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Abstract

The paper presents a multi-stage homogenization method to determine the effective properties
of layered materials which have n elastic isotropic layers or elastic transversely isotropic (in
the direction of the layers) ones. The homogenization procedure uses (n-1) times an explicit
analytical formula for the layered material with n layers. The normal stress and strain at the
interface between two material layers are assumed to be continuous, i.e., no slip and no
detachment. The results obtained from this method are compared with the existing analytical
four-sub-matrix method and they show good agreements. The multi-stage homogenization
method is a powerful tool that can be used to quickly identify the effective properties of the
layered materials.

Keywords: Multi-stage homogenization method; four-sub-matrix method; layered materials;
transversely isotropic; effective elastic properties.

1. Introduction

Layered material is a quite common form of material in civil engineering which
has layers of material with different properties being stacked. Some examples of this
type of material are floor panel, multi-layered wall panel, reinforced beam, bridge deck
structure, road multi-layered pavement, stratified sedimentary rock. In computational
practice, in order to simplify and reduce the computational cost, this layered material
should be referred to an equivalent material with the effective properties determined
from the properties of the component material layers. Besides, some methods such as
experimental and simulation ones, the analytical method of homogenization has become
a performance method, which gives explicitly results of overall properties of the
material (effective properties) and proves its effectiveness [1-4].

Figure 1. Multi-layered material.
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The homogenization approach for layered materials in [1, 5] relies on a technique which
Is based on the partially inversed and reversed behavior law technique. If the component
materials are homogeneous and isotropic in each layer, the stiffness matrix of each layer
of size 6x6 is divided into four sub-matrices of the form as follows:

Lisss  Loazs Lsass Lisn Lesee Lase
Lo =| Lasss  Losos Losss [ Lo =| Losn Lose Lissa |
Lisss  Lizs  Lisss Low L Lise 1)
Liss  Lies Lugs Lo L Liee
Lis=| Looss  Lozss Logss [ Las =| Lo Lozee Lo
Lizss  Lizes  Liass Lo Liee  Lizeo

The overall stiffness matrix is obtained from the solution of the equilibrium
equationV.c“ (x) =0. If the interface between the material layers is perfect, i.e., no slip
and no detachment at the contact between layers, the four sub-matrices are defined

according to Eq. (2). Finally, the overall stiffness matrix (effective stiffness matrix) is that
composed from these sub-matrices according to the principle of separation in Eq. (1).

Las = <IL.7313>71 ,

La = <IL_313 >71 <I[4_313L31> Lz = Lot : (2)

Lu = <L11 - I["laL_slaL31> + <]L'13L_11> <L_313 >7l <L_313L31>
In Eq. (2) the symbol (*) denotes the average of * on a volume.

From this feature, one can refer this method as four-sub-matrix method. Using the
technique of inversion and partial reverse, only the final results of the overall stiffness
matrix are given in [5] without an explicit solution of the equilibrium equation. Note
that resolving the equilibrium equation requires technique of changing the position of
the invariants as well as the manner to use four sub-matrices. Therefore, it is also
difficult in practice. Despite this, the correctness of the homogenization method has
been proven by comparing the numerical results obtained with the Voigt - Reuss
boundary in the case of materials composed of three isotropic elastic layers. It has been
shown that some material layers in the layered material are transversely isotropic can be
encountered, for example, the geological layer with cracks and pores distributed in
parallel or the unidirectional reinforcement layer of the reinforced material. This type of
material has not yet been mentioned in [5].

This study will present a multi-stage homogenization method for layered materials
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which gives an explicit analytical formula of the components in the effective
compliance matrix. This method can be applied to both the elastic isotropic and
transversely isotropic component materials. This procedure relies on the hypothesis that
normal stress and strain at the contact surface between two material layers is
continuous. In other words, the contact surface is considered perfect, i.e., no slip and no
detachment at the contact between layers. Two cases of homogenization of two-layer
and three-layer isotropic materials will be compared with the analytical method which is
referred in [5] to prove the effectiveness of this multi-stage homogenization method.

