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Tóm tắt 
Bài báo đề xuất một phương pháp huấn luyện kết hợp cho mạng nơron đột biến để nhận 
dạng các hệ số khí động của máy bay trong kênh độ cao theo mô hình phi tuyến. Phương 
pháp huấn luyện đề xuất là sự kết hợp của thuật toán lan truyền ngược với thời gian phân rã 
thích nghi và thuật toán lan truyền ngược sai số đột biến chuẩn hóa. Sự kết hợp này tận 
dụng được ưu điểm của hai thuật toán trong việc cập nhật thời gian phân rã và trọng số 
khớp nối. Điều này sẽ rút ngắn được thời gian và tính ổn định trong quá trình suy giảm sai 
số khi huấn luyện mạng. Do đó, nó đảm bảo nâng cao độ chính xác và độ tin cậy của các 
tham số khí động cần nhận dạng. Các kết quả mô phỏng cho thấy các hệ số khí động trong 
kênh độ cao của máy bay được nhận dạng bằng phương pháp đề xuất có độ chính xác cao 
hơn các phương pháp truyền thống và tốc độ hội tụ của mạng nhanh hơn khi được huấn 
luyện với việc sử dụng riêng rẽ từng phương pháp. Ngoài ra, kỹ thuật bootstrapping được 
sử dụng để xác định khoảng tin cậy cho các tham số khí động. Dựa vào khoảng tin cậy cho 
thấy phương pháp đề xuất có kết quả tin cậy hơn so với thuật toán trước khi kết hợp. 

Từ khóa: Mạng nơron đột biến; lan truyền ngược sai số đột biến; thời gian phân rã; nhận dạng 
hệ thống. 

1. Giới thiệu 
Việc xác định và đánh giá các đặc tính khí động của thiết bị bay (TBB) trong các 

giai đoạn thiết kế, chế tạo và thử nghiệm bay được thực hiện thông qua các mô hình 
động học. Mô hình này bao gồm các phương trình toán học mô tả mối quan hệ, thường 
là phức tạp và phi tuyến, giữa các tham số khí động của thiết bị bay [1]-[3] như lực khí 
động, mô men khí động với các biến trạng thái, biến điều khiển, các tham số khí động 
của các phần thân - cánh, mũi, khối lượng tải trọng… của TBB. 

Trong các mô hình động học của TBB thì các lực và mô men khí động tác động 
lên TBB thường được xác định thông qua các hệ số không thứ nguyên như hệ số lực 
nâng, hệ số lực cản, hệ số lực bên và hệ số mô men [2]. Tuy nhiên, các hệ số khí động 
của thiết bị bay lại được xác định thông qua các dẫn xuất khí động. Do đó, việc xác định 
chính xác các dẫn xuất khí động học đóng một vai trò quan trọng đối với việc cung cấp 
một mô hình đủ chính xác để mô tả chuyển động của TBB trong không gian. 
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Một số phương pháp truyền thống thường được sử dụng trong nhận dạng các dẫn 
xuất khí động học này như phương pháp tựa thực cực đại (ML) [4], [5], sai số đầu ra 
(OEM) [6], [7], sai số phương trình (EEM) [2], [6], và sai số bộ lọc (FEM) [2], [8]. 
Những phương pháp này đơn giản về mặt toán học, tuy nhiên có độ chính xác không 
cao vì không tính đến các nhiễu loạn có trong dữ liệu phục vụ nhận dạng. Ngược lại, 
việc xác định các tham số khí động của máy bay thông qua thực nghiệm, ví dụ như ống 
thổi khí động chỉ có thể thực hiện trên mô hình tỉ lệ thu nhỏ với các điều kiện bay hạn 
chế [9], [10]. 

Trong những năm gần đây, việc ứng dụng mạng nơron nhân tạo (ANN) trong 
nhận dạng các dẫn xuất khí động đã phát triển rộng rãi [11]-[13]. ANN có những ưu 
điểm nhất định đối với mô hình phi tuyến của các hệ số khí động so với các phương 
pháp đã đề cập ở trên. Tuy nhiên, ANNs vẫn tồn tại các hạn chế trong các nguyên lý 
huấn luyện mạng [14], do đó, hiệu suất của ANNs vẫn thấp hơn rất nhiều so với mạng 
nơron sinh học (BNN). Đây chính là động lực để thúc đẩy một sự thay thế ANNs bằng 
một thế hệ mạng nơron mới nổi là mạng nơron đột biến (SNN) [14]. SNN là một bước 
đột phá trong việc khắc phục các hạn chế của ANN. 

Hiện nay, có nhiều thuật toán được sử dụng để huấn luyện SNN như Spikeprop [15], 
Learning rate adaptation [16], Extending SpikeProp [17], RProp và QuickProp [18], An 
extended algorithm using adaptation of momentum and learning rate [19], ReSuMe [20], 
E-learning, I-learning [21], SPAN [22], Normalized spiking error back propagation 
(NSEBP) [23], Spike timing dependent plasticity [24], R-STDP [25], và thuật toán lan 
truyền ngược với thời gian phân rã thích nghi ( -d PSP ) [26]. Tuy nhiên, các thuật toán 
này đều có những ưu điểm, nhược điểm riêng và không thể đáp ứng đầy đủ các yêu cầu 
về tốc độ suy giảm sai số đầu ra nhanh và ổn định. Do đó, các tác giả tiến hành khảo sát 
và nhận thấy -d PSP  thỏa mãn các điều kiện để kết hợp với NSEBP và tạo thành một 
phương pháp huấn luyện hiệu quả cho SNN. 

