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Abstract

In this study, rectangular plates subjected to static loads and supported on a discontinuous
two-parameter elastic foundation are analyzed. The formulae for the computations are
developed from improved shear deformation theory, where the displacement w is divided
into bending and shear strain components. The results obtained from this article and other
publications are evaluated to prove the accuracy of the proposed theory and the calculation
program. Then, a parameter study is carried out to capture the effect of some material and
geometrical parameters on the static response of structures. Especially the influence of the
flexoelectric effect and discontinuous foundation is investigated. As two elastic foundation
parameters and flexoelectric coefficient are increased, the non-dimensional maximum
deflection of the plate decreases, indicating that these factors improve the plate's stiffness.

Keywords: Nanoplates; discontinuous elastic foundation; flexoelectricity; static bending; finite
element method.

1. Introduction

Nanostructures are currently widely used in engineering as sensors, actuators, and
energy harvesters. Flexoelectricity is common in these structures due to strain gradients.
Several studies have revealed that nanoplate mechanical behavior involves a flexoelectric
effect. Yan [1] used an analytical solution to study static bending and free vibration of
piezoelectric nanoplates. To show the piezoelectric and flexoelectric effects of nanoplates,
Yang et al. [2] devised an analytical solution. In this case, the authors applied the classical
plate theory (CPT). The CPT equations were solved analytically, revealing the
flexoelectric impact on the plate’s mechanical response. The static bending response of
flexoelectric nanoplates with one edge clamped was determined using finite difference.
The precise solution and classical plate theory were used to examine the buckling
response of flexoelectric nanoplates by Ebrahimil and Barati [3]. Amin et al. [4]
evaluated the nonlinear free vibration of functionally graded flexoelectric nanoplates
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using classical plate theory and flexoelectric theory. Amir et al. [5] explored the free
vibration of sandwich flexoelectric plates using Navier's approach. It was used to find the
displacement and electric field of these plates subjected to the thermo-electro-magnetic
force. They investigated the static bending behavior of FG nanoplates under thermal,
electric, and flexoelectric fields. It is based on Kirchoff's classical plate theory. Ghobadi
and his colleagues [6] studied the static bending response of FG nanoplates, taking into
consideration the influences of temperature, electric, and flexoelectric fields.
Giannakopoulos et al. [7] developed an antiplane dynamic flexoelectric problem, which
was described as a dielectric solid with electric polarization and flexoelectricity gradients
due to strain gradients. Qu and colleagues [8] examined the torsion of a rectangular cross-
section flexoelectric semiconductor rod. Yang et al. [9] explored multilayer photonic
crystal band architectures with flexoelectricity. In this study, the traditional plate theory of
Kirchoff was employed to develop the finite element formulations. Readers can find more
interesting works related to imperfect structures as well as the flexoelectric effect in these
documents [10-16].

2. Finite element formulations of the nanoplate taking into
consideration the flexoelectric effect

The rectangular plate is defined geometrically by its length a, breadth b, and
thickness h. The plate is supported on a discontinuous elastic foundation with two
coefficients kw and ks (Fig. 1).
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Fig. 1. The nanoplate partially resting on a discontinuous elastic foundation.
This work uses hyperbolic sine functions [17], the displacement field at any
location on the plate is stated as follows:
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in which f(z2)=z-4(2), ;(z):h.sin%—z.cosh%; ux, Vy, and w; are the

displacements in the x-, y-, and z-directions at one point within the plate; wy and ws are
the bending displacement and shear displacement in the z-direction [17].

Herein, the essence of using the shear strain correction function f(z) is to increase
the accuracy more than choosing a constant correction factor (as used by the classical
theory), especially for plate and shell structures of medium and large thickness. But the
requirement of the selection function is that the shear stress on the free surfaces of the

plate (shell) is zero, which leads to 1 - f'(z) = 0 when z = J_rg.

Derivative of displacement one obtains deformation components with respect
to coordinates.
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This research makes the assumption that the strain gradient in the thickness
direction is substantially less than the strain gradients in the x- and y-axes, and that the
z-axis strain gradient is ignored. The strain gradient is composed of the following
components [13, 14]:
of (2)
— U

0z

When the flexoelectric effect is taken into consideration, the stress components
and electric displacement vector of a nanoscale dielectric material are as follows:

n=1p+ 3)

T = Cija € — Euij Ek ; Tijm =—f

i E P =Cuey +x;E+ fijk|77jk| 4)

kijm

in which ¢, &g, fq, and & are the components of elastic, piezoelectric,

kijm
flexoelectric and permittivity constant tensor; they are the material parameters. T; is the
stress tensor, which is similar to that of the traditional elastic foundation. P, is the
electric displacement vector, and ¥, is the moment stress tensor or the higher-order

stress tensor [13, 14]. The following particular stress and electric displacement
vector expressions:
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where fa113 = f3203 = f14 [18].

