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Abstract

In recent years, machine learning (ML) has significantly enhanced the efficiency of
malware detection systems. Despite achieving high performance, these models now face a
growing threat from adversarial attacks. Adversarial malware samples can be intricately
crafted to deceive detection models, resulting in misclassifications of malicious programs,
thereby allowing them to bypass security systems. Various techniques have been developed
to generate adversarial malware specifically designed to evade different ML-based detection
systems. This threat underscores the urgent need for solutions that enhance the resilience of
malware detection models against adversarial attacks. The paper evaluates and proposes an
empirical cost-efficient adversarial defense strategy recommendation via activation function
design, that does not require computationally intensive methods such as adversarial training,
while boosting the inherent resilience of ML-based malware detection models against
black-box attacks. Results show that specific combinations, in particular Rectified Linear
Unit (ReLU) and Tanh, can significantly boost robustness without additional training or
inference setup. This work provides an empirical design aspect for building intrinsically
robust ML-based malware detection systems.

Index terms
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1. Introduction

The rapid evolution of cyber threats has driven the need for more sophisticated and
effective malware detection systems. In response, ML has emerged as a transformative
force, significantly improving the accuracy and efficiency of modern malware detection
frameworks. By analyzing large datasets, ML models can uncover intricate patterns and
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identify potential malware binaries with greater effectiveness than traditional signature-
based approaches.

Despite these advancements, adversarial attacks have emerged as a formidable
challenge to ML-based malware detectors. Adversarial malware samples are crafted to
deceive models by introducing perturbations to executable files, effectively bypassing
detection [1]–[3]. Such attacks exploit vulnerabilities in the decision boundaries of
classifiers, raising concerns about the robustness of current systems. Studies have
shown that adversarial techniques such as byte padding, sections manipulation, and
Generative Adversarial Network (GAN)-based malware can significantly reduce
detection accuracy, exposing the limitations of ML-based detection models.

Therefore, the need to develop robust malware detection systems, capable of
withstanding adversarial attacks, is an urgent research area. While there have been
efforts to mitigate this problem, most approaches mainly focus on two categories:
adversarial training [4], [5], or ensemble models [6], [7]. Despite the effectiveness of
these strategies, they face the challenges of hard to find samples or higher resources
costs. Moreover, some synthetic adversarial samples do not retain the functionality of
malware, which cannot authentically reflect real-world scenarios. On the other hand,
the inherent resilience of malware detection model based on architectural design has
not been widely explored. Several studies in the domain of computer vision have
suggested that activation functions can have an effect on the accuracy and robustness
of ML models [8], [9]. However, this research gap has not been addressed in the field
of malware detection.

This research investigates the inherent adaptability of ML-based malware detection
models in the face of black-box adversarial attack from a design standpoint. In
particular, the hypothesis is that different choices of activation functions can have a
profound effect on the innate robustness of ML-based malware detection models.
Therefore, the research aims to evaluate the different configurations of activation
functions in such models and propose recommendations for an empirical adversarial
defense strategy based on activation function engineering. By enhancing robustness at
an architecture level, the study contributes by proposing realistic empirical adversarial
defense strategy to enhancing the resilience of malware detection systems.
Specifically, the contributions of this paper are as follows:

• Proposing an empirical adversarial defense strategy recommendation for ML-based
malware detection model through activation function design.

• Conducting extensive experiments to evaluate the proposed approach on two
different state-of-the-art models with various designs against two black-box
adversarial attacks.

• Results show that the robustness can be significantly enhanced with this strategy
while mitigating the need for rare samples acquisition or re-training. From there,
empirical recommendations can be made for designing more inherently robust
models in real-world scenario.
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The paper is organized into the following 7 sections. Section 2 discusses related
research in malware detection and adversarial defenses. Section 3 explains the
background knowledge. Section 4 describes the motivation of the methodology and
Section 5 details experiments setup. The results are evaluated in Section 6. Finally, the
paper discusses the conclusion and future directions in Section 7.

