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DEVELOPING OBJECT DETECTION
ALGORITHM FOR OPTOELECTRONIC
SYSTEMS ON SURFACE VESSELS
USING DEEP LEARNING MODELS
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Abstract

Automatic detection of surface vessels is an important task in maritime surveillance
and security. This paper proposes an improvement to the Ultralytics YOLOv8 model to
achieve higher accuracy and faster processing speed when recognizing surface vessels under
harsh lighting and weather conditions. The paper intergrates three main techniques: a new
C3Plus block, a Position-wise Spatial Attention (PSA) mechanism, and a Convolutional
Block Attention Module (CBAM) module to enhance the network’s feature learning ability.
Experiments on a diverse ship image dataset show that the improved model provides an
increase in mAP of about 3-6% compared to the original YOLOvS while maintaining a
similar processing speed. In particular, in dark or noisy conditions, the CBAM and PSA
improvements help reduce missing objects and improve the model’s robustness.
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1. Introduction

Maritime surveillance plays a vital role in ensuring the safety, security, and
operational effectiveness of modern naval forces. As surface vessels increasingly
incorporate advanced sensors, high-precision weapon systems, and complex electronic
countermeasures, the demands on optoelectronic tracking and recognition systems
have grown substantially. Accurate and real-time vessel detection is essential not only
for situational awareness but also for supporting autonomous navigation, early-warning
systems, target tracking, and threat identification in both military and civilian
maritime domains. However, the marine environment presents numerous challenges
such as specular reflections on waves, rapidly changing illumination, atmospheric
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disturbances, and cluttered backgrounds. These factors significantly degrade the
performance of classical computer-vision algorithms. Recent advances in deep
learning, especially convolutional neural networks, have dramatically improved
real-time object detection performance. Among them, the YOLO (You Only Look
Once) family of models has demonstrated outstanding speed—accuracy trade-offs in
many practical applications. YOLOVS, the latest redesign by Ultralytics, provides a
lightweight yet high-performing architecture with strong generalization capabilities.
Nevertheless, its performance remains limited in harsh maritime conditions, especially
when detecting small, distant, or partially occluded vessels. Complex sea backgrounds
can confuse feature extractors, while irregular vessel silhouettes and low-light
scenarios often lead to missed or unstable detections. To address these challenges,
recent research has focused on enhancing backbone structures, attention modules, and
multi-scale feature fusion mechanisms. Works such as MobileViT-YOLO,
YOLO-LPSS, and deformable-convolution-based YOLO variants have shown that
improvements in contextual modeling and attention can significantly boost recognition
capability in complex environments. Building upon these insights, the paper proposes
an optimized variant of YOLOVS tailored specifically for maritime applications. This
paper introduces YOLOV8Plus, an improved architecture designed to enhance
robustness and detection accuracy for surface vessels under diverse lighting and
weather conditions. Three key innovations are integrated into the design:

o C3Plus, a refined multi-layer convolutional block for richer feature extraction;

o PSA, which selectively captures long-range dependencies without excessive
computational cost; and

« CBAM Module, which strengthens both channel-wise and spatial attention to
suppress background noise and highlight vessel-specific features.

These improvements aim to enhance discriminative capability while maintaining
real-time inference speed, enabling deployment on embedded optoelectronic systems
such as the NVIDIA Jetson AGX Orin. Extensive experiments conducted on both
standard Visual Object Classes (VOC) and custom maritime datasets demonstrate that
YOLOV8Plus achieves a 3-6% improvement in mean Average Precision (mAP) over
the baseline YOLOV8 while keeping model size and inference time nearly unchanged.
The results verify that incorporating advanced attention mechanisms and enhanced
feature blocks substantially improves robustness in challenging maritime imaging
scenarios. The remainder of this paper is organized as follows. Section 2 reviews
recent studies on maritime object detection and improved YOLO architectures. Section
3 describes the fundamental components of YOLOv8 and the proposed enhancements.
Section 4 details the methodology and model construction. Section 5 presents the
experimental setup and evaluation metrics. Section 6 discusses performance results
and comparisons. Finally, Section 7 concludes the paper and outlines future research
directions. Overall, the proposed approach provides a balanced trade-off between
detection accuracy and computational efficiency for maritime applications. The
experimental analysis confirms the suitability of the improved architecture for
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real-time deployment in resource-constrained environments. These findings highlight
the practical relevance of the proposed YOLOv8Plus model for robust ship detection
under complex operating conditions.

