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Abstract 

For Stereo Visual Odometry (SVO), the rotation and translation of camera motion can be 

estimated simultaneously or separately in which rotation is extracted from an essential 

matrix. Most of state of art methods computing the parameters of rotation camera motion 

only use each pair of consecutive image frames on the left side. This leads to not leveraging 

the worth information of a pair of consecutive image frames on the right side. This paper 

presents an approach to leverage this information during computing rotation by averaging 

of value of rotations extracted from both left and right sides. The proposed method is 

evaluated on the KITTI dataset to verify the performance of this algorithm. The 

experimental result indicates that the proposed approach enhances about 10% accuracy 

compared to other methods in the same scenario. 

Keywords: Stereo Visual Odometry; Essential Matrix; Rotation Averaging; Robotics. 

1. Introduction 

Visual Odometry (VO) is the process of estimating the pose (position and 

orientation) of an agent such as a vehicle, robot, etc., by analyzing the associated camera 

images. It has an essential role in major domains including robotics, automotive, wearable 

computing, and augmented reality. One of the fundamental challenges in an autonomous 

system is accurate localization. Maintaining knowledge of its position over time to 

achieve autonomous navigation is an essential duty of robot. Therefore, there are a lot of 

variety of sensors, techniques, and systems that are used for a mobile robot, such as wheel 

odometry, laser/ultrasonic odometry, global position system (GPS), global navigation 

satellite system (GNSS), inertial measurement units (IMUs) and VO. They have been 

studied and developed by scientists on over the world. However, each technique has its 

advantages and disadvantages. Compare to other approaches, VO is a low-cost technique 

that provides more accurate trajectory estimation as mentioned in [1, 2]. 

VO determines the pose of a vehicle by analyzing the image stream captured by 

camera attached on it. To work effectively, it needs to guarantee several necessary 
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conditions such as the sufficient illumination, the static scene with enough texture to 

allow apparent motion to be extracted. Furthermore, consecutive frames should be 

captured to ensure that they have sufficient scene overlap. Depending on the type of 

visual sensors, VO can be divided into two major types including Monocular Visual 

Odometry and SVO in which most of research done in VO has been produced using 

stereo cameras. Beside that, based on the input of pose estimation steps, there are 

several different methods to compute VO, and they can be divided into three categories 

as [1]: feature-based methods, appearance-based methods, and hybrid methods. Feature-

based methods use salient and repeatable features to track over the frame; appearance-

based methods use the intensity information of all pixels in the image or sub-regions of 

it; and hybrid methods combine of the two above methods. 

The VO pipeline consists of five parts in sequence as Fig. 1: image sequence, 

feature detection, feature matching (or tracking), motion estimation and local 

optimization (bundle adjustment). Motion estimation is the core computation step 

performed for every image in VO system.  

 

Fig. 1. The VO pipeline.  

Depending on whether the feature correspondences 1kf  , kf  at time instants 

( 1)k   and k , respectively are specified in two or three dimensions, motion estimation 

can be divided into three methods: 1) 2-D to 2-D when 1kf  , kf  are in 2-D image 

coordinates; 2) 3-D to 3-D when 1kf  , kf  are in 3-D image coordinates; 3) 3-D to 2-D 
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when 1kf   in 3-D coordinates and kf  is corresponding 2-D re-projection on the image 

coordinate. The survey in [3, 4, 5] concludes that 2-D to 2-D and 3-D to 2-D methods 

are more accurate than 3-D to 3-D methods because the motion estimation using 3-D to 

3-D correspondences are more uncertainty then it may have a devastating effect in 

motion computing. To avoid the effect of uncertainty 3-D feature from stereo disparity, 

in [6] we presented a novel translation estimation for essential matrix based SVO. The 

rotation was extracted from the essential matrix of each pair of consecutive image 

frames on the left side; then the translation was rapidly estimated by solving a linear 

closed form only using 2D features as input with one-point RANSAC.  

 
Fig. 2. The proposed VO pipeline with improvement of rotation averaging. 

Carrying on improving the performance of algorithm, we realize that most of 

methods only use a pair consecutive of frames on the left side to compute the essential 

matrix, the worth information of a pair consecutive image frames on the right side is not 

leveraging. It is really waste of information because we are not sure whether the value 

of information extracted from each pair of image on the left side more accurate than that 

of the right side. 