2. Related works

While there have been many attempts to address malware detection in other domains
such as computer vision [10], the focus on defending the vulnerability of malware
detection models against adversarial attacks has been relatively scarce. One popular
defense method is adversarial training, in which adversarial samples are used during the
training phase [11]–[13]. While these techniques have been able to boost the robustness
of ML-based malware models positively, they rely on the procurement and generation
of adversarial malware, which might not be available in real-world scenarios. Zhang et
al. proposed a higher level of adversarial training with GAN generation and filtering of
adversarial malware to narrow down the most evasive samples for training [4]. However,
GAN-based perturbations do not guarantee an accurate reflection of Portable Executable
(PE) malware, making it unideal for realistic situations.

A novel method with non-deterministic architecture was proposed by Wang et al.
where features are randomly nullified in both the training and testing phases of the
model [14]. This approach was able to boost the robustness of the model while
maintaining accuracy. However, this work mainly focused on audit log-based features
rather than detection of binary files. Another method called randomized smoothing
was proposed by Gilbert et al. [15]. Through introducing noise for randomizing
inputs, a slightly perturbed version or binary files are generated. This boosts the
resilience of malware detection models through blurring the decision boundaries,
effectively boosting the flexibility of the model during attack. However, randomized
smoothing is only effective in certain cases since malware attacks perturb very
specific parts of an executable rather than randomly.

Ensemble methods have also been employed as a defense technique for adversarial
attacks. Chen et al. proposed an ensemble consisting of an adversarial sample
detection model and an anomaly detection model [16]. This method implements
multiple detection methods to defend against both specific and agnostic adversarial
attacks. However, the approach works under the assumption of abundant adversarial
samples. Ensila, an ensemble adversarial dynamic behavior detection model, was
proposed in [17]. Utilizing dynamic API call sequences, the approach was able to
show resilience without the need for re-training. While effective, ensemble methods
and dynamic analysis methods can be costly in terms of resources.

45



Section on Information and Communication Technology - Vol. 14, No. 02, December-2025

3. Background

While the mentioned studies have provided valuable insights into adversarial
defense strategies for malware detection, they primarily rely on resource-intensive
methods such as adversarial training and ensemble learning. However, limited
attention has been given to architectural factors that may inherently influence
robustness. To provide the necessary context for the experimental methodology, this
section details the foundational components of this research. The paper first introduces
the two target state-of-the-art ML-based malware detection models, MalConv and
SorelNet, which have achieved high performance for malware detection based on static
features without the need for intensive dynamic analysis [18], [19]. However, static
features are also easier to modify and bypass, which makes the above models
vulnerable to adversarial attacks. Moreover, the two models represent different
approaches to ML-based malware detection which enables a more comprehensive
view at evaluation. Then, a description of the black-box adversarial attack framework
used for experimentation in evaluating the hypothesis is provided. Finally, the section
will review the mathematical definitions and properties of the different activation
functions that form the basis of the approach.

3.1. MalConv model

For static malware detection, a ML approach called MalConv [20] was proposed that
only relies on raw bytes. The model was a pioneering model in malware detection for
facilitating a method of classification that does not require feature engineering or domain
knowledge. MalConv utilizes a convolutional neural network (CNN) architecture that
processes the raw bytes of a PE file as a one-dimensional sequence. This end-to-end
design enables the model to automatically learn the special hidden patterns to discern
between benign programs and malware.

MalConv begins with a byte embedding layer where each byte is mapped to an
8-dimensional learnable vector. The embedded sequence is then passed to two parallel
convolutional layers for feature extraction, whose inputs are activated through ReLU and
Sigmoid in the original paper. The outputs are combined via element-wise multiplication.
Temporal max-pooling is then conducted so that model can recognize malicious patterns
with location invariance. Finally, the resulting vector is passed through two dense layers
with ReLU and Sigmoid activation consecutively to output a confidence score ranging
between 0 and 1. As such, in the case of the MalConv model, the ReLU activation
can be replaced with smoother and more expressive functions for robustness, and the
Sigmoid activation can also be mapped to a function that has output interpretable as
probabilities, such as the Tanh activation function. The model architecture of MalConv
that was utilized is implemented in [21], and is detailed in Figure 1.