2. Homogenization method for layered materials
2.1. Homogenization theory for 2 layers material

Let us consider two-layer materials with different elastic properties and they obey
Hooke law [6-8]:

& =Sjy0q 3)
where £, o, S“ are strain, stress, and compliance tensors of the o - material layer,
respectively (a = 1.2).

Assume that the layers have the same surface size and differ only in thickness, the

ratio of volume of each layer with respect to the total volume of the layered material is
the one of the layer thickness. For the o' layer, this ratio is denoted by ¢“. It is noted

2
that Zqo“ =1. The homogenization method for layered materials is shown by the

a=1
following overall relationship:
£=S:5 (4)
When &, o are mean strain, stress tensors of the o' - material layer, respectively, we
have the equation as follows:
2 2
& = Z(Dagi(jx = ZgD“Sﬁleﬁ (%)
a=1 a=1

Note that, in the compliance form, their constitutive law reads:

1+v* Ve
gi? ngklo-lz = £ Gi(jx - E< Iflié‘u :

According to Eq. (4) and Eq. (5), £, & are also mean strain, stress tensors by volume

£ =¢&;,0=0;). In other words, the mean stress is the overall stress determined by
1 Il

the relationship:
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o= Z p“c” (6)
a=1,2
When the layers are homogeneous, isotropic or transversely isotropic, S is an effective
compliance matrix that is also transversely isotropic. According to [7, 8], equation (4) is
rewritten as:

&y Sutn Suzm Sum 0 0 0 o
& Sz Suu Sk O 0 0 o
€, B | _ S_1133 S_1133 S_3333 _O 0 0 y 533 (7)
3 23 0 0 0 S1313 0 0 5—23
&g 0 0 0 0 S_1313 0 O3
&2 0 0 0 0 0 2 ( S_1111 - §1122 ) 01

Therefore, S has 5 unidentified components S, 5,15, Si1ss0 Ssss @nd Sy, For

determination of these components, four cases of basic simple load are considered as
illustrated in Fig. 1[4, 7, 8].

& % %] %
(a) (b) (c) (d)
Figure 2. Load cases to be considered: axial tensile load (a), axial symmetry loading (b),
tensile load combined with shear load in one plane (c), longitudinal shear load (d).

Case 1: Axial tensile load (see Fig. 2a)
In this case, the mean stress in Descartes co-ordinate (e, e,, e;) IS written

as follows:

0 =03 6,08 8)
From Eqgs. (3), (4) and (8) one derives:

En=&p= 510133533’ 33 = Syp3033) Exg =E13 =&, =0 )
Alternatively, under the macroscopic loading, the behavior of each layer is assumed to
be transversely isotropic. Therefore, the stress is determined by the following equation:
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0% =5,[e,®e, + (e, ®e, +6e,®e,)] (10)

in which B are the coefficients identified with the continuous condition of stress and
strain at the contact surface.

52 and g7 =507 with (K, ]) =(11),(2,2),(L,2) (112)

a=1 __
O'j3 =0

Applying relations (8) and (10) to the Eq. (6) gives:

>0t p =0 (12

From the relationships (9), (11) and (12), one can obtain two components S, ,; and

Sgaas DY

2

S_1133 = Z o° [Sﬁas +B° (Sﬁn + S0 )}

a=1
~ , (13)
Sy = Z(ﬂa [85333 +p° (830[311 + S;szz)]
a=1
with
£P = a (81%3 - 81(123?3)/ g0 = _ﬁﬁ(z) (14)
(P(Z) (Sﬁil + Sl(gz) + (/’(l) (81(121)1 + S1(122)2) ¢(1)

Case 2: Axial symmetry loading (see Fig. 2b)
The overall stress is determined by the formula:

_ 1
O =0yle, ®e, _E(el ®e +e,®e,)] (15)

