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Abstract 

This article presents an application of finite element algorithm for static bending analysis of 

the functionally graded porous (FGP) annular nanoplate resting on the elastic foundation 

(EF) using nonlocal elasticity theory. The FGP materials with two parameters are the 

volume fraction index (k) and the porosity volume fraction (ξ) was used in two cases of 

even and uneven porosity. The EF includes Winkler-stiffness (k1) and Pasternak-stiffness 

(k2). For the first time, the stress and displacement of the FGP annular nanoplates are 

established using an eight-node plate element (Q8). Numerical results of the proposed 

method are compared with those of published works to verify the accuracy and reliability. 

Furthermore, the impacts of some factors such as the elastic foundation and material on the 

static bending of FGP nanoplates resting on the EF are studied in detail. 

Keywords: FGM; static bending; nanoplates; nonlocal elasticity theory. 

1. Introduction 

Nowadays, nanostructures have been widely applied in nanoelectromechanical 

systems such as thin-film elements, nanosheet resonators, and gas sensors due to their 

exceptional mechanical, thermal, and electrical properties. Therefore, the research on 

nanostructures has always been deeply interested by scientists around the world. 

There are many theories that have been proposed to calculate nano-structures such 

as the modified couple stress theory [1], the strain gradient theory [2], and the nonlocal 

theory [3, 4]. Among these theories, the nonlocal theory is used popularly in the 

literature for simplicity and accuracy. For example, Li et al. [5] developed a new 

nonlocal model to solve the static and dynamic problems for circular elastic nano-solids. 

Ansari et al. [6, 7] used nonlocal theory to consider the free vibration of a single-layered 

graphene plate. In [7], Arash and co-workers commented about nonlocal theory in 

modeling carbon nanotubes and graphene. Farajpour et al. [8] studied thermomechanical 

vibration of graphene plates including surface effects by decoupling the nonlocal 
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elasticity equations. Jalali et al. [9] used molecular dynamics combining with nonlocal 

elasticity approaches to investigate the effect of out-of-plane defects on vibration 

analysis of graphene. In addition, the nonlocal theory employed to investigate the 

various performances of nanoplates is also shown in [10]. 

In the case of nanostructures resting on the EF, some typical works as Wang and 

Li [11] computed the static bending of the nanoplates resting on the EF. Narendar and 

Gopalakrishnan et al. [12] studied the wave dispersion of a single-layered graphene 

sheet embedded in an elastic polymer matrix. Pouresmaeeli et al. [13] investigated the 

vibration behaviors of nanoplates placed on a viscoelastic medium. Sobhy [14] used an 

analytical method based on nonlocal theory to examine static bending, free vibration, 

mechanical buckling, and thermal buckling of functionally graded material (FGM) 

nanoplates lying on the EF. Le et al. [15] employed the FEM based on nonlocal 

elasticity theory to examine static bending of L-shape nanoplates. 

Basically, porosity reduces the stiffness of the structure, however with 

engineering properties such as lightweight, excellent energy-absorbing capability, great 

thermal resistant properties, etc, they still have been widely applied in various fields 

including aerospace, automotive industry, and civil engineering. Recently, porous 

nanostructures are also widely used for potential applications in various fields such as 

electronic devices, sensors and solar cells [16-18]. 

According to the best of the authors’ knowledge, the static bending analysis of 

FGP annular nanoplates resting on EF has been not published yet. This motivates us to 

develop the eight-node quadrilateral (Q8) element combining with the nonlocal theory 

to accurately describe the stress-strain and displacement field of the FGP annular 

nanoplate resting on the EF. The accuracy and reliability of the present approach are 

verified by comparing numerical results with other previous publications. Moreover, the 

effects of geometry parameters and material properties on the static bending of FGP 

nanoplates are examined in detail. 

2. Governing equations 

2.1. The FGP annular nanoplate 

Consider an annular nanoplate as shown in Fig. 1. 

The FGP materials with a variation of two constituents and two different 

distributions of porosity through-thickness are presented as [12]: 
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Case 2: 
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where P represents the effective material property such as Young's modulus E, mass 

density ρ, and Poisson's ratio υ. k is the volume fraction index,  ( 1  ) represents the 

porosity volume fraction. Subscripts m and c denotes the metallic and ceramic 

constituents, respectively. 
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Fig. 1. The FGP annular nanoplate resting on the EF 

(a) Annular nanoplate, (b) Even porosity, (c) Uneven porosity. 