3.2. EMBER features-based model

EMBER is originally a malware dataset consisting of static features from millions
of PE files [22], which are extracted by utilizing the LIEF project [23], a library
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designed to parse and manipulate Executable and Linkable Format, PE, Mach-O
formats. The EMBER features are designed with eight groups of raw features
consisting of general file information, header information, imported functions,
exported functions, section information, byte histogram, byte-entropy histogram, string
information, and one additional group of data directories. The final feature vector
consists of 2381 raw features.

Fig. 1. Model architecture of MalConv.

While the EMBER features set have been used extensively as benchmark, a Deep
Neural Network for this approach, called SorelNet, was implemented in the
secml-malware framework [21]. This is a smaller model based on the auxiliary loss
approach proposed by Sophos in [24]. SorelNet is designed to be a multi-head model
with capability for both malware detection and behavior tag labeling. However, the
research specifically utilized the malware detection head for binary classification only.
As a result, the model functions as a simple feed-forward Deep Neural Network with
layers transforming the original EMBER vector of 2381 dimensions to 512, 512, 128
with layernorm, ELU activation, and dropout. The final output layer for malware
classification is done with a Sigmoid activation function. In this case, similar to the
MalConv model, the hidden layers activations and the output activation can be
replaced with different functions. The architecture of the SorelNet with only malware
detection head is shown in Figure 2.

Fig. 2. Model architecture of SorelNet with malware detection head.

3.3. Black-box adversarial attack

A novel functionality-preserving black-box adversarial attack framework was
introduced by Demetrio et al. in [25]. The framework is able to attack on ML malware
detection models by only observing outputs from queries to create adversarial malware
without accessing internal weights or structures. This effectively simulates a realistic
attack in a black-box setting where only the query of the target model is accessible.
The attacks utilize a genetic algorithm to iteratively search for specific modifications
that cause misclassifications while maintaining functionality of the original malware.
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Two specific attacks were implemented, which are the padding attack and section
injection attack. For each attack, contents are extracted from normal programs to act
as mutation payloads to simulate benign features optimally. In the padding attack, the
additional contents are injected at the end of the file, effectively modifying the overall
binary without hindering execution flow. The section injection attack is a more intrusive
technique where entirely new sections are injected into the PE file with additional entries
being created inside the section table and file contents being shifted to accommodate
the change. However, the file functionality is also preserved by keeping alignment with
the PE file specifications. The attack flow is visualized in Figure 3.

Fig. 3. Black-box adversarial attack framework flow.

3.4. Activation functions

Activation functions introduce non-linearity into neural networks, enabling ML
models to learn complex relationships from input data. The choice of activation
function can have a profound effect on the learning process as well as expressiveness
in neural networks [26]. Therefore, this transformation of input data through each
layer of a ML model is one of the main factors for driving the model’s final decision.
ReLU is a commonly used activation function, denoted by the following equation:

ReLU(x) = max(0, x) (1)

For ReLU, with input x, all negative values are mapped to zero while positive
values remain unchanged, helping to introduce non-linearity while being
computationally efficient. Sigmoid Linear Unit (SiLU) function is another alternative,
providing smoother transformations and improving certain models, detailed by the
following equation:

SiLU(x) = x ∗ σ(x) (2)

where, σ(x) is the logistic sigmoid. Mish is a self regularized, non-monotonic, and
smooth activation function introduced in [27], which has shown to improve upon other
standard activation functions even in challenging datasets. The function is as follows:

