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Abstract

The anomalous pixel detection efficiency of algorithms on UAV images is represented
by the two criteria: anomalous pixel detection effect (which uses the area under ROC curve
for evaluation) and calculation time. A highly effective researcher-recommended technique
for anomaly detection on UAV images is to apply Neyman-Pearson lemma by calculating
Kernel Density Estimation (KDE) for background data and making decision therefrom. In this
method, the selection of kernel function and bandwidth plays the determinant role in anomaly
detection efficiency. However, there has not been any research that mentions this issue to date.
Hereby, in this study, we evaluate anomaly detection efficiency on UAV images through a
number of common kernel functions typically cited in researches on KDE, and follow up
with making recommendations for appropriate uses of kernel functions. Experiments and
evaluations are carried out on the sample data set photographed on varied terrain types and
objects of interest.
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1. Introduction

Search and rescue operations include searching and rescuing human and vehicles
trapped in adverse situations. An increasingly adopted tool is using high-definition
images shot from a payload on unmanned aerial vehicle (UAV) [1], [2]. This equipment
is truly a great resource for search and rescue mission [3], [4] as it can carried sensors to
acquire high-definition images spanning a vast operational range, varied terrains, without
calling for too much human resource and expense for search and rescue operations.
Notwithstanding, a barrier that challenges manual search arises from the fact that sensors
have to scan on a vast area, the size of a missing person or object of interest is very
small compared to the scene and easily mixed with background data. Manual search
sometimes does not guarantee time and subsequently lessens the victim’s chance of
survival. Automatic target detection techniques on UAV images [5], [6], [7], [8] can
support and accelerate this process.
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Automatic target detection based on geometrical features can be used as an approach
to this issue; however, geometrical features of objects of interest remain unspecified
in most of search and rescue cases due to receiver’s capturing angle, or search objects
partly hidden by terrain or high density of leaves, or partly submerged in water. Directly
finding out the victim is most ideal, but in some cases, objects like clothes, blanket,
tent, personal items, vehicle’s fragments and so on can provide helpful information.
Hereby, anomaly detection (or outlier) will serve as a more appropriate approach to
this issue. Anomalies on UAV images are identified as pixels or clusters of pixels with
conspicuous or highly varied colours compared to surrounding pixels. These pixels are
thinly scattered and rarely representative of the image. Generally, signals for anomalies
are spatially small and exist at a low probability in an image.

In the year 2012, 2013 and 2015 [5], [6], [7], the group of researchers from Boston
University, USA worked on some techniques for detecting outlier colour on UAV images
applied in search and rescue operations. The first technique is to test binary hypothesis
in order to detect anomalous pixels [5]. For this method, the authors applied Neyman-
Pearson lemma by calculating non-parametric probability density of background data to
make decision. For the second technique [6], M. Ramachandran and W. Moik proposed
using K-Mean algorithm to sort pixels into clusters. All pixels in a cluster are identified
as normal if the number of centers of surrounding clusters covered by an area within the
radius R (from the center of the present cluster) is higher or equal to Nmax. Conversely,
all pixels in the present cluster are anomalous ones. The third technique [7], relates to
the principal component analysis gaps. The anomaly detector determines gaps between
clusters along the vector of greatest variability, searches for the largest area along a
vector individually to isolate a set of anomalous pixels. The fourth technique [5], [6],
[7], the authors tested the ability to detect anomalies on UAV images of RX algorithms
[9] and some its variations such as: the dual window-based eigen separation transform,
the nested spatial window-based target detection. Results from researches showed that
images captured from UAV are able to serve search and rescue operations. Outlier pixel
detection rates (these pixels might contain helpful information for search and rescue
operations) of algorithms on the sample data set were all over 95%. In the research
[8], authors surveyed outlier colour detection ability of RX [9] and its variations across
eight colour spaces from UAV images. It showed that using appropriate colour space
will deliver satisfactory results, which could support detection of informative objects
for search and rescue operations.

