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Abstract 

Beams have played a significant role in engineering applications and they have been 

commonly used for modelling civil problems. Different models and methods have been 

developed to identify the damage to the beams. In this article, the extreme gradient boosting 

(XGB) model was developed to predict the location, width and depth of the saw-cut of steel 

beams by the change of natural frequencies. The natural frequencies of a steel beam in 

different scenarios were identified by the finite element method (FEM). The criterions to 

evaluate the accuracy of the models were the R squared (RSQ) and the mean square error 

(MSE). The result indicated that combining the FEM method with XGB would hold 

significant potential for applications in structural health monitoring. 

Keywords: Extreme gradient boosting (XGB); prediction; natural frequencies; damage; beams.  

1. Introduction 

Beams have played a significant role in engineering applications and they have been 

commonly used for modelling civil problems. In fact, different models and methods have 

been developed to identify the damage to the beams. Yang [1] applied the Galerkin's and 

energy method to identify the crack in vibrating beams. Swamidas [2] used Timoshenko and 

Euler formulation to determine the cracks in the beam. Gilbert-Rainer Gillich and Zhou Yun-

Lai [3-5] detected the damaged crack based on the vibration measurement. Zhou Yun-Lai [6] 

also studied the forced vibration of the cracked beam. The results of these studies 

demonstrated a good performance in structural damage detection. 

Machine Learning Techniques (MLT), a multidisciplinary field, encompass a 

variety of methods aimed at gaining new insights. The primary purpose of MLT is 

prediction, where categorical variables are forecasted through classification, and 

numerical variables are estimated using regression. Regression involves examining the 

relationship between one or more independent variables and a dependent variable. As a 

result, in recent decades, MLT has found successful applications in numerous engineering 

challenges [7-13]. 
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In recent years, Artificial Neural Networks (ANNs) are becoming an efficient tool 

for predicting the damage within the structure. Lee Jong-Won [14] developed a technique 

to detect location and size of a through-the-thickness crack in straight thin-walled pipe 

subjected to bending using the modal properties and ANN. Khatir Samir [15] addressed 

the damage identification problem by means of a Genetic Algorithm (GA) approach based 

on the change of the natural frequency. B. P. Gowd [16] proposed two algorithms of crack 

detection one using fuzzy logic (FL) and the other artificial neural networks (ANN). The 

artificial neural networks (ANN) and adaptive neuro-fuzzy inference systems (ANFIS) 

were also used to predict the size of the crack and its location based on the natural 

frequencies and frequency response functions [17]. The natural frequencies used as inputs 

for ANN were also presented by Nazari and Baghalian [18] and Rao Putti Srinivasa [19].  

The use of extended Finite Element (XFEM) and eXtended IsoGeometric Analysis 

(XIGA) coupled with PSO and Jaya algorithm for predicting crack position and length in 

plates was presented by Khatir Samir [20]. Khatir Samir also developed a two-stages 

approach based on the normalized Modal Strain Energy Damage Indicator (nMSEDI) [21]. 

The result indicated that the Teaching Learning Based Optimization (TLBO) - Artificial 

Neural Network (ANN) - Particle Swarm Optimization (PSO) combined with 

IsoGeometric Analysis (IGA) could be used to determine correctly the severity of damage 

in beam structures. Gillich [22] proposed two machine learning methods (random forest 

(RF), and ANN) to detect the damage for a prismatic cantilever beam with one crack and 

ideal and non-ideal boundary conditions by using natural frequency shift and machine 

learning. The damage identification problem of simply supported uni-directionally 

reinforced graphite-epoxy beams was addressed with Genetic Algorithm (GA) and 

Particle Swarm Optimization (PSO) by Khatir [23]. The objective functions used in the 

optimization process were also based on the dynamic analysis data of the structure, i.e. 

natural frequencies and mode shape. These above studies all show the ability to apply 

machine learning methods to predict construction damage with high accuracy. However, 

these studies have not mentioned the prediction of crack width, depth and position at the 

same time. The input data of these models were stress intensity factor range, stress ratio 

etc., these data are difficult quantities to measure in structure causing difficulties in  

practical application.  