Mish(x) = x ∗ Tanh(Softplus(x)) (3)
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where, Softplus(x) = log(1+ ex), which is another activation function that is a smooth
approximation of ReLU and can be used as a replacement. Tanh, or Hyperbolic Tangent,
is an activation function that maps the input to a value in the range of -1 and 1. This
can be defined as:

Tanh(x) =
ex − e−x

ex + e−x
(4)

While Tanh is not a probability function, its range mapping characteristic can be used
for binary classification interpretation by applying a threshold at 0. Sigmoid, or logistic
sigmoid is a widely used for binary probability output, which is as follows:

Sigmoid(x) =
1

1 + e−x
(5)

Sigmoid transform input x into the range between 0 and 1, effectively mapping the
model’s output into a probability estimate, useful for binary predictions. For this
research, all activation functions were implemented using the PyTorch library. A
visualized comparison of activation functions are displayed in Figure 4.

Fig. 4. Comparisons of activation functions.

4. Methodology

For the research, the aim is to enhance the inherent robustness of ML-based
malware detection models through designing different activation function
combinations and evaluate them in adversarial condition. The paper investigates
alternative configurations for both the hidden transformation layers and the output
prediction probability layer. Of the different factors that account for a neural network’s
decision boundary, activation function is one of the key elements influencing the
decision boundaries of models through introducing non-linearity. Adversarial attacks
work by exploiting the boundaries in these trained models. By introducing
perturbations, the samples can be shifted in decision space, causing misclassifications
if they are moved in the attacker’s intended direction [28]. Many black-box adversarial
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malware functions by conducting modifications that emulates features resembling
benign programs. As a result, the modified malware moves closer in decision space to
fool the ML model [29].

Based on that notion, the paper hypothesizes that activation functions can create
varying degrees of robustness due to distinct decision boundaries resulting from the
different transformation of data. From a theoretical standpoint, the vulnerability of a
malware detection model towards adversarial attacks has strong relations with the
curvature and margin of its decision boundaries. By altering the non-linear mappings
of the hidden layers and the final prediction layer, the decision regions can be made to
be different shapes, which in turn can influence how easily a modified sample can
cross from one decision to another.

Activation functions then can be seen as one crucial element in building a inherently
robust model. Even small perturbations can transform and accumulate through the model
layers, potentially propagating into significant shift in the final probability output [30].
Smoother activation functions for neural network layers, such as Mish or SiLU, can
potentially alleviate this by producing more gradual transitions between layers. On the
other hand, smoother output functions, such as Tanh, can create a wider probability
mapping range which lessen the effect that perturbations have on the final confidence
score. As a result, perturbations have less of an effect on the transformed output values
and the decisions at the extreme margins can be smoother, increasing robustness.

Therefore, designing the appropriate activation functions can enhance the inherent
capability of the detection model even under adversarial conditions. This is ideal for real-
world scenarios as modified malware are often rare and not easily provided. The inherent
robustness promoted by careful activation function selection may reduce the need for
extensive adversarial training or costly data augmentation, both of which often require
large collections of crafted adversarial samples that may not exist in practice. Moreover,
methods such as ensemble models or distillation also introduce large consumption of
resources. Instead, by leveraging activation function choices that naturally improve a
model’s resistance to adversarial perturbations, the aim is to achieve improved security
and generalization with minimal overhead.

5. Experiments

To fully evaluate the effectiveness of this approach, the research conducted
comparison experiments on the MalConv model and the SorelNet model described in
Section 3. The models comprehensively covers two different approaches of byte-based
detection and EMBER features-based detection. For each model, variants were
created, with different combinations of activation functions for the hidden layers and
the final output layer. For nonlinear mappings of the hidden layers, ReLU, SiLU,
Mish, and Softplus are selected as activation functions. For the final confidence
output layer, Sigmoid and Tanh was chosen. The range for these layers are also
adjusted to [0, 1] and [-1, 1] accordingly, with corresponding threshold of 0.5 and 0.
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For the research, the DikeDataset was utilized, which consists of labeled benign and
malicious PE files [31]. The dataset contains readily accessible raw binaries which allow
for different feature extraction methods, enabling more comprehensive evaluation across
the chosen state-of-the-art models. Each model variant was trained on a training dataset
of binaries which consists of 1586 samples, with 803 unmodified malicious samples
and 783 benign samples. The same settings and training data were used for each model.
The training for MalConv was done with learning rate set to 0.0001, batch size set to
64, and 20 epochs. A mean squared error loss and Adam optimizer was used. For the
SorelNet, training was done with the learning rate of 0.001, the batch size of 128, and
20 epochs. With the trained model, evaluation is then conducted on an unperturbed test
set, which has 396 samples, with 197 malicious samples and 199 benign samples. The
paper will refer to this scenario as the original scenario.