In this paper, we propose an idea computing the average of rotation using 

combination of each pair of consecutive image frames on the left and right sides. The 

algorithm was tested on the training KITTI dataset and achieved significant results. The 

approach enhances about 10%  the accuracy of rotation and also improves a value of 

translation. Our algorithms is depicted as follows in Fig. 2. Like the traditional VO 
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pipeline, the proposed VO pipeline consists of two main phases: 1) feature 

extraction/matching and 2) pose estimation. The contribution of paper is highlighted as 

green and yellow block where rotation estimation was determined by averaging rotation 

each image frames on the left and right side. 

The rest of this paper is organized as follows. Section II summarizes the related 

works for essential matrix-based visual odometry. Section III deploys the improvement 

of rotation estimation by using each of pair of consecutive image frames on the left and 

right sides. Section IV gives several results and evaluates them via comparing to other 

approaches on KITTI dataset.  

2. Related works 

In this section, we briefly summarize conventional approaches to determine the 

value of rotation and translation. We divided the section into two parts including 

rotation estimation and translation estimation. 

2.1. Rotation estimation 

The essential matrix, E , is a 3 3  matrix expressing the geometric relation 

between two consecutive images kI  and 1kI  . It contains the camera motion parameters 

up to an unknown scale factor for the translation in the following form:  

 E T R  (1) 

where matrix T  is expressed as follows:  

 

0

0

0

z y

z x

y x

t t

T t t
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  
  

   (2) 

The essential matrix can be computed from 2-D to 2-D feature correspondences. Each 

correspondence of two images satisfies the epipolar constraint as follows:  

 0Tp Eq   (3) 

where p  and q  are a feature location in one image (e.g., kI ) and the location of its 

corresponding in another image (e.g., 1kI  ), respectively. Note that, p  and q  are 

normalized image coordinate. The essential matrix E has two additional properties  

  det 0E   (4) 

and  

 2 ( ) 0T TEE E trace EE E   (5) 

 Note that, equation (3) can be rewritten in the linear formula as follows:  



 

 

 

 

Journal of Science and Technique - ISSN 1859-0209  

 

 

 80 

 0E
 

  (6) 

where  

 
 1 1 2 1 3 1 1 2 2 2 3 2 1 3 2 3 3 3, , , , , , , ,p q p q p q p q p q p q p q p q p q




 (7) 

and  

 
 11 12 13 21 22 23 31 32 33, , , , , , , ,

T
E E E E E E E E E E



 (8) 

Essential matrix can be solved by using five-point correspondences gives the linear 

equation (6) and by solving the system the parameters of E  can be computed in [7]. 

Three equations (4), (5) and (6) are extended to 10 cubic constraints and transformed to 

a ten-degree polynomial. There are maximum 10 solutions for this polynomial resulting 

in maximum 10 candidates essential matrices. However, the solution yielding the 

highest number of inliers is known as a good representative. This five-point algorithm is 

applied in conjunction with RANSAC approach. A number of five-point sets are 

randomly chosen and evaluated the preemptive scores. The one with the best 

preemptive scoring together with the largest number of inliers is considered as the  

final solution. 

2.2. Translation estimation  

As above explained, we brief the method how to extract the value of rotation 

based an essential matrix by an efficient five-point algorithm proposed by Nister [7].  

A RANSAC scheme was used to choose the smallest preemptive score from N set of 

five-point samples. From essential matrix E , we computed the rotation, however, there 

are three unknown parameters of the translation. A simple solution is that using a pair of 

3-D feature correspondences  ,P Q  with the RANSAC scheme.  

 P RQ t   (9) 

where Q , P are 3-D corresponding feature of current and previous frames, respectively. 

This solution is similar to the 3-D to 3-D method, the result of this algorithm gets a high 

error of translation due to the high uncertainty of 3-D points. To avoid the effect of 

uncertainty 3-D points, in the paper [6], we propose a novel translation estimation. The 

process of the algorithm was summarized as follows. Firstly, the value was extracted 

from essential matrix using five-point Nister’s algorithm [7] as mentioned above part. 