Trong nghiên cứu này, SNN và phương pháp huấn luyện đề xuất được sử dụng để 
nhận dạng các dẫn xuất khí động của máy bay Su-30. Thời điểm thứ nhất, SNN được 
huấn luyện bởi thuật toán -d PSP  để nhanh chóng đưa sai số đầu ra của mạng về giá trị 
cực tiểu toàn cục. Tuy nhiên, hạn chế của -d PSP  là sự ổn định không cao khi sai số tiến 
gần về cực tiểu toàn cục. Do đó, NSEBP được ứng dụng trong thời điểm thứ hai để giúp 
sai số tiến về cực tiểu toàn cục ổn định hơn. Kết quả mô phỏng đã cho thấy chiến lược 
đề xuất đã cải thiện hiệu quả luyện mạng và nâng cao độ chính xác cho kết quả trong 
bài toán nhận dạng bằng SNN. 
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Để đánh giá độ tin cậy của các hệ số khí động được nhận dạng bằng phương pháp 
đề xuất so với hai thuật toán ban đầu, kỹ thuật bootstrapping [27], [28] được sử dụng để 
tăng cường bộ dữ liệu và xây dựng các khoảng tin cậy (CIs) cho các hệ số khí động. Các 
khoảng tin cậy này là cơ sở để xác minh rằng thuật toán đề xuất vượt trội hơn hai thuật 
toán trước khi kết hợp. 

Nội dung còn lại của bài báo được tổ chức như sau: Phần 2 xây dựng mô hình 
chuyển động máy bay trong kênh độ cao. Phần 3 là cơ sở cho phương pháp huấn luyện 
kết hợp. Kết quả mô phỏng và thảo luận được trình bày trong Phần 4. Phần 5 là kết luận 
và các hướng nghiên cứu tiếp theo. 

2. Mô hình động học máy bay trong kênh độ cao 
Một mô hình động học của máy bay trong kênh độ cao được mô tả như sau [6]: 
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trong đó:  - góc gật; ,L DC C - hệ số lực nâng khí động, hệ số lực cản khí động; ym - hệ 

số mô men khí động theo kênh chúc ngóc; oyI - mô men quán tính theo trục Oy . 

Chuyển động của máy bay được xem xét trong giai đoạn cơ động với đặc trưng là 
sự thay đổi lớn về điều kiện bay và các đặc tính khí động trong thời gian ngắn. Do đó, 
các hệ số lực nâng, hệ số lực cản và hệ số mô men trong (1) không chỉ sử dụng thành 
phần bậc nhất của khai triển Taylor mà cần phải bổ sung các thành phần bậc cao hơn 
của góc tấn công, tốc độ góc chúc ngóc và góc quay cánh lái độ cao. Giả định rằng mô 
hình hệ số khí động theo khai triển Taylor đến bậc hai đối với góc tấn công được mô tả 
như sau [6]: 
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trong đó: 
0 0 0
, ,L D yC C m - hệ số lực nâng, hệ số lực cản, và hệ số mô men do lực nâng tạo 

ra khi 0 0, , 0oyV V     ;  - gia số góc tấn công so với 0  ; 0 - góc tấn 

công cân bằng, đảm bảo máy bay bay ở tốc độ không đổi 0V  và độ cao ổn định; 
2

,  ,  ,  ,  oy eV
L L L L LC C C C C     - các dẫn xuất khí động của hệ số lực nâng; 

2

,  ,  ,  ,  oy eV
D D D D DC C C C C     - các dẫn xuất khí động của hệ số lực cản; và 

2

,  ,  ,  ,  oy eV
y y y y ym m m m m     - các dẫn xuất khí động của hệ số mô men do lực nâng 

tương ứng với các thành phần tạo nên chúng. 

Thay thế công thức (2) vào công thức (1), nhận được: 
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Phương trình đầu ra cho gia tốc theo trục đứng oza : 
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Công thức (3) và (4) được biểu diễn dưới dạng không gian trạng thái như sau: 
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Từ các phương trình (5) và phương trình đầu ra (6), vectơ tham số cần phải nhận 
dạng bao gồm các dẫn xuất khí động được xác định như sau: 
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3. Cơ sở cho chiến lược huấn luyện hai giai đoạn 
3.1. Mô hình và cấu trúc SNN 

* Cấu trúc SNN 

Trong [26] đã giới thiệu một cấu trúc của mạng nơron đột biến. Một nơron đột 
biến sau khớp nối có thể kết nối với một nơron đột biến trước khớp nối bằng nhiều 
khớp nối. 

* Mô hình phản ứng đột biến 

Trạng thái bên trong ( )ju t  của nơron j sau khớp nối ở lớp m tại t được mô hình 

hóa [26]: 
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( ) = ( - - ) + ( - )k g k f

j ij i ju t w t t d t t   (8) 
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 
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 ( )  - -g k
iz t t d  (10) 

trong đó: ( )f
jt  - thời điểm đột biến đầu ra thứ f gần nhất trước thời điểm t; ( )z  - hàm 

phản ứng đột biến; u  - thời gian của sườn lên; d  - thời gian phân rã; ( )H z  - biểu thị 

hàm bước Heavyside: ( ) 1H z   nếu 0z   và ( ) 0H z   nếu 0z  ; kd - độ trễ khớp nối thứ 

k; ( )g
it  - thời điểm đột biến thứ g của nơron i trước khớp nối; k

ijw  - trọng số khớp nối thứ 

k của nơron i trước khớp nối và nơron j sau khớp nối; 1mF   - số lượng nơron trước khớp 

nối trong lớp 1m ; K  - số lượng khớp nối giữa một nơron i trước khớp nối và một 
nơron j sau khớp nối; iG  - số lượng đột biến được kích hoạt nơron i trước khớp nối;  

  - hàm phục hồi điện thế hoạt động của nơron về điện thế nghỉ sau khi kích hoạt một 

đột biến, như trong [26] tác giả chọn hàm   có dạng như sau: 
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trong đó:   - ngưỡng kích hoạt của nơron; R  - hằng số phân rã theo thời gian xác định 
hình dạng của hàm phục hồi điện thế hoạt động của nơron về điện thế nghỉ. 
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3.2. Các thuật toán đề xuất 
* Thuật toán lan truyền ngược với thời gian phân rã thích nghi 