The electrical field is computed in the following manner from the partial
derivative of the electrical potential:

0

*oor o (6)

From equations (5) and (6), one gets:

€, [82w o*w
2 + 2

2a33 OX oy (7)

where ¢y and ¢ are the unknown coefficients. We have the following conditions under
the open-circuit condition:

2 2
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By substituting equations (8) and (7) into equation (6), the internal electric field is
expressed as follows:
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The electric Gibbs free energy in an open circuit has the following form:
1
H—EJ(eTT+yTS+17T'I’)dV (10)

\Y

where kw and ks are the two coefficients of the Pasternak elastic foundation. Thus, for the
nanoplates, taking into account the variable composition of the strain as equation (3). This
results in the plate energy expression with the final addition as in equation (10). This is
completely different from the ordinary plate. The nanoplate is divided into 4 node
elements, each node has 6 degrees of freedom:

e ()55 5 e o

50




Tap chi Khoa hoc va Ky thudt - ISSN 1859-0209

where H;j is the Hermit interpolation functions.

The displacement vector at any position inside the element is then interpolated via
the nodal displacement vector of the element, and strain vectors are calculated as
follows using the nodal displacement vector:

U=Huy, & =By, & =By, .y, =By n, =By, n.=By, (12)
Equation (10) and the external force exerted on the plate may be expressed
succinctly as follows:
11,=(11 2)y; Ky, W, =y, P, (13)
Using the principle of minimal energy (which includes deformation potential and
external force work) o77,=06W,, then assembling the matrix and removing the boundary
condition, the derived plate's static equilibrium equation has the following form:
Kg=F (14)
3. Verification study

Example 1: A simply supported (SSSS) nanoplate with the following
parameters: h = 20 nm, a = b = 50h, and material properties ci1 = 102 GPa;
c12 = 31 GPa: c33 = 35.50 GPa; e3; = -17.05 C/m?; ksz = 1.76-108 C/(Vm); fia= 107 C/m
is considered. The plate is forced evenly with go = 0.05 MPa. Figure 4 compares the
numerical findings of our study to those of Yang et al.’s analytical solution [2].
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Fig. 2. Non-dimensional deflection at y = b/2 taking into account the flexoelectric effect.

Example 2: Consider a plate with the dimensions a = b = 0.2 m, h = a/10, and
a/200 lying on an elastic basis. E = 320.24 GPa, and Poisson's ratio of 0.26 are the
material characteristics. The plate is SSSS and is loaded evenly g.,. Non-dimensional
elastic foundation and deflection at the plate's center point are determined as follows:
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Table 1 compares the accuracy of our work, the differential quadrature approach [19],
and the analytical method [20] with increasing mesh size.

Table 1. Non-dimensional deflection w of the plate resting
on the two-parameter elastic foundation

a’h =10
K:v K: This work

[19] [20] 8x8 10x10 12x12 14x14
elements elements elements elements

5 3.3455 3.3455 3.3797 3.3643 3.3560 3.3512

10 2.7505 2.7504 2.7743 2.7635 2.7578 2.7545

. 15 2.3331 2.3331 2.3508 2.3428 2.3386 2.3361
20 2.0244 2.0244 2.0382 2.0320 2.0287 2.0268

5 2.8422 2.8421 2.8667 2.8557 2.8499 2.8464

10 2.3983 2.3983 2.4163 2.4083 2.4040 2.4015

o 15 2.0730 2.0730 2.0868 2.0806 2.0774 2.0755
20 1.8245 1.8244 1.8355 1.8306 1.8280 1.8265

5 1.3785 1.3785 1.3835 1.3816 1.3804 1.3797

10 1.2615 1.2615 1.2658 1.2642 1.2632 1.2626

o 15 1.1627 1.1627 1.1665 1.1650 1.1642 1.1637
20 1.0782 1.0782 1.0815 1.0802 1.0795 1.0791