In order to generate adversarial samples, the paper utilized the secml-malware
framework which includes many implementations of adversarial malware attacks [21].
For the MalConv model, padding and section injection attacks were conducted. For the
SorelNet model, due to the EMBER features’ natural resilience to padding attack, only
section injection attack was conducted. The trained models on unmodified malware
and benign programs are then used as targets for the attack model. The attacks are
performed with a set limit of 200 queries to the targeted model. Using the same test
set as the original scenario, the attacks extract sections from the benign binaries and
create payloads to modify every malware programs into adversarial malware. As a
result, a set of adversarial malware binaries are generated specifically for each ML
model. The final test set for the adversarial scenario consists of 396 samples, with 197
adversarial samples and the same 197 benign samples as the original scenario.

For each test scenario, the standard metrics of Accuracy, Precision, Recall, and F1
score are all calculated for a comprehensive view at performance. The evaluation flow
for each model variant is detailed in Figure 5.

6. Results and discussion

6.1. Experimental results

Table 1 shows the impact of different activation function designs on robustness of
the MalConv model when under padding attack. While all variants suffer performance
degradation when testing with the adversarial test set, there are definite differences
in inherent performance and robustness. Comparing the drop in metrics, Mish with
Sigmoid and ReLU with Tanh are the combinations with more resilience. Given the
attack settings, Mish and Sigmoid is the best and only suffers a 0.159 drop in Accuracy,
0.315 drop in Recall. On the other hand, the combinations of ReLU and Sigmoid,
Softplus and Tanh are very vulnerable to attacks as they perform noticeably worse with
most adversarial malware bypassing the models, resulting in high false negatives.

For section injection attack on the MalConv model, a similar pattern can be seen
in Table 2. Overall, section injection is a stronger attack due to a higher degree of
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modification to the PE file. Mish and Sigmoid along with ReLU and Tanh are still the
best performing combinations. The worst performance is shown in same model variant
as before. Most adversarial malware samples successfully bypass the trained model with
ReLU and Sigmoid or with Softplus and Tanh activation functions, resulting in less than
10% for recall values.

Fig. 5. Experimental evaluation flow.

Table 1. Performance of MalConv with padding attack

Activation functions Accuracy Precision Recall F1
Orig. Adv. Drop Orig. Adv. Drop Orig. Adv. Drop Orig. Adv. Drop

ReLU and Sigmoid 0.982 0.599 0.383 0.980 0.918 0.061 0.985 0.228 0.756 0.982 0.366 0.616
SiLU and Sigmoid 0.977 0.676 0.301 0.990 0.973 0.016 0.964 0.371 0.594 0.977 0.537 0.440
Mish and Sigmoid 0.969 0.81 0.159 0.984 0.977 0.008 0.954 0.64 0.315 0.969 0.773 0.196
Softplus and Sigmoid 0.982 0.635 0.347 0.995 0.982 0.012 0.970 0.284 0.685 0.982 0.441 0.541
ReLU and Tanh 0.974 0.766 0.208 0.984 0.973 0.011 0.964 0.553 0.411 0.974 0.706 0.269
SiLU and Tanh 0.969 0.722 0.247 0.984 0.968 0.016 0.954 0.467 0.487 0.969 0.630 0.339
Mish and Tanh 0.949 0.604 0.344 0.984 0.939 0.045 0.914 0.234 0.680 0.947 0.374 0.573
Softplus and Tanh 0.972 0.584 0.388 0.979 0.907 0.072 0.964 0.198 0.766 0.972 0.325 0.647