2.2. Nonlocal elasticity theory 

According to the nonlocal theory, the stress-strain relation is determined by [4] 

 2  σ σ Q

  

(3) 

in which: 2

0( )e l   is nonlocal factor, l  is an internal characteristic length and 0e  is a 

constant. Q  is the stress tensor at a point that is calculated follows the local theory. 

Note that, when 0l   ( 0  ), the nonlocal theory will become the classical plate 

theory. 
2 2

2

2 2x y

  
   

  
 is the Laplacian operator and hence, the small-scale effect 

depends on the atomic or molecular mechanical/electrical/chemical characteristics, i.e. 

bond strength, atomic spacing, atomic potential, and density are taken into account. 

2.3. The displacement field 

According to the first-order shear deformation theory (FSDT), the displacement 

field of the FGP nanoplate is given by: 
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with 0 0 0, ,u v w  are the displacement components at the mid-plane (z = 0) along x , y,  

z-axis; ,x y 
 

are the angle of rotation of the middle surface via the y and  

x-axis, respectively. 

2.4. The strain vector 

The strain vector of the plate is defined according to the displacement field as 

follows [12]: 
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2.5. The stress-strain relation 

 Q = D.ε  (7) 
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The equation represents the relationship between the internal forces and the 

deformation components are written in the form: 
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2.6. The plate element 

The eight-node plate element is used. Each node has five degrees of freedom. The 

nodal displacement vector can be defined as follows: 

 T T T T T T T T T

e 1 2 3 4 5 6 7 8d = [d d d d d d d d ]   (12) 

The displacements at the node ( 1 8)i i    of element are expressed as 

  0 0 0i i i i xi yiu v w  d   (13) 

The displacements field in the plate element is interpolated through the 

displacement node as 

 0 0 0. ; . ; . ; . ; .u e v e w e x x e y y eu v w       N d N d N d N d N d   (14) 

where , , , ,u v w x y N N N N N are the shape functions: 

 

(1) (1) (1) (1) (2) (2) (2) (2)

1 2 7 8 1 2 7 8

(3) (3) (3) (3) (4) (4) (4) (4)

1 2 7 8 1 2 7 8

(5) (5) (5) (5)

1 2 7 8

... ; ... ;

... ; ... ;

... .

u v

w x

y





        


        


   

N N N N N N N N N N

N N N N N N N N N N

N N N N N

   (15) 

The matrices  (j) 1 5iN j    are given by 
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where i  is the Lagrange interpolation function. 

The element stiffness matrix is determined by 

 p f

e e eK = K + K  (17) 

with p f

e e,K K  are the plate element stiffness matrix, and the foundation element stiffness 

matrix, respectively. In which 
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The element force vector is given as follows: 2

e (1 ) T

w

S

p dS  F N   (22) 

with 1 8[0 0 0 0,...,0 0 0 0]w N NN . 

For the static problem: K.d = F   (23) 

in which , ,K F d  are the global stiffness matrix, the global force vector, and the 

global displacement vector. They are gathered from the element stiffness matrix, the 

element force vector, and the element displacement vector. The program is coded in 

the Matlab environment.

 

 

3. Accuracy study 

Firstly, we consider simple support (SSSS) FGM square nanoplates with 

geometry parameters: a = b = 10 nm, h = a/10; and material properties: metal (Al) E1 = 

70 GPa, ρ1 = 2702 kg/m3, and ceramic (Al2O3) E2 = 380 GPa, ρ2 = 3800 kg/m3, υ = 0.3 is 

fixed. Herein, dimensionless quantities are introduced by 
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As exhibited in Table 1, the present results are in good agreement with an analytical 

method of Sobhy [14]. It means that the present method is highly reliable. 

Table 1. The displacement and stress of nanoplates resting on the EF (k = 0, K2 = 0). 

Method K1 
0   4   

*w  
*

xx  *w  
*

xx  

[14] 
0 2.9603 19.9550 5.2977 35.7108 

100 2.3290 15.6991 3.5671 24.0455 

Present 
0 2.9600 19.8990 5.2971 35.6106 

100 2.3288 15.6555 3.5669 23.9791 
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4. Numerical results 

Secondly, the FGP annular nanoplates (as Fig. 1) material properties as in section 3 

and geometric dimensions R = 5 nm, r = 2.5 nm, h = 1 nm. The FGP annular nanoplate 

subjected to uniformly load p0 in perpendicular directions. The deformation field of the 

FGP annular nanoplate is indicated in Figs. 2a, 2b. The stresses of A-point through the 

thickness of the FGP annular nanoplate is presented in Figs. 2c, 2d. It can be seen that 

the law of stress distribution according to the thickness of the plate at a point is 

consistent with the law of effective mechanical properties of FGM materials. 

 
a) The deformation field 

 
b) The top view deformation field 

 

c) The stress 
*

xx  at the A-point 

 

d) The stress 
*

xy at the A-point 

Fig. 2. The deformation and stresses of the SSSS FGP annular nanoplate  

(k = 5, 0.1  , 4  , K1 = 100, K2 = 10). 

