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Abstract

There is a desire of a quality model predicting bending capacity of the defected pipe for
pipeline integrity assessment. While the analytical model faces with the difficulty in
modeling the local defect and corresponding local stress, the Finite Element method is a
valuable alternative. A common approach for predicting interested variable is to scrape the
result data and develop a data-driven model such as the classical linear regression, CART
or XGBoost. Along with generating numerical database with FEM, this study illustrates the
advance of XGBoost model compared with its counterparts in predicting the moment
capacity of the defected X665 pipe.
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1. Introduction

Transporting materials such as water, oil and gas with pipeline system is an
important method where the pipe works under hazard environment such as soil. Along
with the applied internal pressure or axial force, the buried pipe, which suffers from the
degradation of the corrosive defect [1-4], often faces to the thread of appearance of
bending moment due to the soil-related phenomenon [5-9]. Estimating the capacity of
the pipe under the bending moment is a critical duty for evaluating the functional of the
pipeline system. In various cases, the bending moment is the key factor leading to the
failure of the pipe [5, 6, 8].

The difficulty for developing an analytical model is obvious existing with the
local defects on the pipe wall [10]. Available model with analytical approach usually
contains the strong assumption on the idealization of the material. Consequently,
available studies in literature are mostly based on Finite Element Method, FEM, with
defects are commonly simulated with sharped edges [1, 11-14].
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A data-driven model, which relies heavily on the database, is a common approach
for the results from FEM [15, 16]. Various models can be used with the different levels of
performance. The paper focuses on the XGBoost model proposed by [17] to develop the
predicting model for bending capacity of pipe contains single defect. Comparison among
XGBoost and the simple linear regression and the molecular model, Classification and
Regression Tree is conducted to illustrate the outstanding of chosen model.

2. Material and methodology

2.1. Establishment of Finite Element Model

Simulations on the Abaqus are conducted to provide the required database for the
machine learning models for pipes made of X65 steel. A true stress-strain curve in
Fig. 1 is used for assessing the burst pressure of the defected pipe.
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Figure 1. The true stress-strain curve of X65 steel (after [1]).

The critical inputs for the interested problems thus including the geometric inputs
of pipe and defect: Outer diameter, D; wall thickness, t; depth of the defect, d; length of
the defect, L; and width of the defect, w. Based on these critical inputs, half-model are
established on commercial software, Abaqus, with a symmetric boundary to X-Y plane
is set as in Fig. 2a. The cut is through the center of the defect modelled with sharp edge
as in Fig. 2b. At the other end of the pipe is the Multiple Point Constrain pattern, MPC,
(Fig. 2c) connects points in the pipe section to work as a unity beam. Center of this
pattern is a reference point that applied moment is placed Fig. 2d.
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Figure 2. The half model for the defected pipe under bending moment.

A hybrid meshing system is used with the fine mesh located at the defects to
capture the local stress appeared here. Meanwhile, the rest of the model uses a coarse
meshing system with larger element size (Fig. 3).
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Figure 3. The meshing system for FE model.  Figure 4. Von Mises distribution on the defected pipe.

The applied moment at the i step in Fig. 2 is increased linearly as the function of
time step, ti, as in Eq. (1a). If stress at any point in the pipe is reached, the critical time,
t*, and the bending capacity of pipe, Mmax, is obtained as in Eq. (1b).
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Mi = tix M (1a)
Mmax = t'X M (1b)
where M is the maximum moment applied on pipe (i.e. M at time step = 1).
2.2. The XGBoost model

The conventional data splitting process with the ratio of 0.75/0.25 on train/test set
is used in this study. The train set is used to develop model and the test set is for
validating the developed model.

As earlier discussion, XGBoost model is used in the paper contains molecular
weak models, the Classification and Regression Tree - CART proposed in [18]. The
fundamental mechanism of CART is to split the inputs domains to seek for a structure
that minimizes its errors to the actual values. An example of a CART is provided
in Fig. 5.
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Figure 5. An example of the Classification and Regression Tree - CART.