Thuật toán này cũng thực hiện tối thiểu hóa hàm sai số cho các thời điểm xuất 
hiện đột biến tại lớp đầu ra mạng như sau: 

  
m+1F 2

j = 1

1 -  
2

d
j jE t t   (12) 

trong đó: 1mF   - số lượng nơron trong lớp đầu ra; jt - thời điểm đột biến đầu ra thực tế; 
d
jt - thời điểm đột biến đầu ra mong muốn của nơron thứ j trong lớp đầu ra. Việc tối 

thiểu hóa hàm sai số E được giới thiệu chi tiết trong [26]. 
* Thuật toán lan truyền ngược sai số đột biến chuẩn hóa (NSEBP) 
Thuật toán NSEBP được trình bày chi tiết trong [23]. Giả sử yêu cầu nơron thứ j 

kích hoạt một đột biến mong muốn tại thời điểm jt . Nhưng thực tế điện áp của nơron j 

đạt được tại thời điểm kích hoạt đột biến xác định được là  jU t  khác với điện áp 

ngưỡng thresU . Sai số E  ở đầu ra của mạng được xác định như sau: 

  -thres jE U U t  (13) 

Việc tối thiểu hóa hàm sai số E  được giới thiệu chi tiết trong [23].  
3.3. Khảo sát cơ sở cho chiến lược huấn luyện SNN hai giai đoạn 

Cấu trúc SNN theo mô hình SRM được sử dụng để khảo sát chiến lược huấn 
luyện đề xuất trong việc nhận dạng hệ số khí động (2) được thể hiện trong Hình 1. 

 

Hình 1. Cấu trúc SNN để nhận dạng hệ số khí động. 
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Vectơ biến đầu vào T
( ) = ( ), ( ), ( ), ( ), ( ), ( ), ( )oy L D yi α i  i  i  V i  C i C i m i   S  gồm bảy 

tham số, trong đó bốn tham số đầu tiên là trạng thái chuyển động của máy bay 
trong kênh độ cao, được thu nhận từ thiết bị ghi dữ liệu bay; ba tham số cuối là 
các hệ số khí động. Đầu ra của mạng là một vectơ gồm sáu tham số: 

ˆˆ ˆ ˆˆ ˆ ˆ( 1) ( 1),  ( 1),  ( 1), ( 1),  ( 1),  ( 1)
T

oy ox ozy i i i i V i a i a i            , là dự đoán một bước của 

các tham số chuyển động của máy bay và dữ liệu thực tế được đo là: 

( 1) ( 1),  ( 1),  ( 1), ( 1),  ( 1),  ( 1)
T

oy ox ozy i i i i V i a i a i            . Việc kiểm tra điều kiện 

dừng của thuật toán luyện mạng là sự phù hợp giữa )( 1i y  và ˆ )( 1iy  thông qua chỉ số 
“Best fit” (“Best fit desired” được chọn ở đây là 95%) [29] hoặc khi sai số đạt đến giá 
trị thiết lập. Công thức mã hóa tín hiệu đầu vào thành thời điểm đột biến và giải mã 
thời điểm đột biến đầu ra thành giá trị liên tục được thực hiện tương tự như trong [30]. 

Để khảo sát và xây dựng cơ sở cho phương pháp huấn luyện mạng kết hợp, các 
tác giả sẽ khảo sát hiệu quả huấn luyện SNN trong việc xấp xỉ trạng thái các tham số 
chuyển động mô hình (1) với hai thuật toán được đề cập trong Mục 3.2. Tập dữ liệu các 
tham số chuyển động được ghi lại từ các chuyến bay của máy bay Su-30 được sử dụng 
nhận dạng các tham số khí động của máy bay trong các giai đoạn cất cánh [31]. SNN 
được xây dựng với cấu trúc 7-20-10-6: 7 nơron đầu vào tương ứng với vectơ biến đầu 
vào S(i), 20 nơron lớp ẩn thứ nhất, 10 nơron lớp ẩn thứ hai và 6 nơron đầu ra tương ứng 
với ˆ )( 1iy . 

* Khảo sát hiệu quả huấn luyện của thuật toán dτ -PSP: 

Để khảo sát hiệu quả thuật toán -d PSP , một số tham số đặc trưng của SNN được 

thiết lập: 6u  ms;  [10 ms  13 ms]d   ; trọng số khớp nối cố định 0,5k k
ij hi   ; tốc 

độ học 0,5  . Việc lựa chọn các tham số ở trên dựa vào việc khảo sát sự ảnh hưởng 
của tốc độ học   và thời gian phân rã d  đến tốc độ hội tụ và sự ổn định của mạng trên 
cùng tập dữ liệu cất cánh của máy bay Su-30 được trình bày chi tiết trong [31], [32]. Kết 
quả khảo sát đánh giá trung bình trên 100 lần chạy để đảm bảo độ tin cậy khi tính toán 
thống kê. 

* Khảo sát hiệu quả huấn luyện của thuật toán NSEBP: 

Để khảo sát hiệu quả thuật toán NSEBP, một số tham số đặc trưng của SNN được 
thiết lập như sau: 6u  ms,  12d  ms;  trọng số khớp nối ban đầu 0,5k k

ij hi   ; tốc độ 

học 0,5.   
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* Một số kết luận nhận được sau khảo sát: 

- Thuật toán d PSP   có tốc độ suy giảm sai số đầu ra (đường đen trơn) của 
mạng ở giai đoạn đầu (6 epoch) nhanh hơn so với thuật toán NSEBP (đường đen +)  
được minh họa như trong Hình 2. Ngoài ra, thời gian phân rã tối ưu được xác định trong 
khoảng 12,05 ms 12,10 ms.opt

d   

- Tuy nhiên, khi sai số suy giảm về một giá trị cực tiểu tới hạn, d PSP   thể hiện 
sự không ổn định so với thuật toán NSEBP được minh họa trong Hình 3. Cụ thể, từ 
epoch 7 đến epoch 12, sai số đầu ra của mạng có sự dao động. 

- Trong khi đó, sai số đầu ra của mạng được huấn luyện bằng NSEBP có tốc độ 
suy giảm chậm hơn nhưng giá trị lại nhỏ và ổn định hơn d PSP   như được mô tả 
trong Hình 2. 