4.1. Effect of the volume fraction index k 

Next, the volume fraction index k gets value from 0 to 100. The SSSS FGP 

annular nanoplate with porosity volume fraction   = 0.1, nonlocal factor 4  . The 

stiffness of foundation: K1 = 100, K2 = 50. From Fig. 3, it can be concluded that when k 

increases lead to displacement increase due to stiffness of the nanoplate decrease. The 

displacement of the nanoplate decreases rapidly when k increases from 0 to 10. We also 

find that the FGP annular nanoplates with porosity distribution case 2 are harder than 

case 1. Note that, k is larger the nanoplate becomes metal-rich and thus the nanoplate’s 

stiffness decreases. 
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Fig. 3. The maximum displacement of the 

SSSS FGP annular nanoplate versus volume 

fraction index k. 

 

Fig. 4. The maximum displacement of the 

SSSS FGP annular nanoplate versus 

nonlocal factor . 

4.2. Effect of the nonlocal factor µ 

In this survey, authors choose the nonlocal factor in range 0 4    with 0   is 

the classical plate. The SSSS annular FGP nanoplate with porosity volume fraction  

  = 0.1, volume fraction index k = 5. The stiffness of foundation: K1 = 100, K2 = 50.  

It can be found that   increases make the displacement increase due to increase of 

nonlocal factor lead to reduce stiffness of the FGP annular nanoplate (see Fig. 4). 

4.3. Effect of the stiffness of foundation 

Finally, in order to consider the influences of the stiffness of foundation on static 

bending of the FGP annular nanoplate, we change K1 from 0 to 500, and K2 from 0 to 50 

with respect to k = 5, ξ = 0.2, and nonlocal factor μ = 4. From the numerical results show 

in Fig. 5, we observe that when increasing K1 and K2 leads to a decrease in the 

displacement of nanoplates due to the foundation make the stiffness of FGP annular 

nanoplates increase, and Pasternak foundation supports strongly than Winkler foundation. 

 
Fig. 5. The displacement of the FGP annular nanoplate versus K1 and K2. 
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5. Conclusions 

In this article, the static analysis of the FGP annular nanoplate is studied by using 

the FEM and nonlocal theory. The obtained numerical results of static bending of the 

present approach are compared to other available solutions. From the proposed 

formulation and the numerical results, we can withdraw some following points: 

- Using the FEM will be convenient in modeling and meshing. Especially, with 

structures are not symmetrical (L-shape, Annular-shape). 

- The material parameters and the porosity distribution of the FG material effect 

significantly the static bending of FGP annular nanoplates. 

- Numerical results in the present work are useful for the calculation, design of 

FGP annular nanoplates in engineering and technologies. 

- The present approach can be developed to investigate static bending of the FGP 

nanoplate with different shapes subjected to other loads. 
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PHÂN TÍCH UỐN TĨNH TẤM NANO HÌNH VÀNH KHUYÊN 

TRÊN NỀN ĐÀN HỒI SỬ DỤNG LÝ THUYẾT NONLOCAL 

Tóm tắt: Bài báo trình bày thuật toán phần tử hữu hạn phân tích uốn tĩnh tấm FGP nano 

hình vành khuyên trên nền đàn hồi dựa trên lý thuyết nonlocal. Vật liệu FGP với hai tham số là 

chỉ số thể tích vật liệu (k) và hệ số thể tích lỗ rỗng (ξ) với hai trường hợp phân bố lỗ rỗng bao 

gồm phân bố đều và phân bố không đều. Nền đàn hồi bao gồm độ cứng Winkler (k1) và độ cứng 

Pasternak (k2). Lần đầu tiên, trường ứng suất và chuyển vị của tấm FGP nano hình vành 

khuyên được thiết lập bằng cách sử dụng phần tử tấm 8 nút (Q8). Kết quả tính toán số của 

phương pháp đề xuất được so sánh với các kết quả đã công bố để kiểm tra tính chính xác và độ 

tin cậy. Ngoài ra, ảnh hưởng của một số thông số nền và thuộc tính vật liệu đến uốn tĩnh của 

tấm FGM nano hình vành khuyên cũng được nghiên cứu chi tiết. 

Từ khóa: FGM; uốn tĩnh; tấm nano; lý thuyết đàn hồi nonlocal. 
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