For the first technique, researchers applied Neyman-Pearson lemma by calculating
probability density function (PDF) through estimating kernel density of background
data and follow-up decision making. In 2011, Veracini and associates [11] used Parzen
Window (PW) method [12] to calculate background PDF using Gaussian kernel density
estimation function, and a reliable result was achieved. The background PDF, achieved
through PW approximation, was used as the input to detect anomalies on images through
binary hypothesis testing method. In 2014, similar to Veracini’s method, Matteoli and
associates [13] selected Gaussian kernel function with a fixed bandwidth to calculate
probability density function, then applied Neyman-Pearson lemma to sort pixels into
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Table 1. A number of typical kernel functions [10]

Tên nhân K(u) Điều kiện

Uniform (Uni)
1

2
|u| ≤ 1

Hypercube (Hyp) 1 |u| ≤ 1

2
Triangular (Tri) 1− |u| |u| ≤ 1

Epanechnikov (Epa)
3

4
√
5
− 3u2

20
√
5
|u| ≤

√
5

Quartic (Qua)
15

16
(1− u2)2 |u| ≤ 1

Triweight (Triw)
35

32
(1− u2)3 |u| ≤ 1

Tricube (Tric)
70

81
(1− |u|3)3 |u| ≤ 1

Gaussian (Gau)
1√
2π
e
−
1

2
u2

Cosine (Cos)
π

4
cos

(π
2
u
)

|u| ≤ 1

normal class or anomalous class. In 2017, Zhao and associates [14] combined PDF
calculation through KDE using Gaussian kernel function with findings from correlation
representation to detect anomalous pixels.

The Gaussian kernel function was applied in all of the above publications, and there
was no explanation for why this kernel function was selected. Is there a kernel function
that provides better rate rather than Gaussian kernel function? In addition, there was
no calculation or explanation for selecting bandwidth for highest anomaly detection
efficiency. Through experimental method, using the sample image set shot on varied
terrain types and search objects to evaluate the anomaly detection rate for UAV images
of some common kernel functions (see Table 1) that are typically cited in researches,
quantitative research results, area under ROC curve, is the measurement for algorithm’s
anomaly detection efficiency. In addition, we analyse the effect from selecting varied
bandwidths on kernel functions’ anomaly detection efficiency.

In the following parts of this article, we will present these contents: Part 2- Strategy for
detection of anomalies on UAV images, Part 3- Testing method, testing result analysis,
evaluation, recommendation for appropriate kernel function, Part 4- Conclusion.

2. Strategy for detection of anomalous pixels on UAV images

Detection of anomalous pixels on UAV images applied in search and rescue operations
is viewed as the task of sorting pixel into either “normal” class (C1 class) or “anomalous”
class (C2 class). Take an multispectral image with L spectral bands, this image is
formed by a collection of n pixels X = (x1, x2, ..., xn). The observation i on X is
xi = (x1

i , x2
i , ..., xL

i ), i = 1, 2, ..., n, to be able to sort xi into “normal” or “anomalous”
according to statistic method is to test binary hypothesis by using Neyman-Pearson
based on likelihood rate (LR) of conditional probability density function by the two
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hypotheses:

Ĥ(xi) =

{
H0 : xi ∈ C1;
H1 : xi ∈ C2.

i = 1, 2, ..., n (1)

According to Neyman-Pearson lemma, we have:

∧NP (xi) =
f̂X|H1(xi)

f̂X|H0(xi)

H1

≥
<
H0

η, i = 1, 2, ..., n (2)

Whereof f̂(·) is the conditional probability density function, η is the appropriate thresh-
old to sort xi into “normal” or “anomalous” class. However, in reality, parameters, used
in calculation conditional probability density function in the formula (2) applied in
search and rescue, are normally unavailable for we lack knowledge about “anomalous”
class; moreover, anomalous pixels normally have a random spectral value that only
depends on the images’ scenes, they are independent pixels or clusters of pixels of very
small size compared to images and their density is thin. Therefore, we can assume that
f̂X|H1(xi) is a constant, then the formula (2) will be shortened as:

∧(xi) = −log{f̂X|H0(xi)}

H1

≥
<
H0

η, i = 1, 2, ..., n (3)

Since the background data’s probability density f̂X|H0(xi) is unknown so it has to be
estimated from existing data. With the assumption that there is only a very few number
of thinly scattered anomalous pixels, all the pixels xi ∈ X, i = 1, 2, ..., n can be used
for this estimation.