In this article, the XGB model is developed to predict the location, width and depth 

of the saw-cut of steel beams by the change of natural frequencies. The natural 

frequencies of a steel beam in different scenarios are identified by the FEM model. In 

order to assess the accuracy of the models, the R-squared (RSQ) and mean square error 

(RMSE) are utilized as evaluation criteria. By comparing the predicted data with the 

tested data, relative conclusions can be drawn. 
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2. Identification of natural frequencies by finite element method (FEM) 

A testing structure under consideration is a steel cantilever beam, clamped on one 

end and free on the other (Fig. 1). The physical parameters of the steel beam are shown 

in Table 1. A three-dimensional finite element model is constructed in Abaqus, employing 

elastic beam elements as illustrated in Fig. 1. The beam structure is discretized into  

34,080 elements. To replicate damage in the beam, the elements corresponding to the 

saw-cut are selectively removed, as depicted in Fig. 2. This study encompasses a total of  

219 damage scenarios, with 214 scenarios labeled as No. 1 to No. 214 utilized for training 

and validation in building the ANN model. The remaining five scenarios are exclusively 

reserved for testing purposes.  

 

 

Fig. 1. Cantilever beam and finite element model (unit: mm). 

 

Fig. 2. Finite element model of saw-cut beam. 

Table 1. The physical parameters of the steel beam 

No. Parameters Value Unit 

1 Length 710 mm 

2 Density 7850 kg/m3 

3 Modulus of elasticity 2.03 × 105 MPa 

4 Width 60 mm 

5 Height 8 mm 

6 Poisson's ratio 0.28  
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Table 2 presents the damage scenario identifications along with their associated 

natural frequencies, determined through Finite Element Analysis (FEM). Additionally, 

Table 3 provides essential information about the variable ranges within the database. 

These ranges are of utmost importance for predictions as they define the boundaries of 

the models. 

Table 2. Database developed by FEM 

No. 
Location 

(mm) 

Width 

(mm) 

Depth 

(mm) 

Natural frequencies 

Mode 1 

(Hz) 

Mode 2 

(Hz) 

Mode 3 

(Hz) 

Mode 4 

(Hz) 

1 710.5 1 1 12.957 81.141 95.883 227.09 

2 700.5 1 1 12.933 81.03 95.828 226.86 

3 690.5 1 1 12.936 81.081 95.832 227.08 

4 680.5 1 1 12.938 81.129 95.839 227.27 

5 670.5 1 1 12.941 81.172 95.846 227.43 

… … … … … … … … 

72 710.5 1 2 12.866 80.586 95.569 225.57 

73 700.5 1 2 12.783 80.19 95.33 224.76 

74 690.5 1 2 12.791 80.355 95.328 225.45 

75 680.5 1 2 12.800 80.508 95.349 226.05 

76 670.5 1 2 12.808 80.649 95.374 226.56 

… … … … … … … … 

143 710 2 1 12.939 81.034 95.844 226.8 

144 700 2 1 12.916 80.938 95.781 226.64 

145 690 2 1 12.92 81.002 95.785 226.91 

146 680 2 1 12.923 81.061 95.794 227.14 

147 670 2 1 12.926 81.115 95.803 227.34 

… … … … … … … … 

215 75.5 1 1 13.002 81.407 96.043 227.75 

216 75.5 1 2 13.005 81.403 96.068 227.57 

217 76 2 1 13.005 81.413 96.068 227.74 

218 405.5 1 1 12.987 81.245 95.984 227.69 

219 602.5 1 1 12.956 81.369 95.892 227.82 

Table 3. Ranges of variables in the database 

No. Variable unit count min max 

1 Location mm 219 0 710.5 

2 Width mm 219 0 2 

3 Depth mm 219 0 2 

4 Mode 1 Hz 219 12.783 13.008 

5 Mode 2 Hz 219 80.19 81.455 

6 Mode 3 Hz 219 95.328 96.084 

7 Mode 4 Hz 219 224.76 227.95 
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3. Overview of extreme gradient boosting 

The XGB model, which stands for Extreme Gradient Boosting, represents an 

enhanced version of the gradient boosting method introduced by [24]. As an advanced tree 

boosting system, it employs numerous additive functions to predict the outcome as: 

 
1

0 ( )
M

i k i

k

y y f X


     (1) 

where yi represents the predicted outcome for the ith sample of which the vector of the 

features is Xi, M refers to the number of estimators, and each estimator fk (with k from 1 to 

M) represents an autonomous tree structure, the initial guess yi
0 corresponds to the average 

value of the measured outcomes in the training set, η is the learning rate (also known as the 

shrinkage parameter, aids in enhancing the model's performance by facilitating a smooth 

improvement when incorporating new trees and preventing overfitting). 

The training process is carried out in an additive manner, following the principles 

outlined in Eq. (2). At each kth step, a new estimator is incorporated into the model, and the 

kth predicted result, yi
k, is computed by combining the predicted value from the previous step, 

yi
k-1, with the estimation provided by the additional kth estimator, fk, as described below: 

 1k k

i i ky y f
    (2) 

The value of fk is determined by the leave weights, which are obtained through the 

minimization of the objective function specific to the kth tree, as expressed by the 

following equation: 
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where T represents the number of leaves in the kth tree, while ωj (with j ranging from 1 to 

T) corresponds to the weights assigned to each leaf. The regularization parameters, λ and γ, 

are used to regulate the complexity of the tree structure and prevent overfitting. The terms 

Gj and Hj refer to the sums of the first and second gradients of the loss function, 

respectively, over all the samples associated with the jth leaf. 