Scenarios with SorelNet shows an inherent robustness of the EMBER-based
features approach as overall performance drops are less extreme in Table 3. In this
case, it is evident that Softplus and Tanh is a common vulnerable combination as
confidence suffer a biggeer drop under adversarial attack, with recall being only 0.65.
For this approach, ReLU and Tanh demonstrates the best performance, with only
minimal metrics degradation, showing only a drop of 0.031 in Accuracy and a drop of
0.061 in Recall. However, unlike MalConv, rather than Mish and Sigmoid, SiLU and
Tanh is the combination that has the second best resilience, with competitive values
compared to ReLU and Tanh.
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Table 2. Performance of MalConv with section injection attack

Activation functions Accuracy Precision Recall F1
Orig. Adv. Drop Orig. Adv. Drop Orig. Adv. Drop Orig. Adv. Drop

ReLU and Sigmoid 0.982 0.530 0.452 0.980 0.818 0.162 0.985 0.091 0.893 0.982 0.164 0.818
SiLU and Sigmoid 0.977 0.584 0.393 0.990 0.949 0.041 0.964 0.188 0.777 0.977 0.314 0.663
Mish and Sigmoid 0.969 0.684 0.285 0.984 0.963 0.022 0.954 0.391 0.563 0.969 0.556 0.413
Softplus and Sigmoid 0.982 0.548 0.434 0.995 0.957 0.038 0.970 0.112 0.858 0.982 0.200 0.782
ReLU and Tanh 0.974 0.640 0.334 0.984 0.952 0.032 0.964 0.305 0.660 0.974 0.462 0.513
SiLU and Tanh 0.969 0.602 0.368 0.984 0.938 0.047 0.954 0.228 0.726 0.969 0.367 0.602
Mish and Tanh 0.949 0.535 0.414 0.984 0.864 0.120 0.914 0.096 0.817 0.947 0.174 0.774
Softplus and Tanh 0.972 0.519 0.452 0.979 0.778 0.202 0.964 0.071 0.893 0.972 0.130 0.842

Table 3. Performance of SorelNet with section injection attack

Activation functions Accuracy Precision Recall F1
Orig. Adv. Drop Orig. Adv. Drop Orig. Adv. Drop Orig. Adv. Drop

ReLU and Sigmoid 0.987 0.915 0.072 0.980 0.977 0.003 0.995 0.853 0.142 0.987 0.911 0.077
SiLU and Sigmoid 0.990 0.848 0.141 0.990 0.986 0.004 0.990 0.711 0.279 0.990 0.826 0.164
Mish and Sigmoid 0.985 0.902 0.082 0.975 0.970 0.005 0.995 0.832 0.162 0.985 0.896 0.089
Softplus and Sigmoid 0.987 0.833 0.154 0.990 0.985 0.005 0.985 0.680 0.305 0.987 0.805 0.182
ReLU and Tanh 0.987 0.956 0.031 0.990 0.989 0.001 0.985 0.924 0.061 0.987 0.955 0.032
SiLU and Tanh 0.987 0.933 0.054 0.990 0.989 0.001 0.985 0.878 0.107 0.987 0.930 0.057
Mish and Tanh 0.987 0.920 0.067 0.990 0.988 0.002 0.985 0.853 0.132 0.987 0.916 0.072
Softplus and Tanh 0.990 0.817 0.172 0.990 0.985 0.005 0.990 0.650 0.340 0.990 0.783 0.207