Similar to CART or other machine learning models, the XGBoost model relies on
the data (i.e., train set) to obtain the optimized configuration where the loss function on
the train set is minimized. Instead of using a single tree for prediction, XGBoost is an
ensemble model which based on a forest of CARTs and each CART is developed based
on the subset of the train set. An interactive process of repeatedly finding the best
objective function from the previous step is conducted to obtain the final XGBoost model.

To be specific, the Objective functions, OF, of the XGBoost at the m" step can be
mathematically expressed as in Eq. (2):

OF™ =L"+Q" 2)
where OF™ is the hyper-parameters, L™ is the loss function, Q™ is regularization term
of the m™ interaction step.
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In the case where Mean square error is used, the loss function in a given step can
be written as in Eqg. (3):
n 2

=Sna) =SS ®

i=1 i=1 =
where y, is the predicted value and yi is the actual value or results of FE analyses in this

paper, f."(x ) presented for the prediction of the model with inputs Z K is the number
of CARTS used.
The regularization term for the k" tree is the function of number of leaves in tree,

T, and weights value, w; and model hyper-parameters, A and vy, Eq. (4). Intuitively, it is a
penalty for the complexity of the model.

;
Q(f)=yT +%zz w? (4)
i=1
The regularization term for the m™" step can be found in Eq. (5).
K
Q" =>a(f,) ()
k=1

The OF of the training model at the step m'™", OF™, is repeatedly improved by the
previous prediction y" , Eg. (6).
OF"‘:Lm(i/m‘l)Jer=i(yi—(§/im_l+ fm(ii))j2+gm (6)
i=1
3. Results
3.1. Results and database from FE

Observation on the behavior of defected pipe under the bending moment is
provided in Fig. 6 and Fig. 7. Inputs of this case study are: D = 500 mm; t = 10 mm;
d =5 mm; L =50 mm; w = 50 mm. The true stress-strain curve of X65 steel in Fig. 1 is
used with the ultimate tensile strength oy is 563.8 MPa as in [19].

There are 8 reference points numbering from 1 to 8 as in Fig. 6. The stress
developments of these points are given in Fig. 7 where Fig. 7a is for 6 on-section points
and Fig. 7b is for 3 points on the outside of the defect. The manner of defining the
failure step is provided in Fig. 7 with the applied moment M (Fig. 2d) linearly increases
from time step 0 to 1, the M is 6x10° Nmm. With the given true stress-strain curve in
Fig. 1 and the critical stress at any point reach 563.8 MPa is considered to be failure for
the pipe, point 1 and 7 are simultaneously developed to this critical stress at the critical
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time t* is 0.18 s. Consequently, the moment capacity of the pipe, Mmax, is found by a
simple transformation Mmax=M xt" = 6x10°x0.18 = 1.08x10° Nmm.

It can also be seen from Fig. 7 that the points 3 and 4 at the opposite side of the
defect is slightly later reach the critical stress at around 0.20 s. The points at the surface
of the defect (i.e., point 1, 2 and 7) have different the stress versus time step relationship
but simultaneously reach the critical stress. Stresses at point 8 at the mount of the defect
and point 5 and 6 close to the neural line are by far lower than point 1, 2 and 7.
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Figure 7. Development of Von Mises stress at the 8 observed points.

The developed database from FE analyses results are selectively given in Table 1.
The independent variables include the outer diameter, D; the wall thickness, t; the defect
depth, length and width, d, L, w, respectively. A set of 48 samples is conducted to obtain
the combined database for predicting the defected pipe made of X65 steel. Ranges of
inputs are D~[100 : 1000] mm; t~[5 : 30] mm; d~[0 : 25] mm; L~[0 : 220] mm;
w~[0 : 220] mm.
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Table 1. The selected database

D t d L W M
(mm) (mm) (mm) (mm) (mm) (KNm)
500 10 0 0 0 1290
250 10 0 0 0 310
750 10 0 0 0 2960
1000 10 0 0 0 5365