- Có thể nhận thấy d PSP   có tốc độ suy giảm sai số trong giai đoạn đầu (6 
epoch đầu tiên) nhanh hơn, còn thuật toán NSEBP có mức độ suy giảm đều và ổn định 
hơn. Do đó, tác giả đề xuất phương pháp huấn luyện SNN kết hợp trong hai thời điểm 
(2-Stages) để có thể tận dụng được các ưu điểm của hai thuật toán trong việc cải thiện 
hiệu suất huấn luyện và độ chính xác trong nhận dạng các hệ số khí động máy bay  
Su-30. Cụ thể, 6 epoch đầu tiên SNN được huấn luyện với d PSP  , giai đoạn còn lại 
SNN được huấn luyện bởi NSEBP.  

- Kết quả mô phỏng cho thấy sai số đầu ra của SNN khi được huấn luyện bằng 
phương pháp kết hợp (đường chấm đen) đã suy giảm nhanh và ổn định hơn so với hai 
thuật toán ban đầu: d PSP   (đường đen trơn) và NSEBP (đường đen +) như mô tả 
trong Hình 3. 

 
Hình 2. Sai số đầu ra SNN được huấn luyện 

bởi NSEBP và .d PSP   

 
Hình 3. Sai số đầu ra SNN được luyện bởi 

NSEBP, d PSP   và phương pháp đề xuất. 
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3.4. Đề xuất phương pháp huấn luyện mạng kết hợp giữa dτ - PSP  và NSEBP 

Việc đề xuất phương pháp huấn luyện kết hợp không chỉ dựa trên kết quả khảo sát 
ở trên, mà hai thuật toán d PSP   và NSEBP cũng phải thỏa mãn các điều kiện sau đây 

để có thể kết hợp với nhau: 

- Thứ nhất, cả hai thuật toán đều sử dụng một mô hình phản ứng đột biến (SRM) 
với các hàm phản ứng đột biến giống nhau. Điều này đảm bảo rằng động học của các 
nơron là giống nhau và không có xung đột trong quá trình chuyển đổi giữa các giai đoạn 
huấn luyện; 

- Thứ hai, thời gian phân rã tối ưu của thuật toán d PSP   là 

12,05 ms 12,10 ms.opt
d   Vì vậy, khi kết thúc giai đoạn huấn luyện đầu tiên với 

d PSP  , thời gian phân rã sẽ thỏa mãn điều kiện   = 2d u   trong [23] để thuật toán 

NSEBP có thể hoạt động; 

- Cuối cùng, trọng số khớp nối của d PSP   được cố định 0,5k k
ij hi    trong 

suốt quá trình huấn luyện tương ứng với trọng số khớp nối ban đầu của NSEBP trong 
quá trình chuyển đổi giai đoạn huấn luyện.  

Trên thực tế, nhiều thuật toán có thể thỏa mãn một trong các điều kiện để kết hợp 
với thuật toán NSEBP. Tuy nhiên, d PSP   là thuật toán duy nhất cho đến nay thỏa 

mãn tất cả các điều kiện trên. 

Vì vậy, các tác giả đề xuất một sự huấn luyện mạng kết hợp bởi hai thuật toán 

d PSP   và NSEBP để nhận dạng các hệ số khí động của máy bay. Phương pháp đề 

xuất này được phát triển bởi hai thuật toán d PSP   và NSEBP. 

3.5. So sánh hiệu quả phương pháp huấn luyện đề xuất với phương pháp RProp 

Để có cơ sở khẳng định hiệu quả của 2-Stages so với các phương pháp phổ biến 
khác, các tác giả sẽ tiến hành so sánh hiệu quả của 2-Stages và RProp trong bài toán 
phân loại XOR phi tuyến và thời gian hội tụ của hai thuật toán.  

a) Phân loại phi tuyến XOR 

Phương pháp RProp sẽ được ứng dụng để điều chỉnh tốc độ học nhằm cải thiện 
tốc độ hội tụ và độ chính xác cho các thuật toán, cụ thể trong nghiên cứu này là thuật 
toán SpikeProp. Tốc độ học trong SpikeProp được cập nhật bởi RProp như [18]: 
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( 1), if ( 1) ( ) 0

( ) ( 1), if ( 1) ( ) 0

( 1),otherwise

P
ij

ij ij

N
ij ij

ij ij

ij

E Et t t

E Et t t t

t


 


 

       
  

       
  


 (14) 

( 1),if ( ) 0

( ) ( 1),if ( ) 0

0,otherwise

ij
ij

ij ij
ij

Et t
w

Ew t t t
w

   
 

     




 (15) 

Trong [18] đã chỉ ra việc chọn giá trị các tham số 1,3P   và 0,5N   là tốt 
nhất và chúng được lựa chọn cho RProp với mục đích so sánh trong nghiên cứu này. 
Các tham số của phương pháp kết hợp được chọn như trong phần khảo sát ở trên. Kết 
quả huấn luyện với 150 mẫu nhị phân XOR được lấy trung bình trên 100 lần chạy, thể 
hiện như trong Hình 4, Bảng 1 và 2 sau đây: 

0 50 100 150 200 250
Epochs

0

0.5

1

1.5

2

2.5

3

3.5
TSTS
RProp
SpikeProp

 
Hình 4. MSE của 2-Stages, RProp và SpikeProp cho phân loại XOR. 