The construction of the kth tree involves iteratively splitting the leaves, beginning with 

a single leaf. This process is carried out by maximizing the gain parameter, which is defined 

as follows (4): 
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The equation presented above calculates the gain parameter, which is determined by 

the values GL, HL, GR, and HR associated with the left and right leaves after the splitting. 

The splitting is considered valid if the gain parameter is greater than 0. By increasing the 

regularization parameters λ and γ, the gain parameter is reduced, which helps in maintaining 

a simpler tree structure by limiting leaf splitting. However, it is important to note that 

increasing these regularization parameters also decreases the model's capacity to fit the 

training data accurately. 

4. Development of the XGB model 

The dataset has been partitioned into two distinct subsets: the training set, utilized 

for model calibration, and the testing set, employed for model verification. The selection 

of samples for the testing set is entirely randomized to ensure unbiased evaluation. To 

ensure equal consideration for all variables during the training process, preprocessing is 

performed by scaling both the input and output variables within the range of 0.0 to 1.0. 

The scaling process for each variable is computed as follows: 

 min

max min

n

x x
x

x x





  (5) 

where xmax and xmin are the maximum and minimum values of each variable x. 

The input variables selected for these experiments were the natural frequencies  

of four Modes, the output variables chosen were the location, the width and the depth of 

the saw-cut. 

In this study, the XGB model was implemented using Python and the Sklearn 

library. To ensure optimal performance, we have examined the most critical 

hyperparameters that affect the model's output. This includes the number of estimators 

M, the learning rate g, and the regularization parameters λ and γ, which have been 

carefully analyzed to determine the best possible value. By doing so, default values set in 

the XGB package are considered for the other parameters. It has been observed from our 

experiences that the impact of the remaining parameters (excluding the four main 

parameters) in the XGB package is deemed negligible. The criteria to evaluate the 

accuracy of the models are the R squared (RSQ) and the mean square error (MSE). A 

better model is reflected in a higher R-squared, while conversely, a lower MSE signifies 

an improved model. 
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4.1. Effect of the number of estimators on model effectiveness  

The XGB model undergoes training with a wide array of estimator values, denoted 

as 'M', spanning from 10 to 1000. The default configurations for the remaining parameters 

within the XGB package are applied. As depicted in Fig. 3, the optimal combination of 

RSQ and MSE values is achieved when the number of estimators is set to 100. However, 

extensive experimentation encompassing estimator values ranging from 200 to 1000 did 

not yield any noticeable improvements beyond the performance achieved with 100 

estimators. Consequently, opting for 100 estimators emerges as the favored choice, 

striking a balance between predictive accuracy and model simplicity. 

 
      

 

Fig. 3. Effect of the number of estimators on model effectiveness. 
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4.2. Effect of the learning rate on model effectiveness 

The training process of the XGB model involves a range of learning rates, η, 

extending from 0.03 to 1. The number of estimators is held constant at the optimized 

value of 100, while default configurations are retained for the remaining parameters. As 

illustrated in Fig. 4, the most favorable RSQ and MSE values are achieved when the 

learning rates are configured at 0.3.  

 

 

Fig. 4. Effect of the learning rate on model effectiveness. 

4.3. Effect the regularization parameter λ on model effectiveness 

In order to evaluate the XGB model's responsiveness to changes in the 

regularization parameter λ, we maintain the number of estimators and learning rate at 

their optimal settings: M = 100 and η = 0.3, as depicted in Fig. 5. We systematically vary 
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the parameter λ over a spectrum from 0 to 100. The outcomes clearly indicate that 

selecting λ = 1 leads to superior performance when contrasted with other scenarios. 

 

 

Fig. 5. Effect the regularization parameter λ on model effectiveness. 

4.4. Effect the regularization parameter γ on model effectiveness 

Similarly, as illustrated in Fig. 6, we examine how the XGB model reacts to 

variations in the regularization parameter γ. Over the range of 0 to 100, we observed that 

the influence of γ was relatively negligible, and the model exhibited slightly enhanced 

performance when γ was configured as 0. 

Based on the findings, the ideal configuration for the XGB model included 100 

estimators, a learning rate of 0.3, a regularization parameter λ of 1, and a regularization 
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parameter γ of 0. This particular setup demonstrated the highest degree of accuracy and 

will be chosen for the upcoming model validation and verification phases. 