In researches [11], [13], [14], the authors used nonparametric probability density
estimation method to estimate f̂X|H0(xi) as we do not have to make any assumption
about data distribution. In this method, its main tool is KDE, which was published
by Rosenblatt in 1956 [15], later developed and published by Parzen in 1962 [12]. For
unidirectional data, observe the random vector x = [x1x2. . . xn]

T of the random variable
x with n elements. This means that there are n observations for the random variable x
and xi is the i observation of the random variable x. Then the kernel density estimation
of the random variable x = [x1x2. . . xn]

T is as follows:

f̂(xi) =
1

n

n∑
j=1

1

hj
K

(
xi − xj
hj

)
, i = 1, 2, ..., n (4)

Whereof, f̂(·) is PDF, K(u) is called multiplicative function that satisfies the condition∫∞
−∞K(u)d(u) = 1 and hj is the proportionality factor that decides the “width” of

multiplicative function, or also known as bandwidth. Extended discussion on statistical
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features of f̂(·) can be found in [16], K(u) can be typical multiplicative functions
presented by Hardle in [10] shown in Table 1.

In case that data has k directions, the observation i of X will be xi = [x1
i , x2

i , . . . , xk
i ]

T , i =
1, 2, . . . , n, the formula for estimating kernel density of multivariant data is defined in
[10] as:

f̂(xi) =
1

n

n∑
j=1

{
k∏

d=1

1

hd
K

(
xdi − xdj
hd

)}
(5)

For UAV images, the data is of multivariant type, we will apply formula (5) to set up
algorithm. By adopting the method of Matteoli et al. [13], we will fix the bandwidth,
set h = h1 = h2 = ... = hd with d = 1, 2, ..., k. The algorithm 1 is simulated to sort
pixels into C1 class or C2 class.

Algorithm 1: The algorithm for anomalous pixel detection
input: the matrix of pixels X , the number of pixels n, the number of channel k,

bandwidth h, anomaly detection threshold η.
output: the collection of normal pixels C1, the collection of anomalous pixels

C2.
1 C1← ∅;
2 C2← ∅;
3 for i← 1 to n do
4 sum_ker ← 0;
5 for j ← 0 to n do
6 mul_ker ← 1;
7 for d← 1 to k do

8 mul_ker ← mul_ker ×K(
Xd

i −Xd
j

h
);

9 end
10 sum_ker ← sum_ker + mul_ker;
11 end

12 if
sum_ker

n
≤ η then

13 C2← C2 ∪Xi

14 end
15 else
16 C1← C1 ∪Xi

17 end
18 end
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3. Experiment and evaluation

3.1. Experiment scenario

UAV image data acquired from actual search and rescue cases in Vietnam remains
rare and basically unpublicized. In order to test research results, we carry out testing
in under conditions: in terms of terrain types: plain, light forest, hill slope, lake and
pond, coastal area. In terms of search objects, we use personal utensils (in rescue cases)
such as cloths, life vest, life buoy, vehicle fragments ( with size ≤ 30 × 30cm). The
elevation of aerial vehicle is nearly 200m under daylight observation condition, with
sunlight, regular observation camera. Specifically: we used three images published in
the research “Some techniques for detection of anomalies on UAV images applied in
search and rescue operations” [8]. The first image is shown in Fig. 1, shot on plain with
Canon IXUS 127 HS camera at an elevation of 190m, ground resolution of 6.3cm/1
pixel; the second and the third image are shown on Fig. 2 and Fig. 3, they are shot on
coastal area with Sony DSC-WX220 camera at an elevation of 200m, ground resolution
of 64mm/1 pixel. Each image has the size of 1000 × 1000 pixels and provided with
three different samples of anomaly depending on terrain types. The scene shot on plain
(Image 1) and the scene shot on light forest (Image 2) were provided with three shirt
samples of different sizes and colours on each image. The scene shot on coastal area
(Image 3) were provided with two life vest samples with different colours, and a life
buoy.