Secondly, the translation was determined via the proposed equations without 3-D input 

since projecting a 3-D point in the current left (world coordinate) to the pixel coordinate 

of two consecutive frames. Finally, we got an equation has a form as follows:  
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 (10) 

where X , Y , Z  are 3-D points; xt , yt , zt  are the value of translation. Equation (10) 

includes eight linear equations with six unknown variables. It can be solved completely 

via Pseudo Inverse method to get M . Note that M  is a matrix 6 1  is calculated by a 

following formula:  

 
1T

T T

x y zM X Y Z t t t A A A B


        (11) 

In the real situation, the noise of feature is always existing and they come from lot of 

resources such as light condition, imperfect camera calibration, etc. To guarantee the 

accuracy of translation estimation, we use 100 samples of closest 3-D features 

combining with RANSAC scheme to estimate candidate translation. Maximum inliers 

of best translation solution are used for refinement. Equation (10) is written for only one 

feature and it can be rewritten as the following equation: 
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where the matrix A  is splited into 2 sub-matrices  

 
1 1 1

8 3 8 38 6

XYZ TA AA  
     

For N  features, equation (12) was generalized has following form:  

 n n nA M B
 (13) 

where  
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1 1 1 1 (3 3)

...
T

n n n n x y z n
M X Y Z X Y Z t t t

 
      

 
 1 2 1 8

...
T

n n n
B B B B




 

Equation (13) is solved by the Pseudo Inverse method to refine the initial 

estimation. Obviously, far distance features with small disparity do not only provide a 

good contribution to enhance translation accuracy but are also one cause increasing the 

amount of computation. To deal with this problem, the paper [6] only use 10 inliers 

closest 3-D features with top largest disparity for refinement. 

3. Proposed rotation estimation  

As mentioned above, the rotation was extracted from an essential matrix. Most of 

previous traditional methods only use each pair of consecutive image frames on the left 

side. This issue leads to not leverage lots of worth information of each pair of 

consecutive image frames on the right side. In this paper, we propose an approach to 

compute the average of rotation estimation by using information from each pair of 

consecutive image frames on the left and right sides. To be convenient for computing, 

using quaternion definition was introduced by Rowan Hamilton in 1843 in [8, 9] to 

express rotation matrix. Compared to other expression of rotation such as rotation 

matrices, Axis-Angle, Euler Angles, and Homogeneous Transformation Matrix, etc., 

quaternion is more compact, efficient, and numerically stable. 

Our approach is implemented step by step as follows: 

• Firstly, the value of rotation matrix 1R , 2R  are extracted separately from each 

pair of consecutive image frames on left and right side, respectively. 

• Secondly, we convert the rotation matrices 1R , 2R  into quaternion forms 1q , 2q  

• Thirdly, computing the average of rotation estimation by using Spherical linear 

interpolation (Slerp) function that expressed by following form by equation (14):  

 1 2( , , )avgq Slerp q q   (14) 

in which 1q , 2q  are two quaternions,   is coefficient range [0,1].  

Slerp function can be described briefly as follows:  

Quaternion spherical linear interpolation (Slerp) is an extension of linear 

interpolation along a plane to spherical interpolation in three dimensions. The algorithm 

was first proposed in [10]. Given two quaternions, 1q  and 2q , Slerp interpolates a new 

quaternion, avgq , along the great circle that connects 1q  and 2q . The interpolation 

coefficient,  , determines how close the output quaternion is to either 1q  and 2q . 
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The Slerp algorithm can be described in terms of sinusoids:  

 
0 1 2

sin(1 ) sin( )

sin( ) sin( )
q q q

  

 


   (15) 

where 1q  and 2q  are normalized quaternions, and   is half the angular distance between 

1q  and 2q . 

• Finally, the average of rotation avgq  is converted back rotation matrix form avgR  

that is input of getting translation estimation. 

Algorithm:  

Input: Two rotation matrix on both left and right 1R = ( 1)k lR   and 2R = ( 1)k rR   

computed from matrices from essential matrix using five-points of David Nister [7].  

Step 1: Compute 1q  and 2q :  

- 1 1( )q converttoQua R  

- 
2 2)(q converttoQua R  

Step 2: Compute average quaternion 
avgq : 

- 
1 2( , , )avgq Slerp q q   

Step 3: Compute 
avgR :  

- ( )avg avgR converttoRot q  

Output: Return avgR  is input to calculate T  (translation) 

4. Experimental results  

We assessed our approach using the KITTI dataset that be very popular with 

researchers in VO community. The dataset consists of different traffic scenarios that 

accommodate challenging aspects like lighting, shadow conditions, and dynamic object 

moving. The KITTI dataset contains 22 stereo sequences in total that was divided into two 

sub-sets including Training and Testing dataset. The training set provides 11 sequences 