 

 
Fig. 6. Effect the regularization parameter γ on model effectiveness. 

5. Model validation 

Following the training phase, the ANN model undergoes verification using the test 

dataset. During the testing process, the R-squared value (RSQ) is determined to be 0.952, 

while the mean squared error (MSE) is calculated as 0.459. This can be attributed to the 

fact that the test data is entirely randomized and unfamiliar.  

Figure 7-9 illustrate the performance of the XGB model with respect to the location, 

width, and depth of the saw-cut, respectively. Notably, the model exhibits the highest 

accuracy in predicting the saw-cut's position. The predicted values for the location of the 
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saw-cut demonstrate minimal dispersion around the best-fit line. This could be attributed 

to the more comprehensive coverage of training data for the location compared to the 

other parameters. 

 

Fig. 7. Scatter plots of predicted versus measured data for the position. 

  

Fig. 8. Scatter plots of predicted versus measured data for the width. 
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Fig. 9. Scatter plots of predicted versus measured data for the depth. 

 

Table 4. Accuracy in predicting the saw-cut location of the model 

Predetermined value (mm) Predicted value (mm) Deviation (%) 

Location Width Depth Location Width Depth Location Width Depth 

75.5 1 1 81.17 0.98 1.00 7.51 -2.31 0.10 

75.5 1 2 86.58 1.11 1.91 14.68 11.06 -4.39 

76 2 1 65.26 1.84 1.28 -14.13 -7.99 27.97 

405.5 1 1 401.02 1.00 1.00 -1.11 0.22 -0.04 

602.5 1 1 600.34 1.00 1.00 -0.36 0.09 0.05 

Table 4 presents the prediction accuracy for the saw-cut's location, width, and 

depth. Notably, the smallest deviation between the measured and predicted values is 

observed for the saw-cut width, with a maximum deviation of 11.06%. In contrast, the 

maximum deviations for location and depth are 14.68% and 27.97%, respectively. This 

trend is further supported by the R-squared values, where the testing set exhibits  

R-squared values of 0.999 for location and 0.956 for width prediction, both higher than 

the R-squared value for depth prediction. Nevertheless, all predicted factors maintain a 

high accuracy level with R-squared values exceeding 0.9. Consequently, utilizing the 

XGB model proves effective in accurately predicting the saw-cut's position, width,  

and depth. 
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6. Conclusion 

After using FEM method to generate data and using XGB model to predict the 

location, the width and of the saw-cut of steel beams by the natural frequency, the main 

findings of this study were the following: 

- The XGB model successfully predicted the location, width, and depth of the saw-

cut simultaneously within the beam using natural frequencies. All predicted factors 

achieved a high level of accuracy with R-squared values exceeding 0.9. Specifically, the 

model exhibited better accuracy in predicting the saw-cut's location and width compared 

to its prediction of the saw-cut depth. 

- The FEM can be employed to generate a learning dataset, especially when 

sufficient monitoring data is unavailable initially. Combining the FEM method with XGB 

and certain natural frequencies identification techniques holds significant potential for 

applications in structural health monitoring. 
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SỬ DỤNG MÔ HÌNH XGB DỰ BÁO HƯ HỎNG CỦA DẦM THÉP 

THÔNG QUA TẦN SỐ DAO ĐỘNG RIÊNG  

Vũ Văn Tuấn1, Lê Anh Tuấn1 
1Trường Đại học Kỹ thuật Lê Quý Đôn, Hà Nội, Việt Nam 

Tóm tắt: Dầm là cấu kiện quan trọng trong kỹ thuật và thường được sử dụng để mô hình 

hóa cho các bài toán. Đã có nhiều phương pháp, mô hình được phát triển để xác định hư hỏng 

cũng như khuyết tật của dầm. Trong bài báo này, thuật toán tăng cường độ dốc cấp cao (XGB)  

được phát triển để dự đoán vị trí, chiều rộng và chiều sâu của vết cắt dầm thép thông qua sự thay 

đổi tần số dao động riêng. Tần số dao động riêng của dầm thép trong các kịch bản khác nhau được 

xác định bằng mô hình phần tử hữu hạn (FEM). Các tiêu chí để đánh giá độ chính xác của mô 

hình là R squared (RSQ) và sai số trung bình bình phương (MSE). Kết quả cho thấy việc kết hợp 

phương pháp FEM với XGB là rất có tiềm năng và ý nghĩa trong việc quan trắc cảnh báo cho các 

công trình. 

Từ khóa: Thuật toán tăng cường độ dốc cấp cao (XGB); dự báo; tần số dao động riêng; 

hư hỏng; dầm. 
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