2. Related work

Currently, modern surface vessels are equipped with high-technology weapon systems
and advanced radar that enhance defensive capability and enable precise long-range
strikes, posing major security challenges. Real-world conditions such as light reflections
on water and complex backgrounds make ship detection difficult. In automatic maritime
surveillance systems, accuracy and detection speed are especially important to ensure
safety and operational effectiveness. The YOLOvVS8 convolutional neural network was
introduced as a powerful architecture for real-time object detection, but in a highly
dynamic marine environment (bright light, fog, waves), it still struggles in many different
situations and has difficulty distinguishing between ships.

For example, Zhao et al. integrated MobileViT into YOLOVS to increase contextual
learning capability, achieving a 12.5% improvement in mAP50-95 compared with
YOLOV7-tiny [1]. Shen et al. also proposed the YOLO-LPSS model for small vessels,
achieving mAP 3-5% higher than YOLOv8n with only an additional 0.33 million
parameters [2]. Meanwhile, Zhou et al. improved YOLOvV8 using deformable
convolution and the BiFormer block, increasing mAPS50 by 3.7% and mAP50-95 by
6.7% under low-light conditions [3].

YOLOVS8-Plus by Li et al. [4] introduced an additional output layer (TDLayer) and
enhanced attention modules to detect small objects. In contrast, the YOLOvS8Plus
model in the paper particularly focuses on maritime applications, optimizing the
C3Plus architecture and attention modules to improve recognition capabilities in sea
environments. Other recent works also integrate attention mechanisms:
YOLOvV8-CBAM [3] integrates CBAM into YOLOV8 to improve accuracy for sheep
detection; YOLOVS-LCNET [6] applies the PSA mechanism at the end of the
Backbone to enhance global information; Zhang used SD-YOLO [7] in ship detection,
improving the C3 block by combining coordinate attention and bottleneck (CB-C3).
The YOLOv8Plus model proposed by the authors is designed to combine these
advantages while adding specific improvements: for example, the C3Plus variant is an
improved C3 block with a multi-layer convolution structure and two internal
bottleneck plus blocks that allow deeper feature extraction in complex environments.
Moreover, YOLOv8Plus also uses PSA to capture global information similar to
proposals in YOLOv10, and uses CBAM to increase channel-wise and spatial
attention weighting as in Woo [8].

Inspired by these achievements, the paper proposes an improved YOLOVS architecture
that leverages modern attention modules and expanded convolutional blocks to enhance
ship recognition capability under diverse lighting and weather conditions in practical
maritime environments.
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3. Background
3.1. YOLOv8

Ultralytics’ YOLOVS is a state-of-the-art model in computer vision, released on
January 10, 2023, designed to simultaneously optimize accuracy and speed for object
detection and image analysis tasks. YOLOV8 inherits and advances the design
principles of earlier YOLO versions, featuring a backbone, a neck, and an anchor-free
split Ultralytics head. By removing the traditional anchor-based mechanism, the model
improves generalization capability and simplifies the detection pipeline.

A key highlight of YOLOVS is its ability to balance accuracy and computational
efficiency, making it highly suitable for real-time applications. Beyond conventional
object detection, YOLOVS8 extends its functionality to a wide range of computer vision
tasks, including instance segmentation, pose/keypoint estimation, oriented object
detection, and image classification. Ultralytics provides multiple model variants from
lightweight “n” and “s” versions optimized for resource constrained environments to
more powerful “m,” “1,” and “x” versions that deliver higher performance allowing
users to select configurations appropriate for their accuracy speed requirements.