(00-11) with the ground-truth trajectories for training evaluation and the testing set consist 

of 11 sequences (11-22) without the ground-truth for online evaluation. We will assess 

our approach on both two types of sub-sets to get its performance. The performance of the 

VO approaches is based on the RMSEs of measuring rotation/translation errors. These 

metrics are defined in [11] by computing the average errors from all possible sub-

sequences of lengths (100, 200,..., 800 meters). We compared the result of our approach 

to other approaches such as VISO2 [12], MRPE in [13], Novel Translation in [6] based on 

the training dataset to see the performance of algorithm. 
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A. Training dataset 

Both of rotation and translation errors of 10 sequences (exception 1st sequence) of 

training KITTI dataset are shown in Tab. 1 that visualizes the average rotation error er  

in degree/100m, average translation in percentage (%) et  and absolute error at  in 

(meter) between the final frame of estimation and the ground-truth. Tab. 1 depicts the 

results of 4 methods including the popular VISO2 [12], MRPE [13], Novel Translation 

in [6] and our proposed method, respectively. The second sequence contains very fast 

moving frames (car moving up to 100 km/h), so the pose estimation was not stable.  

To compare fairly between methods, we considered ignoring its results.  

Tab. 1. Offline performance evaluation on KITTI Dataset  
 

Sec 

Num 

VISO2 [12] MRPE [13] NOVEL TRANS [6] OURS 

te 

(%) 

re 

(deg/100

m) 

tabs 

(m) 
te (%) 

re 

(deg/100

m) 

tabs 

(m) 

te 

(%) 

re 

(deg/100

m) 

tabs 

(m) 

te 

(%) 

re 

(deg/100

m) 

tabs 

(m) 

1 2.46 1.18 86.01 1.11 0.46 18.17 1.08 0.46 11.06 1.13 0.45 12.51 

2 - 
- - - - - - - - - - - 

3 2.19 0.81 140.78 0.95 0.36 39.92 0.98 0.4 21.10 1.03 0.36 41.25 

4 2.54 1.20 32.61 0.93 0.45 6.76 1.05 0.4 3.47 0.85 0.37 3.08 

5 
1.0

2  
0.87  4.22  0.66  0.26  2.64  0.56  0.34  3.43  0.59  0.17  3.06 

6  
2.0

7  
1.12  46.58  0.88  0.40  17.69  0.83  0.39  17.13  0.92  0.38  14.90 

7  
1.3

1  
0.92  8.9  1.11  0.49  18.92  0.85  0.40  8.07  1.11  0.40  9.91 

8  
2.3

0  
1.77  21.29  3.23  1.56  27.59  1.44  1.28  13.30  1.67  1.19  14.86 

9  
2.7

4  
1.33  35.12  1.32  0.42  19.68  

1.2

1  
0.39  9.55  1.11  0.35  21.43 

10  
2.7

6  
1.15  79.36  0.91  0.28  13.8  

1.2

4  
0.36  16.91  0.92  0.28  9.0 

11  
1.6

3  
1.12  25.89  1.06  0.53  8.71  

1.6

1  
0.68  19.12  1.50  0.61  19.98 

Avg 
2.4

3  
1.11  -  1.11  0.43  -  1.08  0.44  -  1.08  0.40  - 

Look at Tab. 1, we can realize that the proposed method achieved lower errors for 

rotations er (deg/100m) in all sequences that was written in bold type. The average of 

rotation estimation of our approach is 0.40, MRPE is 0.43, NOVEL TRANS is 0.44, and 

it is the smallest value in these methods. This result indicates that the proposed method 

enhances approximately 10% the accuracy of rotation estimation by combining the 

orientation parameters of the left and right sides via quaternion presentation since 

comparing to the estimation in the left side only. Furthermore, MRPE and our approach 

are equal in the average of translation estimation and it is also lowest value translation 

estimation in four methods. This is understandable because the value of rotation after 

extraction is input of equation computing translation estimation. The value of rotation 

gets lower error lead to the value of translation also is improved.  
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Fig. 3 is an intuitive comparison between the performance of approaches. It is 

clear to see that camera tracks of proposed method in blue closer to the ground-truth 

than others like MRPE in black, Novel Translation in pink, VISO2 in green. This figure 

verifies the accuracy of our method compared to others shown in Tab. 1. 

   

Fig. 3. Trajectory of sequence 3rd and 9th for four approaches compare to the ground-truth. 

 

Fig. 4. Results of different set of five-point numbers and interpolation coefficient. 