4. Numerical results

In this section, two types of boundary conditions are taken into the calculation:
SSSS and cantilever (CFFF) plates. Consider an SSSS nanoplate with h = 20 nm,
a =b =50h, and the material properties are c11 = 102 GPa; c12 = 31 GPa; €33 = 35.50 GPa;
es1 = -17.05 C/m? kss = 1.76-10% C/(Vm). The plate is rested on a discontinuous
two-parameter elastic foundation with ky and ks. A uniformly distributed load is
uniformly applied to a plate of magnitude P,. Two elastic foundation parameters are
k, =100, k; =10, where non-dimensional parameters are calculated as follows:
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3 3 4 2 3
:MW; f, =Lg;kf: 8 ;k;:ksa D, _Gft ;f9=10"C/m;h,=a/50 (16)
12Pa £0 D, D, 12

4.1. Influence of the discontinuous elastic foundation

Change the elastic foundation's length ¢ such that the c/a ratio ranges between 0
and 1/2. The displacement response w* of the nanoplate along the y = b/2 direction is
presented in Fig. 3. The results of the calculations indicate that as the elastic foundation
area increases, the plate gets stronger and its maximum displacement lowers. When a
plate is supported by an SSSS boundary (symmetrical form), the plate's displacement
route is no longer symmetrical through the location x = a/2, and the position of the
maximum displacement tends to move to the right.
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Fig. 3. The variation of displacement w*(y = b/2) depends on
the length c of the elastic foundation.

4.2. Influence of the flexoelectric effect

To show the effect of parameter fi4, the coefficient f, is varied between 0 and 4,

with 0 corresponding to the scenario of disregarding the flexoelectric effect.
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Fig. 4. The displacement change w*(y = b/2) is dependent on fi4, c/a = Ya.
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The displacement response between the panels w*(y = b/2) is calculated as
illustrated in Fig. 4. When the flexoelectric effect is included (i.e. fi4 is greater than zero),
the plate's maximum displacement is lowered. For the SSSS plate, as the coefficient fi4
grows, the plate's deflection line w* becomes less deflected relative to x = a/2.

4.3. Effect of plate thickness h

By varying the plate thickness h, the ratio a’h may be varied between 50 and 100.
The results of the plate's static bending reaction are displayed in Fig. 5. As the plate
thickness lowers, the plate's maximum displacement rises. For a plate exposed to the
SSSS boundary, the thinner the plate thickness is, the stronger the impact of the elastic
foundation is, and the farther to the left the displacement line w*(b/2) deviates from the

X = a/2 position.
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Fig. 5. The displacement change w*(y = b/2) is dependent on the plate thickness h.

5. Conclusions

The static bending response of nanoplates, including the flexoelectric effect, is
explored in this research utilizing the novel shear strain theory in combination with the
finite element method. The plate is partially supported by a two-factor elastic
foundation. This research comes to the following key findings. As the coefficient fi4 is
increased, the maximum displacement w* of the plate decreases, indicating that the
coefficient fi4 improves the plate's stiffness. As the thickness of the plate decreases, the
plate's displacement rises. The influence of the discontinuous elastic foundation is also
very obvious. As the elastic foundation area increases, the maximum displacement of
the plate decreases, whereas the maximum displacement of the plate for the SSSS
boundary is shifted to the right at x = a/2.
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PHAN TiCH UON TINH CUA TAM NANO TREN NEN DAN HOI
KHONG LIEN TUC KE PEN HIEU UNG FLEXOELECTRICITY

Phung Vin Minh, Lé Minh Thai, Poan Tric Luit, Nguyén Pinh Anh Vii

Tom tit: T rong nghién cuu ndy, cdac tam hinh chik nhdt chiu tdi trong tinh va duoc hé tro
trén nén dan hoi hai tham sé khéng lién tuc dwoe phan tich. Cdc cong thire tinh todn dwoc phdt
trién tir Iy thuyét bién dang cdt cdi tién, trong dé chuyén vi w duwoc chia thanh cdc thanh phan
bién dang uon va bién dang cdt. Cdc két qud thu dwoc tir bai bao ndy va cac cong trinh khac
dwge danh gid dé chitng minh tinh chinh xdc ciia Iy thuyét dé xudt va chwong trinh tinh todn.
Sau do, mot nghién ciru tham $6 duwgc thuc hién dé xem xét anh huong cua mot 56 thong 56 vé
vét liéu va hinh hoc dén dap ing tinh ciia két cau. Pdc biét la danh hudng ciia hiéu vmg uon dién
va nén khéng lién tuc dwoc khdo sat. Khi hai thong sé cia nén dan hoi va hé so flexoelectric
ting lén thi chuyén vi khong thie nguyén Ién nhdt cia tam giam di. Piéu nay cho thdy cdc yéu té
nay cdi thién do cieng ciia két cau.

Tir khéa: T4m nano; nén dan hoi khong lién tuc; hiéu tng flexoelectricity; udn tinh;
phan tir hiru han.
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