Thanks to its architectural improvements and flexible design, YOLOVS is
considered one of the most robust and widely adopted models for practical computer
vision applications, spanning object detection, segmentation, classification, and pose
estimation. Thus, YOLOVS is not merely a successor to previous YOLO releases but a
unified, versatile, and efficient standard model suitable for both academic research and
real-world deployment across diverse computer vision tasks.

3.2. C3Plus

The improved C3Plus module is based on the strengths of the C2f and C3 blocks.
With flexible architecture, in shallow layers it requires only one BottleneckPlus with
two consecutive convolutions, after which features are further enhanced, enriched, and
refined through three convolution layers inside a CSP bottleneck of C3. This design
helps the model better distinguish vessels from background noise (waves, sky clouds)
without significantly increasing parameters due to maintaining the CSP structure. As a
result, C3Plus not only enhances feature representation in the backbone but also refines
features in the neck, especially for small or blurred objects. Figure 1 illustrates a C3Plus
layer architecture.

Fig. 1. C3Plus layer architecture.
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3.3. Position-wise Spatial Attention

The PSA module is inserted at the output of the backbone after the C3Plus blocks.
Its operation is as follows: after a 1 x 1 convolution, the output tensor is channel-wise
split into two halves. The first half is passed through a Multi-Head Self-Attention block
to acquire global relationships in this portion of features; the second half is forwarded
through a standard branch. Afterwards, the results from the attention branch and the
standard branch are concatenated and then forwarded to the subsequent FFN feature-
enhancement layers. Thanks to PSA, the network can capture broad context and long-
range dependencies in the image, which is very useful when vessels appear in complex
noisy backgrounds. At the same time, PSA keeps computational cost acceptable by
applying attention only to part of the features [9]. Assuming the input X € RB*CeHzW
and the number of spatial elements passing through the layer N = H x W are given,
model parameters can be defined as follows:

Q, K, V= Splzt(qk:v(X, Vvqu)7 dim = 2)’ Q, K, V c RBXnum_headstXhead_dim (1)

where, query (()) represents important query information; key (K) evaluates similarity
among features; value (V') carries the weighted transmitted values; W, denotes
convolutional weights; num_heads is the number of attention heads; head_dim is the
dimension of each head; and ¢kv is the convolution layer computing the @, K,V
parameters. Through () and K, the model determines the relevance between elements
in the feature map. Figure 2 describes information flow through the PSA layer.
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3.4. Convolutional Block Attention Module

The general functional block diagram of [8] is shown in Figure 3. After the backbone
and neck extract multi-level features, the paper applies the CBAM before feeding them
into the YOLOv8 Head. CBAM first computes a channel attention map using avg-
pooling and max-pooling of the channels, adjusting the importance of each feature
channel. The channel attention map is computed as follows:

M.(F) =0 (MLP(AvgPool(F)) + MLP(MaxPool(F))) 2
=0 (Wl(ReLU(W()(FC ))) + Wl(ReLU(WO(FC ))))

avg max

where, o is the sigmoid activation that normalizes output to [0, 1]; MLP is a multilayer
perceptron with two fully connected layers, performs average pooling over the spatial
dimension to produce a channel descriptor, performs max pooling [9] to produce another
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channel descriptor and the weights of the MLP. Next, CBAM creates a spatial attention
map to weight spatial positions (indicating image regions likely containing vessels).
This process helps the model highlight object-containing regions (e.g., bow, cabin) and
reduce noise from the background (waves, cloud shadows). CBAM has been shown to
improve performance in many detection and classification tasks, and in the authors’
method it helps filter unnecessary information before predicting bounding boxes and
labels. The spatial attention map output is computed as follows:

M.(F) = o(f™"([AvgPool(F'); MazPool(F"))))
:U(f7><7([FS .FS ]))

avg’ - max

3)

where, f7™*7 is a convolution with a 7 x 7 filter that enables the module to collect
information from a wider spatial region, thereby improving the capacity to attend to
important spatial features.
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Fig. 3. Block function diagram of CBAM.

4. Methodology

The YOLOv8Plus model is developed with the objective of improving the accuracy,
robustness, and real-time performance of surface-vessel detection in optoelectronic
systems deployed at sea as shown in Figure 4.