As mentioned above, Slerp function stores   variable. The interpolation 

coefficient   between quaternion rotations 1q , 2q  is one of factors affecting to the 

accuracy of rotation estimation. Furthermore, during the experiment, we also realize that 

the accuracy of rotation estimation depends on the number set of five-points, .N  When 

N changes, the accuracy will be modified, too. These issues are illustrated in Fig. 4. 
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Fig. 4 shows that the accuracy of rotation estimation via quaternions 1q , 2q  is improved 

and be stable when we select least N = 70 and interpolation coefficient 0.3.   It is 

also an other evidence prove that the accuracy of rotation averaging is enhanced since 

combining the estimation from both the left and right sides. However, besides the 

advantages that were mentioned above, there is a drawback of our approach that is 

computing volume will increase at least two times when calculating rotation estimation 

using information a pair of frames on both the left and right stereo camera. Obviously, 

the computing time will rise, also in this situation. Therefore, depending on the 

computing capacity of hardware resources to consider to use or not. In this paper, we 

only consider how to improve the accuracy of rotation estimation and ignore the 

computing volume and time.  

B. Testing dataset 

In this sub-section, we will evaluate the performance of our method on the KITTI 

testing dataset that is publicly assessed on the web page. The result was compared to 

VISO2 [12] and Novel Trans [6] showed in Tab. 2. Look at Tab. 2, we can see that the 

rotation and translation error of our approach are 0.40 (deg/100m) and 1.24 (%), 

respectively and these are smallest value when comparing to other methods.  

Tab. 2. Online performance evaluation on KITTI Dataset  

 Rotation Error 

(deg/100m) 

Translation Error  

(%) 

VISO2 [12] 1.14 2.44 

NOVEL TRANS [6] 0.48 1.42 

Ours 0.40 1.24 

  

Fig. 5. Average rotation error  

along travel distance. 
Fig. 6. Average translation error 

along travel distance. 

To get an intuitive view point, we will visualize the translation and rotation errror 

along with travel distance in Fig. 5, Fig. 6. Based on graphs were plot on these figures, 
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we can see that our results get better than VISO2 and NOVEL TRANS methods when 

run on the same dataset. The error of rotation and translation almost get lower 

comparing to other methods, it proves that our approach is correct because it enhances 

the accuracy of rotation and a little translation estimation. 

5. Conclusions 

The paper proposed an improvement the accuracy of rotation estimation for 

essential matrix based SVO. This approach fused the rotation estimation from both left 

and right sides via quaternion presentation. Evaluated the algorithm on KITTI dataset, 

the results prove that the proposed approach reinforces performance enhancement 

compared to other methods in the same scenarios. In future, we hope to use quaternion 

to express rotation and orientation instead of rotation matrix and translation vector due 

to the advantages of quaternion in computing. 
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MỘT PHƯƠNG PHÁP TÍNH TOÁN MA TRẬN QUAY KẾT HỢP  

MA TRẬN QUAY TRÁI VÀ PHẢI SỬ DỤNG STEREO CAMERA 

Nguyễn Thế Tiến, Trần Công Mạnh, Nguyễn Quang Thi,  

Nguyễn Xuân Phục, Nguyễn Hữu Hùng  

Tóm tắt: Đối với các hệ thống Stereo Visual Odometry (SVO), chuyển động quay và 

chuyển động dịch của camera có thể được ước tính đồng thời hoặc riêng biệt, trong đó chuyển 

động quay được trích xuất từ ma trận thiết yếu. Cho đến nay, hầu hết các phương pháp tính 

toán các tham số của chuyển động quay camera chỉ sử dụng từng cặp khung hình ảnh liên tiếp 

ở phía bên trái. Điều này dẫn đến việc chưa tận dụng được thông tin giá trị của các khung ảnh 

liên tiếp ở phía bên phải của hệ thống camera. Bài báo trình bày một cách tiếp cận để tận dụng 

thông tin này trong quá trình tính toán chuyển động quay bằng cách tính giá trị trung bình của 

các phép quay được trích xuất từ cả hai phía bên trái và bên phải của hệ thống. Phương pháp 

đề xuất được đánh giá trên tập dữ liệu KITTI để xác định hiệu quả của thuật toán này. Kết quả 

thử nghiệm chỉ ra rằng phương pháp được đề xuất nâng cao độ chính xác khoảng 10% so với 

các phương pháp khác trong cùng một kịch bản đánh giá.  
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