Bảng 1. Số epoch để đưa MSE = 0,5 với tập dữ liệu XOR 

Thuật toán Số epoch MSE 

SpikeProp 130 0,5 

RProp 28 0,5 

2-Stages 19 0,5 
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Bảng 2. Kết quả phân loại XOR của 3 phương pháp 

Thuật toán Tốc độ học Số lần thử nghiệm Tỉ lệ thành công 

Spikeprop 0,5 100 86% 

RProp adaptation 100 91% 

2-Stages 0,5 100 95% 

Hình 4 cho thấy rằng MSE của 2-Stages (đường chấm đen) có mức độ suy giảm là 
nhanh và mịn nhất, ngược lại MSE của SpikeProp (đường nét đứt) có tốc độ suy giảm 
chậm nhất. Trong khi đó, RProp (đường nét liền) cho thấy hiệu quả đáng kể trong cải 
thiện tốc độ hội tụ của SpikeProp, tuy nhiên, hạn chế của RProp là độ ổn định trong quá 
trình suy giảm MSE qua các lần lặp. Bảng 1 cho thấy rằng 2-Stages chỉ cần  
19 epoch để đưa MSE = 0,5, trong khi đó trường hợp tốt nhất của RProp và SpikeProp 
lần lượt là 28 và 130. Về độ chính xác phân loại, 2-Stages đạt 95% so với 91% của 
Rprop và 86% của SpikeProp như trong Bảng 2. 

b) Thời gian huấn luyện và thời gian hội tụ của các phương pháp 

Tiếp theo, việc so sánh và đánh giá hiệu quả của phương pháp kết hợp, RProp và 
SprikeProp trong huấn luyện SNN với tập dữ liệu của máy bay trong giai đoạn cất cánh 
được thực hiện. Các tham số của ba phương pháp được thiết lập như trong bài toán phân 
loại XOR. Kết quả cụ thể như sau: Đầu tiên có thể thấy, RProp (đường nét liền) có tốc 
độ suy giảm sai số kém ổn định nhất như Hình 5, do hệ quả của việc thay đổi tốc độ học 
trong quá trình cập nhật trọng số. Tuy nhiên đổi lại tốc độ suy giảm sai số đầu ra của nó 
nhanh hơn đáng kể so với SpikeProp (đường nét đứt). Kết quả cụ thể được chỉ ra trong 
Bảng 3, RProp chỉ cần 13 epoch để đưa sai số đầu ra tới 0,1, trong khi SpikeProp cần tới 
54 epoch. Dù Rprop đã cải thiện hiệu quả đáng kể, nhưng 2-Stages (đường chấm đen) 
vẫn nhỉnh hơn một chút. 

Bảng 3. Số lượng epoch để mạng đạt Error = 0,1 
Thuật toán Số lượng epoch Error 
SpikeProp 54 0,1 

RProp 13 0,1 
2-Stages 5 0,1 

Để xác định các chỉ số thời gian, đối với mỗi phương pháp các tác giả đã thực 
hiện 100 lần huấn luyện với tập dữ liệu bay trong giai đoạn cất cánh, trong mỗi lần huấn 
luyện thực hiện thay đổi: 

- d  (đối với TSTS) thay đổi ngẫu nhiên trong khoảng 10-13 ms; 
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- ,k k
ij hi   (đối với NSEBP) thay đổi ngẫu nhiên trong khoảng 0,1-0,9; 

- Tốc độ học   (đối với SpikeProp) thay đổi ngẫu nhiên trong khoảng 0,4-0,6; 

 
Hình 5. Tốc độ suy giảm sai số đầu ra của ba phương pháp. 

Trong mỗi lần huấn luyện, số epoch được xác định khi MSE = 0,1. Chi phí tính 
toán trung bình cho 1 epoch được xác định như sau: 

 100 0,1

100 0,1

MSE
average epoch

MSE

T
T

E




  (16) 

trong đó: 100 0,1MSET   là tổng thời gian để đạt đến MSE = 0,1 cho 100 lần huấn luyện; 

100 0,1MSEE   là tổng số epoch được xác định khi MSE = 0,1 cho 100 lần huấn luyện;  

0,1average MSEE   là số epoch trung bình được xác định là trung bình cộng trong 100 lần huấn 
luyện để đạt ngưỡng MSE = 0,1 đối với mỗi phương pháp; 0,1Compute MSET   là chi phí tính 
toán khi MSE = 0,1 của các phương pháp được xác định là tích của chi phí tính toán 
trung bình cho 1 epoch và số epoch trung bình.  

Bảng 4. Chỉ số hiệu suất về thời gian hoạt động của 3 phương pháp 

Phương pháp average epochT (giây) 0,1average MSEE   0,1ComputeMSET  (giây) 

SpikeProp 0,0766 53,4 4,1210 
RProp 0,0739 13,8 1,0198 

2-Stages 0,0721 5,8 0,4225 

Kết quả của từng phương pháp được thể hiện trong Bảng 4. Cụ thể, average epochT  của 

phương pháp kết hợp là nhỏ nhất, trong khi average epochT  của SpikeProp là lớn nhất. 

Tương tự, chi phí tính toán của 2-Stages là nhỏ nhất và của SpikeProp là lớn nhất, mặc 
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dù RProp rất hiệu quả trong cải thiện chi phí tính toán cho SpikeProp nhưng vẫn kém 
hơn 2-Stages. Điều này cho thấy thời gian hội tụ của SNN với 2-Stages là ngắn nhất. 

Dựa vào các kết quả so sánh hiệu quả của phương pháp huấn luyện đề xuất so với 
các phương pháp truyền thống, phương pháp đề xuất sẽ được ứng dụng để cải thiện kết 
quả trong bài toán nhận dạng các tham số khí động của máy bay ở phần tiếp theo. 

4. Kết quả nhận dạng và thảo luận 

4.1. Ước lượng trạng thái các tham số chuyển động của máy bay 
Kết quả ước lượng trạng thái của các tham số chuyển động của máy bay sử dụng 

các phương pháp kết hợp (dấu cộng), d PSP   (chấm đen), và NSEBP (nét đứt) được 
thể hiện trong Hình 6 và 7. Phương pháp huấn luyện đề xuất cho thấy độ chính xác và 
độ tin cậy cao hơn thông qua việc chính xác hoá tham số chuyển động của máy bay 
trong mô hình (1). Cụ thể, đường dấu cộng bám sát dữ liệu bay thực tế (nét liền) tốt hơn 
hẳn so với các đường chấm đen và đường nét đứt. Hơn nữa, phương pháp kết hợp cũng 
thể hiện độ ổn định cao nhất trong các phương pháp. Đáng chú ý, đối với các tham số 

oy  và oxa , dấu cộng gần như trùng khớp hoàn toàn với đường nét liền, trong khi các 

đường còn lại có độ sai lệch và dao động đáng kể, đặc biệt là đường chấm đen tương 
ứng với phương pháp 1 PSP  . 