Its design maintains the three-stage structure of modern YOLO architectures
Backbone, Neck and Head, but integrates a series of enhanced feature extraction and
attention mechanisms tailored to the characteristics of maritime imagery. The overall
detection flow begins with input preprocessing, followed by hierarchical feature
extraction using the C3Plus-enhanced Backbone, global context encoding via the PSA
module, multi-scale feature aggregation in the Neck, and attention-refined prediction
of bounding boxes and class labels in the detection Head. The architecture is designed
to operate efficiently on embedded platforms such as the NVIDIA Jetson AGX Orin
64 GB, ensuring that accuracy improvements do not come at the expense of
computational cost. At the core of the proposed model lies the C3Plus block, an
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improved feature-extraction module that enhances both the depth and expressiveness of
representations learned from raw input images. Unlike the standard C2f/C3 modules in
YOLOVS, C3Plus incorporates a BottleneckPlus structure that applies two sequential

3 x 3 convolutions inside each bottleneck. This deeper transformation path enables the
network to capture complex maritime patterns such as ship hull curvature, overlapping
vessel silhouettes, and reflections on water. The block preserves the Cross Stage
Partial (CSP) architecture of YOLOvV8 by splitting feature maps into two paths: a
transformed path enriched with BottleneckPlus layers and a shortcut path that retains
the original spatial information. This combination allows C3Plus to learn richer
features while avoiding gradient degradation and excessive parameter growth. As a
result, C3Plus significantly strengthens both low-level and mid-level feature extraction,
benefiting detection across a wide range of vessel sizes and environmental conditions.
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Fig. 4. YOLOvS8Plus architecture.

To complement the improved convolutional blocks, the model incorporates the PSA
module at the output of the Backbone. PSA introduces a mechanism for capturing
long range spatial relationships a critical capability in maritime scenes where vessel
targets often appear small, distant, or partially occluded within a large field of view.
PSA partially applies multi-head self-attention by dividing the feature tensor into two
channel-wise segments. One segment is processed through a lightweight self-attention
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branch to learn global dependencies, while the remaining segment is forwarded through
a standard convolutional branch that preserves local details. The outputs of both branches
are then concatenated and refined using feed-forward layers. This design balances the
computational cost of attention with the need for enhanced contextual reasoning. In
practice, PSA helps the model differentiate vessels from complex background patterns
such as waves, sea—sky boundaries, and cloud shadows, especially in low-light or high-
glare scenarios.

After feature extraction and global context encoding, the Neck aggregates
multi-scale feature maps to strengthen the model’s ability to detect vessels of varying
sizes, including small or distant targets that often appear in maritime surveillance
footage. Prior to generating final predictions, the model applies the CBAM to
selectively enhance meaningful information and suppress irrelevant noise. CBAM
operates in two sequential stages: channel attention and spatial attention. Channel
attention adjusts the weighting of each feature channel based on global statistical
descriptors, enabling the model to emphasize channels associated with vessel-specific
characteristics while reducing interference from reflections and background textures.
Spatial attention then focuses on highlighting regions that are likely to contain vessel
structures by analyzing averaged and max-pooled spatial features. Incorporating
CBAM in the detection Head ensures that bounding-box regression and classification
are guided by the most informative spatial cues, leading to fewer missed detections
and improved confidence scores in challenging sea conditions.

Collectively, the integration of C3Plus, PSA, and CBAM forms an enhanced
YOLOVS8Plus architecture specifically optimized for surface-vessel detection. C3Plus
deepens the network’s representational power, PSA expands its contextual
understanding, and CBAM directs its attention toward the most relevant regions and
channels. The synergy of these components allows YOLOvV8Plus to achieve higher
accuracy and stronger robustness while maintaining real-time inference performance a
crucial requirement for deployment in maritime optoelectronic systems where rapid
response and reliability are essential.