Fig. 1. The scene shot on plain, provided with three shirt samples of different sizes and colours
(Image 1).

In addition, in the hill slope and lake & pond areas, we provide some clothes
of different size and colours; some plastic pieces (that simulate vehicle fragments);
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Fig. 2. The scene shot on light forest, provided with three shirt samples of different sizes and colours
(Image 2).

Fig. 3. The scene shot on a coastal area, provided with two life vest samples with different colours and
one life buoy (Image 3).

provided a life vest in a lake. Use flying equipment DJI Inspire 1 that carried camera
X3 model FC350, flying at an elevation of 254, the ground resolution of 40mm/1 pixel.
Fig. 4 is an image shot in the area provided with some clothes (Image 4). Fig. 5 is
an image shot in the area provided with some plastic pieces which simulates vehicle
fragments (Image 5) and Fig. 6 is an image shot in the area provided with life vest (we
name it Image 6).
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Fig. 4. The scene shot on an area provided with clothes of different sizes and colours (Image 4).

Fig. 5. The scenes shot in the area provided with some plastic pieces which simulates vehicle fragments
(Image 5).

So the sample data set for testing includes images of 1,000,000 pixels that cover from
1,600m2 to 4,000m2 of terrain area, depending on each image. The corresponding kernel
function of each image is used as shown in Table 1 with fixed bandwidth, similar to the
method proposed by Matteoli et al. [13] for anomalous pixel detection. The anomaly
detection efficiency of the method is calculated by the area under the ROC (Receiver
Operating Characteristic). For each kernel function, we let the bandwidth h run from
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Fig. 6. The scenes shot in the area provided with life vest (Image 5).

1 to 30, choose bandwidth for highest anomaly detection efficiency as the anomaly
detection efficiency of kernel function. Apart from evaluation of anomaly detection
efficiency of kernel functions, we evaluate the time duration for implementation and
memory use of each kernel function.

The computer’s configuration for calculation is as follows:

CPU: Intel Core i5-7400 3,00 GHz (4 core, 8 thread);

Mainboard: MSI B150M MORTAR ARCTIC;

RAM: DDR4 16GB;

HDD: SDD BIOSTAR S100 - 240GB;

Graphic: NVIDIA GeForce GTX 1070 Ti (2432 core, 1683 MHz, 8GB RAM).

3.2. Experiment results

Table 2. Anomaly detection efficiency of kernel functions on image set

Uniform Hypercube Triangular Epanechnikov Quartic Triweight Tricube Gaussian Cosine

Ảnh 1 0.9982 0.9982 0.9981 0.9981 0.9981 0.9981 0.9981 0.9981 0.9981
Ảnh 2 0.9969 0.9969 0.9970 0.9970 0.9970 0.9970 0.9970 0.9969 0.9970
Ảnh 3 0.9691 0.9732 0.9732 0.9681 0.9732 0.9732 0.9732 0.9688 0.9732
Ảnh 4 0.9591 0.9591 0.9587 0.9587 0.9587 0.9587 0.9587 0.9588 0.9587
Ảnh 5 0.9887 0.9887 0.9881 0.9883 0.9883 0.9883 0.9884 0.9883 0.9883
Ảnh 6 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996
Average 0.9853 0.9859 0.9858 0.9850 0.9858 0.9858 0.9858 0.9851 0.9858

After the experiment process, we carry out evaluation and make recommendations
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for appropriate kernel selection with three criteria: the anomaly detection efficiency;
the complexity of algorithm, the complexity of storage space and implementation time
duration; the complexity in bandwidth selection of kernel functions.