According to that, the relationship between the overall stress and strain is presented by
Eq. (16):

- = _ — 1 - - _
&y =&y =504 = I:Snss - E Syt 81122)} O3

I I PN
E43 = S3340y = [83333 - E (Sgapy + S3322)} O3 (16)

Ep=83=8,=0

In each layer, the local stress satisfies Eq. (10) by replacing g by y whereas the overall
stress is determined from Eqg. (6). Thus, Eg. (15) can be rewritten by:
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2 2
5:z¢“633e3®e3+z(p“y“533(el®e1+e2®e2) (17)
a=1 a=1
The mean stress in expressions (6), (15) and (17) gives the expression:
2
1
fyt=—= 18
;qo 7 ==3 (18)

Once again apply the continuous condition of strain at the contact surface, i.e.,
g2 = g27% with the local strain determined by:

&4 = 8005 =[ Sz + 7" (Sfis + 81122 | O (19)
one obtains:
[ S+ 7P (82 +5%) | =] SE+ 7P (S +51%) | (20)
The coefficients y“ are calculated from Egs. (18), (20) and they were given as follows:
o U(sBms@) S (sthes) oo i
] GO PP CERESTN KA )

Substituting Eq. (18) in Eq. (19) and considering Eg. (16) one has the result:

_ _ 2
Syi1 T S110 = 28555 — 22 9” [Sﬁss + 7% (St + Stz } (22)
a=1

Case 3: Tensile load combined with shear load in plane (&, e,) (see Fig. 2c)

The overall stress in this case is written by the form:
_ 1,_  _
o =0,(e,®e, +e,®¢) +E(O-11 —0,)(e,®e —e,®8,) (23)

Assuming that o =“G with the condition of the continuity of stress, it is obtained
from Eq. (6):

Zcoaé”“ =1 (24)

a=2 a=2

Using the continuous condition of strain &% =¢&57 and &5 '=¢&5° at the contact
surface and taking into account Eq. (23), one derives Eq. (25) below:

_ _ 2
Sun —Suz = Z?’aga (St —Siie
a=1
o : (25)
Sz —Saz = Z?aga (S2211 = S2222)

a=1
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with ¢ =—5r ?21?)11 - S% TRTRG A ~ go(:){(z’ (26)
oV (55, -85, ) +0® (Sih — S ) @
Case 4: Longitudinal shear load (see Fig. 2d)
The expression of the overall stress in this case is:
0 =0,(e,®e,+6,0e)+05,(e, ®e, +6,¢,) 27)

Supposing the local stress in each layer written by o” =6“6, considering the mean
2

stress to be the overall stress, i.e., 6 = Z(p”&“ , brings the result:

a=1

Zz:go"‘ﬁ“ =1 (28)

a=1

Combining with the continuous condition of stress at the contact surface
ot =5"G,, , 0’ =575, one has:

5%=1 a=12 (29)
Owing to the hypothesis of homogeneous, isotropic or transversely isotropic layers,
substituting Eg. (29) into Eq. (3) and Eq. (27) gives the following equation:

&g = Z(‘)a [(810;,13 +5331)035 + (Sips + 810;,32)523] = S131307 (30)
a=1
and thus, it is obtained the result:
Siai3 = Z?’a Staz (31)
a=1

The equations (13), (22), (25) and (31) are sufficient to determine 5 independent

components of the compliance matrix S of the homogenization problem of two material
layers (32):

_ 2
1133 = Z¢a S+ 8° (Sﬁn +S/1 )J

a=1 -

_ 2

Sysas = Z 9" | Sgzgs + (ngm + S5 )]
a=1 -

Q . a I a a a a 1 a a a

S1111 = Z 4 (ﬂ e )(81111 + Snzz) + E é/ (81111 - S1122 )} (32)
a=1 L

_ 2T 1

Sz = Z¢ (B = 7N S{iu1 +Stiz) + Eg (_81111 + 5112 )}

Sias = Z ¢S
a=1
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where g%, y*, £ are calculated from Eqgs. (14), (21) and (26).