5. Experiment setup

In the paper, two datasets are used to train and evaluate the model: the VOC
Dataset and the Ship Custom Dataset. The VOC dataset [10] is a standard benchmark
in computer vision, developed from 2005 - 2012 by a research group associated with
the PASCAL project of the European Union. With the goal of promoting progress in
tasks such as object recognition, object detection, and segmentation, VOC provides
approximately 21,503 object images, including 16,551 training/validation images and
4,952 test images, annotated with 20 common object classes such as humans, cars,
animals (cats, dogs, birds), and household objects (chair, table, TV). Each image
includes diverse annotation information such as bounding boxes, pixel-wise masks,
and class labels. This dataset has become an important benchmark for evaluating and
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comparing the performance of modern deep-learning models within real-world
research contexts.

The Ship Custom Dataset [11] is created by the authors with 10 typical
surface-vessel classes (fishing vessel, coast guard vessel, warship, cargo ship, tugboat,
passenger ship, fisheries surveillance vessel, submarine, sailboat, small boat). The
experimental dataset includes 22,813 images with bounding-box annotations for
various ship types, collected from online sources. The dataset is split into 20,004
training images, 1,965 validation images, and 844 test images. Images are
preprocessed to 640 x 640 resolution and augmented with horizontal flips, slight
rotations, brightness adjustments, and contrast changes to simulate diverse lighting
conditions. The model is implemented on an NVIDIA RTX 4060 8 GB GPU using
PyTorch. Each model (original and improved) is trained for 300 epochs using
Stochastic Gradient Descent (SGD) with an initial learning rate of 0.01. Early
stopping is applied if loss does not improve for eight epochs. Evaluation metrics
include mAP50, mAP50-95, Precision, Recall, and Fl-score on the validation set.
Additionally, the model is deployed on an embedded Jetson AGX Orin 64 GB
LPDDRS 256-bit device with up to 275 TOPS to ensure reliable benchmarking under
realistic embedded deployment conditions scenarios. The model is converted to
TensorRT, FP16, batch size = 1, to evaluate accuracy and FPS in real-time inference
on video tests.

6. Results and discussion

The paper conducted experiments on YOLOv8n, YOLO11n and YOLOvS8Plus using
the VOC dataset and the Ship Custom dataset. Table 1 presents a detailed quantitative
comparison of YOLOv8n, YOLOI11n, and the proposed YOLOv8Plus on two datasets
with distinct characteristics: the generic VOC dataset and the domain-specific Ship
Custom Dataset. The results are analyzed in terms of detection accuracy, computational
complexity, and inference efficiency in order to provide a comprehensive evaluation of
the models.

On the VOC dataset, YOLOvV8Plus consistently achieves the best detection accuracy
across all major evaluation metrics. It attains the highest Precision (0.804) and Recall
(0.737), indicating an improved balance between false positives and false negatives
compared with YOLOv8n and YOLOI11n. More importantly, YOLOvV8PIlus achieves
the highest mAP50 (0.816) and mAP50-95 (0.616). The improvement in mAP50-95 is
particularly significant, as this metric evaluates localization performance under stricter
IoU thresholds, suggesting that YOLOvV8Plus produces more accurate and tightly
aligned bounding boxes. These results demonstrate that the architectural enhancements
introduced in YOLOV8Plus effectively strengthen feature representation and
localization precision without relying on a larger network.

On the Ship Custom Dataset, which is more challenging due to complex
backgrounds, scale variations, and inter-class similarity among vessels, YOLOv8Plus
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again exhibits strong performance. It achieves the highest Precision (0.886), indicating
a lower false-positive rate when detecting ships. Although YOLOv8n attains the
highest Recall (0.804), YOLOv8Plus maintains competitive recall (0.786) while
providing a better balance between Precision and Recall. In terms of overall detection
accuracy, YOLOvVS8Plus delivers competitive mAP50 (0.859) and mAP50-95 (0.685),
remaining close to or outperforming the other models under stricter evaluation
criteria. These results suggest that YOLOvS8Plus generalizes well to domain-specific
maritime data and effectively captures discriminative features of surface vessels.