3.2.1. Anomaly detection efficiency: On an one-by-one basis, run the Algorithm 1
with 9 kernel functions in Table 1 for images described above, the anomaly detection
efficiency is shown in Table 2. From these results, we see that the Hypercube kernel
function delivers the best average efficiency for anomalous pixel detection, followed by
Triangular, Quartic, Triweight, Tricube and Cosine kernel functions. Group of kernel
functions with the worst efficiency for anomalous pixel detection include Epanechnikov,
Gausian, and Uniform. However, the discrepancy in anomaly detection among kernel
functions is very small (average discrepancy is less than 0.1%), so additional consid-
eration has to be given to relevant issues such as implementation time duration, the
complexity in bandwidth selection.

Table 3. Implementation time of kernel functions

Time (s)

Uniform 1,568
Hypercube 1,349
Triangular 1,638
Epanechnikov 4,978
Quartic 4,307
Triweight 4,351
Tricube 4,661
Gaussian 22,239
Cosine 4,345

Fig. 7. Chart of implementation time of kernel functions.

3.2.2. Implementation time duration and complexity of algorithm: In Algorithm 1
we see that, the calculation complexity is O(kn2), the complexity of storage space
is O(n) for all kernel functions. However, regarding calculation time duration, by
actual experiment on Image 1, using Algorithm 1 with 9 different kernel functions
listed in Table 1 for calculation, the implementation time duration is shown in Table 3
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and Fig. 7. Observing results for implementation time of kernel functions in Table 3
and Fig. 7, we notice that the Hypercube function has the least implementation time
duration has the shortest implementation time, the Gaussian kernel function has the
longest implementation time (16 times longer than the calculation time of Hypercube
kernel function).

3.2.3. Impact of bandwidth: How to select bandwidth to achieve the highest anoma-
lous pixel detection efficiency is currently the most challenging issue of this method.
Among publications [5], [11], [13], [14] as mentioned above, there has not been any
publication that discusses this issue. Maybe because author used the Gaussian kernel
function, so by default, the selected bandwidth is h = 1.06σn−1/5 as recommended by
Silverman [17]. In publications of: Hardle [10], Devroye and Gyorf [16], Silverman [17],
Webb [18] and Scott [19], authors mentioned how to select bandwidth to smoothen the
PDF function. However, only calculate bandwidth for Gaussian kernel function, other
functions have not been mentioned.

Table 4. Bandwidths of kernel functions that enable algorimths to deliver highest anomaly
detection efficiency

Image 1 Image 2 Image 3 Image 4 Image 5 Image 6

Uniform 7 5 1 9 11 13
Hypercube 14 10 1 18 22 22
Triangular 10 8 1 12 20 15
Epanechnikov 4 3 1 5 8 7
Quartic 11 8 1 14 19 15
Triweight 13 10 1 16 22 18
Tricube 11 8 1 14 21 19
Gaussian 4 4 1 5 8 6
Cosine 9 7 1 12 16 13

In the experiment part on the sample data set, we applied the bandwidth calculation
method posed by Silverman [17]; however, the anomaly detection efficiency of the
algorithm on kernel functions is markedly lower than the highest anomaly detection
efficiency shown in Table 2. The bandwidth for the algorithm to achieve the highest
anomaly detection efficiency is shown in Table 4. Observing data in Table 4, we notice
that there is no rule to select an appropriate bandwidth, for all kernel functions, that
produces the best anomaly detection efficiency of the algorithm. It is also impossible
to select one bandwidth for a kernel function that satisfies all images. Fig. 8, 9, 10,
11, 12, 13 show graphs of anomalous pixel detection efficiency of Algorithm 1 with
9 different kernel functions and bandwidth varying from 1 to 30, which correspond to
the input data of Image 1, Image 2, Image 3, Image 4, Image 5, Image 6.

Next, we tested the influence of bandwidth to 9 kernel functions on anomaly detection
efficiency, results are shown in Fig. 8, 9, 10, 11, 12 and 13. From testing results,
we notice that the three curses representing anomaly detection efficiency of algorithm,
which correspond with the three kernel functions Epanechnikov, Gaussian and Uniform,
have relatively high gradient toward the right side. This means that: larger bandwidth
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Fig. 8. The graph shows anomaly detection efficiency of Algorithm 1 on Image 1 using various kernel
functions when bandwidths vary from 1 to 30.