Generally, it can be seen that while adversarial attacks degrade all performances,
varying degrees of robustness are shown throughout different scenarios. For all models
and all attacks, it is evident that Softplus as hidden layers activation has the worst
resilience and degrades even further when combined with Tanh as confidence output
activation. Contrasty, even though ReLU has been evaluated as a vulnerable function,
when used in conjunction with Tanh as output activation, displays considerable
robustness, achieving highest or second highest in all adversarial scenarios, while
sacrificing little original performance. This can be perhaps attributed to the
harmonious combination of the two functions to create an effective decision boundary
that can withstand perturbed samples without amplifying in the wrong class direction.
A balance is created where the sharp distinctive nature of internal representations
from ReLU is kept, ensuring discriminative ability, while the larger range of Tanh
function helps soften the shifts in output caused by adversarial perturbations.

For the MalConv model, the smoother function of Mish increased the robustness of
model the most when used with Sigmoid. However, it is worth noting that the
performance on the original unmodified set is also lower compared to other variants.
This suggests that smoother function can produce a higher generalization capability
but sacrifices sensitivity for discrimination.

6.2. Visualization and interpretability

To better understand how samples are transformed through activations inside each
model, the latent representations with PCA across layers in four scenarios were
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visualized. For both the MalConv model and SorelNet model, the two combinations of
ReLU and Tanh, Softplus and Tanh were chosen as representative of the resilient and
vulnerable variants. Figure 6 and Figure 7 display the transformations of the fused
convolutional output, the global-pooled output, and the dense hidden encoding of the
MalConv model. Through each subsequent transformation, the samples are grouped
more distinctly into tight clusters, separating benign and original malware programs.
However, it can be seen that, in the weaker variant of Softplus and Tanh, adversarial
samples are more prominently pushed to the benign cluster, with low confidence. A
more gradual shift is shown with ReLU and Tanh, having adversarial malware
samples situated towards the middle of the two distinct class clusters. The confidence
scores also have a smoother transition between samples, demonstrating a more robust
decision boundary.

Fig. 6. Latent representation across activation layers in MalConv - ReLU and Tanh.

Fig. 7. Latent representation across activation layers in MalConv - Softplus and Tanh.

For the SorelNet model, Figure 8 and Figure 9 visualize the representations of
model’s output at each layer after activation. As the EMBER features-based approach
has a higher resilience as shown through lower performance drops, the clusters are
also more discerning in both variants, showing high separation between the two
classes. Unlike the MalConv model, the robust ReLU and Tanh variant displays a
strong ability to discriminate adversarial malware. Even though the adversarial
samples still have a tendency to move towards the middle of the decision space, they
are distributed closer towards the malicious cluster, with a distinct classes gap. The
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Softplus and Tanh variant has a smoother transition in distribution supported by the
bigger drops in metrics value as adversarial samples lie more uncertain at the
intersection of the two main clusters.

Fig. 8. Latent representation across activation layers in SorelNet - ReLU and Tanh.

Fig. 9. Latent representation across activation layers in SorelNet - Softplus and Tanh.

7. Conclusion and future work

While alternative approaches for adversarial defense in ML-based malware detection
has been explored in various works, the design of activation function is relatively scarce
in this domain. Empirical results demonstrate that different activation functions can
improve the inherent robustness of malware detection models without the need for
adversarial samples or retraining. In particular, ReLU and Tanh, while not achieving the
best performance in every cases, showed consistent robustness despite different models
and attack scenarios. This finding can serve as a good strategy for designing a resilient
ML-based malware detection model. Moreover, EMBER features-based approach was
also proven to be more robust under adversarial attacks compared to the CNN byte-based
MalConv model.

However, it is important to recognize that even though ReLU and Tanh or Mish and
Sigmoid demonstrated better robustness, their original performance is slightly lower
compared to some of other vulnerable variants. Despite that, it is believed that with
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proper hyperparameters tuning, the performance of these variants can be increased while
keeping robustness. There are also some other limitations to consider. First, there are
differences for the most robust combination of activation functions between models.
In particular, supposedly smoother or more generalizable activation functions did not
perform the best when combined together but only increased model’s inherent robustness
slightly, such as in the case of Mish and Tanh. Deeper investigation into how each
activation function interact with each other is needed. Second, the sample pool for the
research was limited, facilitating the need for a more comprehensive dataset. Different
types of malware and how they are modified for evasion should be examined for a
deeper understanding based on domain knowledge. Third, there are other models and
adversarial attack types that should be considered.