Beyond accuracy, Table 1 highlights that YOLOV8Plus achieves its performance gains
with lower or comparable computational cost. YOLOvV8Plus has the smallest number
of parameters (approximately 2.76 M) and the smallest model size (5.8 MB) among
the three models on both datasets. It also requires the lowest computational load, with
7.6 GFLOPs, indicating improved efficiency in feature extraction and inference. Despite
this compact design, YOLOv8Plus maintains inference times comparable to YOLOv8n
and YOLOI11n and achieves real-time processing speeds of approximately 35 FPS. This
demonstrates that the proposed modifications enhance accuracy without sacrificing real-
time applicability.

Overall, the results in Table 1 demonstrate that YOLOvV8Plus provides a favorable
trade-off between detection accuracy and computational efficiency. Compared with
YOLOv8n and YOLOI11n, YOLOV8PIlus delivers consistently higher or competitive
accuracy on both generic and domain-specific datasets while reducing model
complexity and maintaining real-time inference speed. These characteristics make
YOLOvVS8Plus particularly suitable for practical deployment in resource-constrained
environments and real-world applications, such as maritime surveillance and
embedded vision systems.

Table 1. Model evaluation results on VOC dataset, ship custom dataset

METRICS VOC DATASET SHIP CUSTOM DATASET
YOLOvV8n | YOLO11n | YOLOV8Plus | YOLOv8n | YOLO1l1ln | YOLOvVSPlus

Precision 0.801 0.803 0.804 0.860 0.882 0.886
Recall 0.720 0.734 0.737 0.804 0.800 0.786
mAP50 0.802 0.808 0.816 0.856 0.865 0.859
mAP50-95 0.597 0.610 0.616 0.689 0.708 0.685
Layers 255 328 321 225 295 321
Parameters 3,488,316 | 3,175,788 2,760,818 3,012,798 | 2,912,430 2,758,868
Model size (MB) 7.2 6.7 58 6.3 6.1 5.8
Gflops 8.2 7.7 7.6 8.2 7.7 7.6
Inference times (ms) 1.1 1.2 1.2 1.5 1.6 1.6
Frames per second 37 31 35 37 31 35
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The normalized confusion matrix in Figure 5 shows that the YOLOv8Plus model
achieves high classification performance for most ship classes, as indicated by the
large values along the main diagonal, which reflect strong predictive accuracy during
the training phase. Some classes exhibit confusion with the background or with other
classes that share similar morphological characteristics, highlighting the challenges of
distinguishing small targets and separating ship structural features under complex
background conditions. Nevertheless, the overall misclassification rate remains low,
demonstrating the effective feature extraction capability of the YOLOv8Plus model.
These results confirm the stability and reliability of YOLOv8Plus when applied to a
custom surface ship dataset.
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Fig. 5. Confusion matrix for training YOLOv8Plus on the ship custom dataset.

The Loss Function in Figure 6 shows a steady decreasing trend towards O over 300
epochs, indicating that the YOLOvV8Plus model is learning ship features more efficiently
from the Ship Custom Dataset. This steady decrease reflects the ongoing optimization
of the Loss function. mAP: with an upward trend (mAP50 increases by more than 0.85,
mAP50-95 increases by more than 0.69), the gradual increase in mAP over the epochs
is a positive sign, indicating that the model is becoming more accurate.
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The analysis results, based on the "FPS by Frame" graph and "Average Confidence
by Frame" in Figure 7, show the following differences between the three YOLO
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models: The YOLOv8Plus model has an average processing speed, ranging from
32-38 FPS. Although there is slight variation, the FPS of YOLOV8PIlus generally
remains high, closely matching YOLOv8n. The YOLOv8Plus model exhibits the
highest average reliability and stability, ranging from 0.8-0.85. This indicates that
YOLOV8Plus is the model capable of accurately and consistently identifying targets
across frames, demonstrating a good balance between speed and accuracy. The
YOLOvI11n model showed the lowest processing speed among the three models, with
FPS fluctuating mainly between 30.5-33.5 FPS. This implies that YOLOvI1n may
require more computational resources and have a more complex architecture, resulting
in slower processing speeds compared to the other two models. The YOLOvI1In
model initially achieved a relatively high reliability score of approximately 0.78, but
then showed a slight downward trend and stabilized at 0.74-0.83, indicating a fairly
high but lower accuracy compared to YOLOv8PIlus. The YOLOv8n model exhibited
the highest and most stable processing speed throughout the evaluation, maintaining
approximately 35.7-39.7 FPS. This suggests that YOLOv8n is the model with the
fewest layers and the least complex architecture, and therefore the fastest processing
capability. The YOLOv8n model recorded the lowest confidence level and showed a
decreasing trend, fluctuating only between from 0.73 to 0.84.