100 10 5 50 50 34
500 7.5 5 50 50 826
500 12.5 5 50 50 1384
500 15 5 50 50 1679

3.2. The developed XGBoost model

The database in the previous section is used to develop 3 data-driven models,
including the classical linear regression, CART and XGBoost models. The first 2 models
are used for comparing with the developed model with XGBoost algorithm. Fig. 8 provides
the predicted versus simulated values of these models (i.e. results from machine learning
models and results from FE simulation, respectively). It can be seen that the XGBoost
model has a clear concentration of data points around the 1:1 line. Meanwhile, the other
models intuitively have larger residuals with the less focus of data points to 1:1 line.
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Figure 8. Predicted versus simulated values of
a) Linear regression; b) CART; and ¢) XGBoost models.
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Official validating metrics on both train and test set of models are provided in
Table 2. The XGBoost model has the “best” quality when its R? on train and test set are
0.9998 and 0.9807, respectively. Its molecular models, CART, are followed by a
slightly lower R? values. In reverse, the linear regression has the slight over-fitting with
R? drops from 0.9417 (lowest to other) to 0.8544. Errors (i.e. Mean Absolute Error,
MAE, and Root Mean Square Error, RMSE) of XGBoost models are also observed to
be consistently the lowest compared to their counterparts on both train and test set.

Table 2. Validating metrics for developed data-driven models

Model Data set R? MAE RMSE
) ) Train set 0.9417 223.5844 349.7949
Linear regression
Test set 0.8544 210.5585 330.5265
Train set 0.9921 72.5653 128.7489
CART
Test set 0.9519 120.9204 190.0083
Train set 0.9998 12.7645 19.3188
XGBoost
Test set 0.9807 55.8139 120.4511

4. Conclusion

In this study, an FE model has established based on the true tress-strain for X65 steel
to generate a database for the data-driven models predicting moment capacity of pipe.
Linear regression, CART and XGBoost models are developed and validated on the test set
to observe their prediction with unfamiliar data. XGBoost shows its advantage by
observation on the predicted versus simulated the capacity of pipe. More official validation
has numerically revealed the outstanding of XGBoost compared to other models.

Further work can be considered based on current results. For instance, expanding
the data for other materials; incorporating other advanced techniques such as reliability
assessment accounting to the uncertainty of the model; and application of methods
improving the quality of the data-driven model, such as principal component analysis.
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NANG CAO CHAT LUONG DU BAO KHA NANG CHIU UON
CUA ONG CO KHUYET TAT TU VAT LIEU THEP X65
VOI MO HINH XGBOOST

Lé Vin Minh Thanh, Vii Vin Tuin, Nguyén Tién Diing,
P Vin Long, Phan Chi Hiéu

Tém tit: Dat dwoc mét mé hinh du béo kha ndng chiu uon cia mot 5ng co khuyét tat
luén la mét yéu cau cdp thiét doi véi viéc danh gid tinh toan ven ciia ong. Trong khi cdc mé
hinh gidi tich gdp phai khé khan doi véi viéc mé hinh cdc khuyét tdt cuc bg va cdc ieng sudt cuc
bé twong vmg, phiong phdp phan tir hitu han la mét thay thé c6 gid tri. Mt phirong phdp pho
bién dé dir bdo cdc bién dau ra la tdn dung cdc két qua cia phirong phdp phan tir hitu han va
phat trién mét mé hinh dwa trén div liéu nhuw mé hinh hoi quy tuyén tinh c6 dién, CART hay
XGBoost. Ciing véi viéc tao ra b so liéu tir phirong phdp phan tir hitu han, bai bdo nay minh
hoa tinh wu viét cia mé hinh XGBoost khi so sanh voi cac mé hinh khac khi phat trién mé hinh
gilip dir bdo kha nang chiu mé men ciia ong cé khuyét tdt lam tie vit lidu X65.

Tiur khoa: Ap luc thdi nd; 6ng co khuyét tat; ph?m tr hitu han; hoc may; XGBoost.

Received: 07/04/2021; Revised: 15/09/2021; Accepted for publication: 28/12/2021
u

28