Therefore, the paper proposes the following future directions. First, further
exploration into how samples are transformed at a theoretical level should be
considered through more comprehensive experimentation with more models and
adversarial attacks. Implementation with explainable ML could also potentially
provide deeper insights into the model’s decision-making process and improve the
understanding of the mechanisms driving robustness. Second, to effectively capitalize
on this approach, future research will develop adaptive strategies for selecting the best
possible activation functions for both normal and adversarial conditions. Third,
extensive experiments with larger and different datasets of modern malware containing
diverse categories will be conducted, along with more model types, such as
Transformer-based architectures. Moreover, training and inference cost assessment will
also allow for a more comprehensive evaluation of the capabilities of different
activation functions, which will enhance the understanding about the inherent ability
of malware detection models. Additionally, there will be investigation on how different
malware structural patterns relate to their evasion rates, which can provide a more
comprehensive view at how models process specific malware. Finally, future research
will incorporate activation function design with other adversarial defenses to further
improve model’s robustness. With these future directions, the aim is to advance the
practical deployment of resilient, ML-based malware detection systems capable of
withstanding evolving adversarial threats.
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TĂNG CƯỜNG KHẢ NĂNG CHỐNG CHỊU
CỦA MÔ HÌNH HỌC MÁY CHO PHÁT HIỆN MÃ ĐỘC

THÔNG QUA THIẾT KẾ HÀM KÍCH HOẠT
Lưu Chí Đức, Phạm Trường Sơn

Tóm tắt

Trong những năm gần đây, học máy đã nâng cao đáng kể hiệu năng của các hệ thống
phát hiện mã độc. Tuy đã đạt được hiệu suất cao, các mô hình này hiện đang đối mặt với
mối đe dọa ngày càng tăng từ các cuộc tấn công đối kháng. Các mẫu mã độc đối kháng có
thể được tạo ra một cách tinh vi nhằm đánh lừa các mô hình phát hiện, dẫn đến việc phân
loại sai các chương trình độc hại, cho phép chúng vượt qua các hệ thống bảo mật. Nhiều kỹ
thuật khác nhau đã được phát triển để tạo ra mã độc đối kháng, nhằm né tránh các loại hệ
thống phát hiện dựa trên học máy khác nhau. Mối đe dọa này nhấn mạnh nhu cầu cấp thiết
về các giải pháp giúp tăng cường khả năng chống chịu của các mô hình phát hiện mã độc
trước các cuộc tấn công đối kháng. Bài báo đánh giá và đề xuất một chiến lược phòng thủ
chống tấn công đối kháng dựa trên thiết kế hàm kích hoạt, không yêu cầu các phương pháp
tính toán chuyên sâu như huấn luyện đối kháng, đồng thời tăng cường khả năng chống chịu
tự nhiên của các mô hình học máy cho phát hiện mã độc trước các cuộc tấn công hộp đen.
Kết quả cho thấy rằng các tổ hợp hàm kích hoạt cụ thể, đặc biệt là ReLU và Tanh, có thể cải
thiện đáng kể khả năng chống chịu của mô hình mà không cần bổ sung thêm tác vụ huấn
luyện hoặc cấu hình suy luận. Nghiên cứu này cung cấp một góc nhìn thiết kế thực nghiệm
để xây dựng các hệ thống phát hiện mã độc sử dụng học máy với khả năng chống chịu nội
tại cao.

Từ khóa

Tấn công đối kháng; phòng thủ đối kháng; phát hiện mã độc; thiết kế hàm kích hoạt;
học máy.
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