 
Hình 6. Kết quả ước lượng các trạng thái gồm 

góc tấn  (trên), góc chúc ngóc   (giữa)  

và tốc độ góc chúc ngóc oy (dưới) 
trong (1) bằng 3 phương pháp. 
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Hình 7. Kết quả ước lượng các trạng thái 
gồm vận tốc V (trên), gia tốc tuyến tính  
oxa (giữa) và gia tốc pháp tuyến oza (dưới)  

trong (1) bằng 3 phương pháp. 

Kết quả so sánh chi tiết giữa 3 phương pháp được trình bày trong Bảng 5. Cả ba 
phương pháp đều đạt độ chính xác tương đối cao (lớn hơn 90%) trong việc xấp xỉ trạng 
thái các tham số chuyển động trong mô hình (1). Cụ thể, phương pháp kết hợp có độ 
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chính xác cao nhất, dao động từ khoảng 95% đến 98%, trong khi d PSP   có độ chính 
xác nằm trong khoảng từ 90% đến 95% và NSEBP trong khoảng từ 91% đến 96%. 

Bảng 5. Độ chính xác của các kết quả ước lượng các tham số theo 3 phương pháp 

Phương pháp     oy  V oxa  oza  

d PSP   90,66% 92,83% 92,62% 95,15% 95,14% 95,48% 
NSEBP 93,52% 91,24% 93,73% 96,34% 95,56% 96,08% 
2-Stages 96,14% 95,93% 98,09% 98,45% 98,69% 98,75% 

4.2. Ước lượng các dẫn xuất khí động theo mô hình đề xuất 

Dựa trên các kết quả ước lượng trạng thái của các tham số chuyển động trong 
kênh độ cao trong Phần 4.1, các dẫn xuất khí động sẽ được xác định thông qua mô hình 
các hệ số khí động học (2). Một sơ đồ cấu trúc của SNN và kỹ thuật tối ưu hóa 
Levenberg-Marquardt (LM) được sử dụng cho bài toán ước lượng các dẫn xuất khí 
động của máy bay trong nghiên cứu này, được minh họa trên Hình 8. 

 
Hình 8. Sơ đồ SNN-LM dùng cho việc nhận dạng các dẫn xuất khí động. 

Trong các bài toán tối ưu hóa, một phiếm hàm chỉ tiêu chất lượng cần được xác 
định. Dựa vào lý thuyết tựa thực cực đại, một hàm log-likelihood âm theo mô hình 
Fisher có dạng như trong [2], [6]: 

   -1
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trong đó:  (1) (2) ... ( ) T
N NY y y y - tập dữ liệu đo; 1i N  - số lượng điểm dữ liệu đo; 

( )ν i - phần dư của mô hình, tức là sự khác nhau giữa giá trị đo được và đầu ra do  
mô hình sinh ra. 

Khi ma trận hiệp phương sai R  của các phần dư đã được xác định, thành phần thứ 
hai ở vế phải của biểu thức (17) trở thành hằng số. Do đó, phiếm hàm chỉ tiêu chất 
lượng được xác định như sau: 

-1 T

1

1( )  ( ) ( )
2

N

i
J i i



  R    (18) 

Quá trình tối thiểu hóa phiếm hàm chỉ tiêu chất lượng (18) bao gồm việc tìm các 
giá trị của tham số θ . Do sự phụ thuộc phi tuyến của hàm J (θ)  vào tham số θ , quá 

trình tối ưu phải được thực hiện theo phương pháp lặp. 

Trong nghiên cứu này, kỹ thuật tối ưu hóa Levenberg-Marquardt được sử dụng để 
tối thiểu hóa phiếm hàm chỉ tiêu chất lượng trong biểu thức (18). Phương pháp này có 
thể tận dụng các ưu điểm của phương pháp giảm độ dốc nhất khi   lớn và phương pháp 
Gauss-Newton khi   nhỏ [33]. Kỹ thuật tối ưu hóa Levenberg-Marquardt được thực 
hiện qua ba bước như sau: 

Bước 1: Xác định tập vectơ tham số ban đầu 0θ ; 

Bước 2: Cập nhật các tham số trong mỗi vòng lặp [33]; 

Bước 3: Kiểm tra điều kiện dừng Cramér-Rao [6]: 

Bảng 6 cung cấp các dẫn xuất khí động được nhận dạng theo mô hình hệ số khí 
động (2) từ bộ dữ liệu bay trong giai đoạn cất cánh của máy bay Su-30. 

Khi các dẫn xuất khí động trong Bảng 6 được thay vào mô hình hệ số khí động 
(2), các hệ số khí động được xác định và trình bày trong các Hình 9-11, tương ứng với 
các phương pháp huấn luyện kết hợp (dấu cộng), NSEBP (nét đứt), d PSP   (chấm 

đen), và được so sánh với các giá trị hệ số khí động tính từ dữ liệu bay thực tế (nét liền).  

Cụ thể, các hệ số khí động thu được từ phương pháp huấn luyện kết hợp (dấu 
cộng) là chính xác và ổn định nhất trong các phương pháp. Đặc biệt đối với hệ số lực 
nâng và mô men nâng, các phương pháp NSEBP (nét đứt), d PSP   (chấm đen) có giá 

trị sai lệch lớn hơn các hệ số được xác định theo phương pháp huấn luyện kết hợp khi so 
sánh với các hệ số được xác định từ dữ liệu bay thực tế. 
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Bảng 6. Các dẫn xuất khí động được nhận dạng theo 3 phương pháp 

θ   ˆ NSEBPθ   ˆ -d PSPθ   ˆ 2 - Stagesθ  

ΔV
LC  0,2139 0,2106 0,2055 
Δα
LC  0,4203 0,4132 0,4170 

2Δα
LC  0,3019 0,2954 0,3109 

oyω
LC  0,4708 0,4703 0,4622 

eδ
LC  0,0801 0,0829 0,0771 
ΔV
DC  0,1570 0,1625 0,1510 
Δα
DC  0,1903 0,1880 0,1969 

