            (35) 

From the results presented in Eqs. (34) and (35), it is seen that the differences are only 

appeared in 1111 1122,L L  and with the tiny values of 0.3% and 1.3%, respectively. 

3.2.  Case of three-layer material  

The properties of component layers of a layered material with three layers are 

given in Tab. 2. 

Table 2. Properties of three layers in the layered material 

Layer 
Young modulus 

E (MPa) 

Poisson ratio  

 
h (cm)   

1 8000 0.3 

 

1 1/7 

2 2000 0.13 4 4/7 

3 3000 0.17 2 2/7 
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At Step 1 of the present method, the effective stiffness matrix  obtained is the 

one presented in 2.1, i.e., expressed by Eq. (34). At Step 2, the first material now has the 

properties within the effective stiffness matrix of Step 1 with the volume ratio 

1 1/ 7 4 / 7 5 / 7    . The third layer in Tab. 2 is the second material at this step with a 

volume ratio 2 2 / 7  . Applying the formula (32) gives: 

 

3412,81 544,856

3412,81 544,856

544,856 544,856 2

789,709 0 0 0

789,709 0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 1311,55

656,15

1092,9

1092,9

 
 
 
 
 
 
 
 








       (36) 

Meanwhile, the result derived from the four-sub-matrix method in [5] is shown as 

Equation (37):  

 

3422,77 799,673 544,856

799,673 3422,77 544,856

544,856 544,856 2656,15

1092,9

1092

0 0 0

0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 1311,55

,9

 
 
 
 
 
 
 
  
 

       (37) 

It is observed from Eqs. (36) and (37) that, as also the previous case, the 

differences in result between two methods are slight. Precisely, they take the values of 

0.3% and 1.2% for 1111 1122,L L , respectively. Furthers, other components of the effective 

stiffness matrix determined according to two methods are coincided. It should be 

highlighted that similar results are also obtained when increasing the number of material 

layers to 4, 5, or 6 layers, etc. Due to the limit of presentation in this paper, the results of 

these cases will not be expressed here. 

From the results obtained for two cases considered above, it should be noted that 

the method of the four-sub-matrix method in [5] is similar to the multi-stage 

homogenization method with consideration of 4 independent load cases. Appearance of 

the small errors can be explained by the influence of the coefficients ,,      in the 

multi-stage homogenization method which is rounded to 5 numbers after commas. 

However, it can be highlighted that the multi-stage homogenization method is powerful 

because when the number of layers increases, the error is still only in two quantities  
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1111 1122,L L  and inferior to 1.2%. In addition, it can be used not only for layered materials 

where the material layer is isotropic but also transversely isotropic. 

4. Conclusion 

The paper presents the techniques of the multi-stage homogenization method for 

determination of effective properties of the layered material, i.e., using the formula (32) 

with (n-1) times for the layered material with n layers. Two cases of two and three 

layers of layered materials were studied and the results were compared with the ones of 

the existing analytical method, four-sub-matrix method. The comparison provided a 

good accordance. The multi-stage homogenization method is a simple, powerful tool 

that can be used to quickly identify the effective properties of the layered materials. 

Furthers, this method can be useful for the layered materials with transversely isotropic 

behavior of component layers. 
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PHƯƠNG PHÁP ĐỒNG NHẤT HÓA TỪNG BƯỚC XÁC ĐỊNH  

ĐẶC TÍNH ĐÀN HỒI CỦA VẬT LIỆU XẾP LỚP 

Nguyễn Thị Thu Nga, Trần Nam Hưng 

Tóm tắt: Bài báo trình bày phương pháp đồng nhất hóa từng bước nhằm xác định tính 

chất đặc trưng của vật liệu xếp lớp có n lớp đàn hồi, đẳng hướng hoặc đẳng hướng ngang trong 

phương của lớp. Thủ tục đồng nhất hóa sử dụng (n-1) lần một công thức giải tích cho vật liệu 

xếp lớp với n lớp. Ứng suất pháp tuyến và biến dạng tại mặt phân giới giữa các lớp được giả 

thiết là liên tục, có nghĩa là không có sự trượt và tách tại vị trí này. Các kết quả của phương 

pháp này đã được so sánh với kết quả của lời giải giải tích trong phương pháp bốn ma trận con 

và cho kết quả tương đồng giữa hai phương pháp. Phương pháp đồng nhất hóa từng bước đã 

cung cấp một công cụ hiệu quả trong việc đồng nhất hóa vật liệu xếp lớp nhằm xác định nhanh 

chóng tính chất đặc trưng của vật liệu này. 

Từ khóa: Phương pháp đồng nhất hóa từng bước; phương pháp bốn ma trận con; vật liệu 

xếp lớp; đẳng hướng ngang; đặc tính đàn hồi. 
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