7. Conclusion and future work

This study presents YOLOv8Plus, an enhanced deep-learning architecture designed
to improve surface-vessel detection in complex maritime environments. By integrating
three key components C3Plus for deeper feature representation, PSA for global context
modeling, and CBAM for selective spatial channel attention the proposed model
significantly strengthens its ability to extract robust features from optoelectronic
imagery characterized by unstable illumination, wave-induced noise, and complex sea
backgrounds. Experimental results on both the VOC dataset and a large-scale custom
ship dataset demonstrate that YOLOvV8Plus consistently outperforms the standard
YOLOv8 and YOLOIlIn baselines, achieving a 3-6% increase in mAP while
maintaining comparable model size, computational cost, and real-time processing
speed. These improvements verify that the combination of enhanced convolutional
blocks and attention mechanisms is effective for maritime detection tasks, and that the
optimized model remains suitable for deployment on embedded systems such as the
Jetson AGX Orin. The results also confirm the model’s capability to detect vessels
across different weather conditions, speeds, and viewing angles, thereby effectively
supporting autonomous surveillance, threat monitoring, and situational awareness in
naval and maritime security applications.

Although YOLOvVS8Plus achieves notable performance gains, several aspects warrant
further investigation. Future work will focus on extending the model’s capability to
handle extreme maritime conditions such as strong glare during sunrise or sunset,
heavy fog, and high sea states—scenarios in which vessel contours become highly
indistinct. Another important direction is the development of lightweight or quantized
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variants specifically optimized for edge devices with limited power budgets, enabling
integration into compact optoelectronic platforms. In addition, incorporating temporal
information from video sequences may improve detection stability and reduce false
alarms by leveraging motion cues and temporal continuity. Finally, exploring
multimodal fusion with infrared, LiDAR, or radar sensors could further enhance
detection reliability in low-visibility environments.

Through these future extensions, YOLOVS8Plus offers a promising foundation for
advanced maritime object-detection systems, contributing to the development of
intelligent, real-time, and resilient surveillance technologies that support national
security, autonomous navigation, and maritime domain awareness.
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XAY DUNG THUAT TOAN PHAT HIEN DOI TUONG
UNG DUNG CHO HE QUANG PIEN TU TREN
TAU MAT NUGC SU DUNG MO HINH HOC SAU

Nguyén Minh Thudn, Tran Vin Nam, Truong Xudn Ting

Tém tit

Phat hién tu dong d6i tuong tau thuyén trén mdt nudc 1a nhi€ém vy quan trong trong gidm
sat hang hai va an ninh. Bai bdo nay dé xuat céi tién cho md hinh YOLOvS cta Ultralytics
dé dat do chinh xdc cao hon va téc do xit 1y nhanh hon khi nhan dién tau bién dudi céc diéu
kién 4nh sang va thoi tiét khic nghiét. Tac gia tich hop ba k§ thuat chinh: khéi C3Plus méi,
co ché chii ¥ cuc bd PSA (Position-wise Spatial Attention) va module CBAM (Convolutional
Block Attention Module) dé€ nang cao kha ning hoc dic trung ctia mang. Thi nghiém trén
tap dif liéu 4nh tau bién da dang cho thiy mo hinh cai tién mang lai mAP ting thém khoing
3-6% so v6i YOLOVS gbc trong khi duy tri tbc dd xi ly tuong duong. Dic biét, trong diéu
kién t6i hodc nhiéu nhiéu nén, cdi tién CBAM va PSA gidp gidm bd sét dbi tuong va cai
thién do bén ctia mo hinh.

Tu khoa
YOLOvVS8; CBAM; phat hién d6i tugng; phat hién tau mat nudc; tau bién.
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