2Δα
DC  0,1397 0,1262 0,1153 

oyω
DC  0,1185 0,1203 0,1107 

eδ
DC  0,0451 0,0487 0,0410 
ΔV
ym  0,3195 0,3115 0,3209 
Δα
ym  0,0143 0,0125 0,0151 

2Δα
ym  -2,1409 -2,1501 -2,1381 

oyω
ym  -5,3449 -5,3596 -5,3349 

eδ
ym  2,0793 2,0897 2,1091 

 

Độ chính xác trong việc xác định các hệ số khí động học được trình bày trong 
Bảng 7. Các kết quả không có sự thay đổi đáng kể, khi phương pháp huấn luyện kết hợp 
mang lại kết quả tốt nhất. Cụ thể, độ chính xác của phương pháp đề xuất dao động từ 
96% đến 98%, NSEBP từ 86% đến 96%, và d PSP   từ 88% đến 93%. Đặc biệt, độ 
chính xác của hệ số mô men nâng được xác định bằng phương pháp 2-Stage cao hơn hai 
phương pháp còn lại đáng kể, từ 8% đến 10%.  Điều này sẽ mang lại những lợi ích lớn 
hơn trong quá trình vận hành máy bay. Cụ thể, một chiếc máy bay được thiết kế với các 
tham số chính xác sẽ cải thiện chất lượng điều khiển và hiệu quả nhiên liệu. 

Bảng 7. Độ chính xác của các hệ số khí động học với 3 phương pháp 

Phương pháp LC  DC  ym  

d PSP   93,44% 95,64% 88,42% 

NSEBP 90,35% 96,41% 86,66% 

2-Stage 98,87% 97,66% 96,04% 
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Hình 9. Hệ số lực nâng trong giai đoạn cất cánh. 

 
Hình 10. Hệ số lực cản trong giai đoạn cất cánh. 

 

 
Hình 11. Hệ số mô men nâng trong giai đoạn cất cánh. 
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4.3. Xác định khoảng tin cậy của các dẫn xuất khí động 

Khi số lượng dữ liệu thu thập được là hữu hạn, việc sử dụng kỹ thuật 
bootstrapping để xác định khoảng tin cậy của các dẫn xuất khí động học trở nên cần 
thiết nhằm đảm bảo độ tin cậy và tính khách quan trong quá trình ước lượng [27], [28]. 
Kỹ thuật lấy mẫu lại dựa trên phần dư là kỹ thuật được sử dụng trong bài báo này [28]. 

Do các dữ liệu tham số nhận được từ chuyến bay  oy L D yα(i), φ(i), ω (i), V(i), C (i),C (i),m (i)  

dựa trên các thiết bị đo theo phương pháp gián tiếp, do đó, không thể xác định được 
phân bố xác suất sai số nhận dạng. Trong nghiên cứu này sử dụng kỹ thuật 
bootstrapping với việc lấy mẫu lại dựa trên phần dư với các giả định: 

- Mẫu sai số tạo ra phải có “trọng tâm”; 

- Mẫu sai số tạo ra có phân bố đều trong toàn bộ khoảng thời gian. 

 Khi L DC , C  và ym  trong các biểu thức (1) và (2) được xác định từ tập dữ liệu 

bay, việc lấy mẫu lại được thực hiện theo các bước sau: 

Bước 1: Tính các giá trị trung bình của L D yC , C , m ; 

Bước 2: Tính các vectơ sai số 
LC L Le = C  - C ; 

DC D De = C  - C ; 
ym y ye = m  - m ; 

Bước 3: Tại mỗi giá trị của các vectơ sai số này, thực hiện hình thành các giá trị 
sai số mới tuân theo phân bố chuẩn với kỳ vọng bằng giá trị này và sai lệch chuẩn theo 
quy tắc 3σ.  

Bước 4: Khởi tạo bộ dữ liệu sai số mới dựa trên việc chọn ngẫu nhiên các giá trị 
sai số nằm trong từng phân bố chuẩn này. Thực hiện bootstrapping với số lần lấy mẫu 
lại n lần tùy ý. 

Khoảng tin cậy 95% của các dẫn xuất khí động trong Bảng 8 được xác định 
bằng kỹ thuật bootstrapping để tạo ra các tập dữ liệu bootstrap phục vụ cho đánh giá 
thống kê. Kết quả được trình bày trong Bảng 8. Có thể thấy các khoảng tin cậy 95% 
cho tất cả các dẫn xuất khí động được xác định bằng phương pháp kết hợp (2-Stages) 
hẹp hơn so với các phương pháp còn lại. Qua đó khẳng định độ tin cậy của các tham 
số được nhận dạng bằng phương pháp đề xuất cao hơn so với các phương pháp  
còn lại. 
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Bảng 8. Khoảng tin cậy của các tham số được nhận dạng bằng 3 phương pháp 

θ   ˆ NSEBPθ   ˆ -d PSPθ   ˆ 2-Stagesθ  

ΔV
LC  [0,180 : 0,231] [0,181 : 0,228] [0,198 : 0,213] 

Δα
LC  [0,390 : 0,451] [0,385 : 0,43] [0,407 : 0,427] 

2Δα
LC  [0,292 : 0,336] [0,285 : 0,342] [0,300 : 0,320] 

oyω
LC  [0,445 : 0,483] [0,443 : 0,490] [0,452 : 0,472] 

eδ
LC  [0,056 : 0,104] [0,056 : 0,103] [0,066 : 0,088] 

ΔV
DC  [0,133 : 0,188] [0,127 : 0,191] [0,143 : 0,158] 

Δα
DC  [0,172 : 0,232] [0,168 : 0,234] [0,188 : 0,203] 

2Δα
DC  [0,079 : 0,141] [0,085 : 0,136] [0,105 : 0,124] 

oyω
DC  [0,092 : 0,144] [0,088 : 0,147] [0,101 : 0,120] 

eδ
DC  [0,025 : 0,063] [0,028 : 0,070] [0,034 : 0,047] 

ΔV
ym  [0,291 : 0,341] [0,286 : 0,344] [0,311 : 0,330] 

Δα
ym  [0,003 : 0,047] [0,001 : 0,052] [0,005 : 0,026] 

2Δα
ym  [-2,175 : -2,116] [-2,183 : -2,116] [-2,147 : -2,127] 

oyω
ym  [-5,368 : -5,314] [-5,372 : -5,314] [-5,342 : -5,326] 

eδ
ym  [2,092 : 2,124] [2,088 : 2,127] [2,100 : 2,116] 

Hình 12-14 minh họa biểu đồ phân bố bootstrap của các dẫn xuất khí động tương 
ứng với hệ số lực nâng, hệ số lực cản và hệ số mô men lực nâng, được xác định bằng kỹ 
thuật bootstrapping.  