It should be noted that, if the materials are isotropic,
S1120 = Syp11 = Siras = Sassy = Saapy =S, Whereas if the materials are transversely
isotropic, for example in plane (€, €,),S,15 = Sy11 # Siz3 = Saas = Saary = Sposs -
2.2. Proposal of a homogenization method for layered materials with n layers

With respect to the problem of determining effective elastic properties of layered
materials with n layers of material, the multi-stage homogeneous method is proposed as
shown in the diagram in Fig. 3. Concretely, in Step 1, homogenizing the first 2 layers
(layer 1 and layer 2) according to Eq. (32) one obtains a new layer, a first homogeneous
equivalent medium (HEM3). This HEM; is considered the first layer of Step 2, layer 3
becomes now the second layer in this step. Formula (32) gives us the homogeneous
layer HEM.. This layer becomes to the first layer in Step 3 while layer 4 becomes the
second layer of this step and so on until the end.

o=h/(h+h - . _
M:{l g=(h+h)/(h+ h+h) o=2h ih; o=5h /&h
—h (h+h 1 1 2 1 2 == 1 j=11j=1 1j=1 1 j=1
oz h{(h+h) —— > ‘ SN ==
oz hjhFhrh) @=h/Zh. p=h [Zh
. o
Step 1 Step 2 .... Step (i-1) Step (n-1)

Figure 3. The process of homogenizing the layered materials with n layers.
It should be noted that at the homogenization step (i-1), the value of the volume ratio
@, (i=1,2) of layer 1 and layer 2 is redefined by the following formula with h; the

thickness of the i*" original layer:

i-1 i i
¢1=Zhj/zhji(/’z=hi/2hj (33)
j=1 j=1 =1

By doing so (n-1) steps to the last layer one obtains HEMhy.1, which is also
homogeneous layer of n different layers of HEM.

3. Comparison of the proposed method with the four-sub-matrix method
3.1. Case of two-layer material

Considering a two-layer material which consists of two material layers with the
properties given in Tab. 1.

14
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Table 1. Properties of two layers in the layered material

Young modulus Poisson ratio
Layer E (MPa) y h (cm) ®Q
1 8000 0.3 1 0.2
2 2000 0.13 4 0.8

Applying formula (32) then take the inversion of the effective compliance matrix S one

obtains the effective stiffness matrix L :

3490,28 843,58 509,277 0
843,58 3490,28 509,277 0

ol
Il

509,277 509,277 24812

0 0
0 0
0 0

0
0
0

0
1031,99
0
0

0 0

0 0

0 0

0 0
1031,99 0

0 1323,35

(34)

According to the four-sub-matrix method [5], the stiffness matrix L is divided into 4
sub-matrices as shown in formula (1), and then applying formula (2) the effective
stiffness matrix obtained by this method as follows:
3501,49 854,79 509,277 0
854,79 3501,49 509,277 0

£
I

509,277 509,277 24812

0 0
0 0
0 0

0
0
0

0
1031,99
0
0

0 0

0 0

0 0

0 0
1031,99 0

0 1323,35

(35)

From the results presented in Eqgs. (34) and (35), it is seen that the differences are only

appeared in Ly;;, L;,, and with the tiny values of 0.3% and 1.3%, respectively.

3.2. Case of three-layer material
The properties of component layers of a layered material with three layers are

given in Tab. 2.
Table 2. Properties of three layers in the layered material
Young modulus Poisson ratio
Layer h (cm
Y E (MPa) v cm) | ¢
1 8000 0.3 1 1/7
2 2000 0.13 4 4/7
3 3000 0.17 2 2[7
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At Step 1 of the present method, the effective stiffness matrix L obtained is the
one presented in 2.1, i.e., expressed by Eq. (34). At Step 2, the first material now has the
properties within the effective stiffness matrix of Step 1 with the volume ratio

@, =1/7+4/7=5/7. The third layer in Tab. 2 is the second material at this step with a
volume ratio @, =2/7. Applying the formula (32) gives:

3412,81 789,709 544,856 0 0 0
789,709 3412,81 544,856 0 0 0
— | 544,856 544,856 2656,15 0 0 0
L= (36)
0 0 0 1092,9 0 0
0 0 0 0 1092,9 0
0 0 0 0 0 1311,55

Meanwhile, the result derived from the four-sub-matrix method in [5] is shown as
Equation (37):

3422,77 799,673 544,856 0 0 0
799,673 3422,77 544,856 0 0 0
| 544,856 544,856 2656,15 0 0 0
L= 37)
0 0 0 10929 O 0
0 0 0 0 10929 0O
0 0 0 0 0 131155

It is observed from Egs. (36) and (37) that, as also the previous case, the
differences in result between two methods are slight. Precisely, they take the values of

0.3% and 1.2% for L,,;,L;,,, respectively. Furthers, other components of the effective

stiffness matrix determined according to two methods are coincided. It should be
highlighted that similar results are also obtained when increasing the number of material
layers to 4, 5, or 6 layers, etc. Due to the limit of presentation in this paper, the results of
these cases will not be expressed here.

From the results obtained for two cases considered above, it should be noted that
the method of the four-sub-matrix method in [5] is similar to the multi-stage
homogenization method with consideration of 4 independent load cases. Appearance of
the small errors can be explained by the influence of the coefficients g*,»“,£“ in the
multi-stage homogenization method which is rounded to 5 numbers after commas.
However, it can be highlighted that the multi-stage homogenization method is powerful
because when the number of layers increases, the error is still only in two quantities
16



Journal of Science and Technique - ISSN 1859-0209

L111, Liyp, and inferior to 1.2%. In addition, it can be used not only for layered materials
where the material layer is isotropic but also transversely isotropic.

4. Conclusion

The paper presents the techniques of the multi-stage homogenization method for
determination of effective properties of the layered material, i.e., using the formula (32)
with (n-1) times for the layered material with n layers. Two cases of two and three
layers of layered materials were studied and the results were compared with the ones of
the existing analytical method, four-sub-matrix method. The comparison provided a
good accordance. The multi-stage homogenization method is a simple, powerful tool
that can be used to quickly identify the effective properties of the layered materials.
Furthers, this method can be useful for the layered materials with transversely isotropic
behavior of component layers.
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PHUONG PHAP DPONG NHAT HOA TUNG BUGC XAC DINH
PAC TINH BAN HOI CUA VAT LIEU XEP LOP

Nguyén Thi Thu Nga, Tran Nam Hung

TOm tat: Bai bdo trinh bay phwong phdp dong nhat hoa timg buéc nham xdc dinh tinh
chat ddc trung cua vat liéu xép 16p ¢6 n l6p dan hoi, ding hwéng hodc dang hiréng ngang trong
phirong cua 16p. Thii tue dong nhat héa siz dung (n-1) lan mét cong thize gidi tich cho vat lidu
xép 16p Véi n 16p. Ung sudt phap tuyén va bién dang tai mat phan gisi giza cac lép duwoc gid
thiét 1a lién tuc, c6 nghia la khéng c6 sw triot VA tach tgi vi tri ndy. Cac két qud cia phwong
phap nay da duoc so sanh véi két qua cua loi gidi gidi tich trong phirong phdp bon ma tran con
va cho két qua twong dong giita hai phwong phdp. Phwong phdp dong nhat héa timg budéc di
cung cap mgt cong cu hiéu qud trong viéc dong nhdt hoa vt liéu xép 1ép nham xdc dinh nhanh
chéng tinh chat ddc trung cia vdt liéu nay.

Tir khoa: Phuong phap dong nhét hoa timg budc; phuong phap bon ma tran con; vat lidu
xép 16p; ddng hudng ngang; dic tinh dan hoi.
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