Các giá trị trên hai đường đen thẳng đứng là giới hạn trên và dưới của khoảng tin 
cậy 95% theo kỹ thuật bootstrapping. Khoảng giữa hai đường đen thẳng đứng biểu thị 
mức độ không chắc chắn của các dẫn xuất khí động. Trong các biểu đồ, khoảng giới hạn 
bởi hai đường đen thẳng đứng (2-Stage) hẹp hơn so với khoảng được xác định bởi độ 
lớn của các thanh chiều ngang của các phương pháp còn lại: thanh ngang màu xám 
(NSEBP) và thanh ngang màu đen ( 1 PSP  ), điều này xác nhận rằng SNN được huấn 
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luyện bởi phương pháp kết hợp cung cấp các ước lượng dẫn xuất khí động với mức độ 
không chắc chắn thấp hơn, từ đó làm cho các ước lượng này đáng tin cậy hơn so với các 
phương pháp huấn luyện NSEBP và 1 PSP  . 

   

  

 

Hình 12. Biểu đồ phân bố bootstrap của các dẫn xuất khí động của hệ số lực nâng. 

   

  

 

Hình 13. Biểu đồ phân bố bootstrap của các dẫn xuất khí động của hệ số lực cản. 
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Hình 14. Biểu đồ phân bố bootstrap của các dẫn xuất khí động của hệ số mô men nâng. 

5. Kết luận 
Trong nghiên cứu này, một phương pháp huấn luyện kết hợp cho mạng nơron đột 

biến được để xuất. Phương pháp này được ứng dụng để cải thiện độ chính xác và độ tin 
cậy trong việc ước lượng trạng thái của các tham số chuyển động và các hệ số khí động 
thông qua các dẫn xuất khí động của máy bay. Kết quả mô phỏng cho thấy:  

1) Độ chính xác của phương pháp đề xuất trong ước lượng trạng thái của góc tấn 
công và tốc độc góc chúc ngóc được cải thiện nhiều nhất là 5,5% so với d PSP  , với các 
tham số còn lại được cải thiện từ 2% đến 3%. Tương tự, so với NSEBP thì phương pháp kết 
hợp nâng cao độ chính xác trong ước lượng trạng thái của góc chúc ngóc và tốc độ góc chúc 
ngóc cao nhất 4,5%, các tham số khác độ chính xác được cải thiện từ 2% đến 3%;  

2) Phương pháp đề xuất đã nâng cao độ chính xác của hệ số lực nâng so với 

d PSP   và NSEBP lên tương ứng 5,5% và 8,5%. Tương tự, với hệ số lực cản là 2% và 
1,2%, hệ số mô men nâng là 8,4% và 10%; 

3) Độ tin cậy của các dẫn xuất khí động được cải thiện đáng kể, khi vùng không 
chắc chắn của các dẫn xuất khí động trong biểu đồ phân bố bootstrap của phương pháp đề 
xuất là nhỏ hơn khoảng một nửa so với các phương pháp ban đầu. 

Các ưu điểm của phương pháp đề xuất đã được xác thực thông qua các tập dữ liệu 
thu thập từ các bài bay thử nghiệm thực tế. Tuy nhiên, điều này cũng đặt ra một thách 
thức khi áp dụng kết quả của nghiên cứu này cho các mẫu máy bay hoặc kịch bản bay 
khác nhau.  
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Trong các nghiên cứu tiếp theo, cần thực hiện nhận dạng trên các tập dữ liệu thu 
được từ các tình huống bay khác nhau, trong các điều kiện bay khác nhau ví dụ như trong 
giai đoạn cơ động, giai đoạn hạ cánh, chế độ bay bằng hoặc ứng dụng phương pháp đề 
xuất với dữ liệu mô phỏng trong điều kiện gió ngang 10 m/s. Tương tự, có thể mở rộng 
phạm vi ứng dụng sang kênh ngang và kênh tầm... Ngoài ra, các tác giả cũng sẽ tập trung 
nghiên cứu và xác định một giá trị thời gian phân rã phù hợp có thể áp dụng cho nhiều bài 
toán khác nhau. 
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PROPOSE A HYBRID TRAINING METHOD FOR SPIKING NEURAL 
NETWORKS TO IMPROVE THE ACCURACY IN IDENTIFYING  

THE AERODYNAMIC COEFFICIENTS OF AN AIRCRAFT 
Abstract: This paper proposes a hybrid training method for spiking neural networks to 

identify the aerodynamic coefficients of an aircraft in the attitude channel using a nonlinear 
model. The proposed training method combines the backpropagation algorithm with adaptive 
decay time and the normalized spiking error backpropagation algorithm. This combination 
leverages the strengths of both algorithms in updating decay times and synaptic weights. As a 
result, it reduces training time and enhances stability during error reduction, thereby improving 
the accuracy and reliability of the identified aerodynamic parameters. Simulation results show 
that the aerodynamic coefficients in the aircraft’s pitch channel identified using the proposed 
method are more accurate than those obtained with traditional methods, and the network 
achieves faster convergence compared to using each training method individually. Additionally, 
the bootstrapping technique is used to determine the confidence interval for the aerodynamic 
parameters. The confidence interval indicates that the proposed method yields more reliable 
results compared to the algorithm before the combination. 

Keywords: Spiking neural network; spiking error backpropagation; the decay time; 
system identification. 
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