Fig. 9. The graph shows anomaly detection efficiency of Algorithm 1 on Image 2 using various kernel
functions when bandwidths vary from 1 to 30.

Fig. 10. The graph shows anomaly detection efficiency of Algorithm 1 on Image 3 using various kernel
functions when bandwidths vary from 1 to 30.

delivers lower anomaly detection efficiency, and this efficiency decreases at a higher rate
compared to the rest of kernel functions. The bandwidth range within which algorithm
delivers anomaly detection efficiency around the maximum point is relatively short,
making it difficult to find out the appropriate bandwidth. So with the short optimum
bandwidth range and the decreasing rate of anomaly detection efficiency, it would be
very difficult to determine an appropriate bandwidth value for Epanechnikov, Gaussian
and Uniform kernel functions.

On the contrary to the three kernel functions above, the Triangular, Quartic, Tri-
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Fig. 11. The graph shows anomaly detection efficiency of Algorithm 1 on Image 4 using various kernel
functions when bandwidths vary from 1 to 30.

Fig. 12. The graph shows anomaly detection efficiency of Algorithm 1 on Image 5 using various kernel
functions when bandwidths vary from 1 to 30.

Fig. 13. The graph shows anomaly detection efficiency of Algorithm 1 on Image 6 using various kernel
functions when bandwidths vary from 1 to 30.

weight, Tricube, Cosine and especially Hypercube kernel function has the low right-
side gradient. The bandwidth range within which algorithm delivers anomaly detection
efficiency around the maximum point is large, so it is more favourable to find and select
an appropriate bandwidth compared to Epanechnikov, Gaussian and Uniform kernel
functions.

From analysis on anomaly detection efficiency, calculation time and bandwidth find-
ing and selecting of kernel functions, we notice that Hypercube kernel function has the
marked advantage, followed by Triangular, Quartic, Triweight, Tricube, Cosine kernel
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functions. Gaussian kernel function has been used widely in publications [5], [11], [13],
[14] and not shown its advantage yet. The experiment on the sample data set also showed
that Gaussian kernel function is the worst-performing kernel function (with 2nd lowest
anomaly detection efficiency among 9 kernel functions, the longest calculation time and
the most difficult bandwidth determination process).

4. Conclusions and Future works

In search and rescue operations, enhancing efficiency in detection of object in search
or signals containing information about objects in search is ultimately critical. This will
reduce time and financial expense, energy, as well as increase the rescue possibility.
Applying Neyman-Pearson lemma based on kernel density estimation of background
data to make decision is an effective and reliable technique for detection of anomalous
pixel on UAV images in search and rescue operations. Numerous kernel functions have
been published; however, there has not been any research discussing which kernel
function to be used for this anomaly detection task. By using experimental method on
the sample data set, carry out evaluation with two criteria (anomalous pixel detection
efficiency; implementation time and complexity in calculation and storage); additionally,
evaluate the favourability in selecting bandwidth, the Hypercube kernel function has the
greatest advantage (deliver the best anomalous pixel detection efficiency, the shortest
implementation time, large appropriate bandwidth range that facilitates bandwidth de-
termination), followed by Triangular, Quartic, Triweight, Tricube, Cosine, the group of
worst-performing kernel functions include Epanechnikov, Gaussian and Uniform.
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HIỆU SUẤT PHÁT HIỆN DỊ THƯỜNG TRÊN ẢNH UAV
CỦA CÁC HÀM ƯỚC LƯỢNG MẬT ĐỘ HẠT NHÂN

Tóm tắt

Hiệu suất phát hiện các điểm ảnh dị thường trên ảnh UAV của các thuật toán được thể
hiện trên hai tiêu chí: hiệu quả phát hiện các điểm ảnh dị thường (sử dụng diện tích dưới
đường cong ROC để đánh giá) và thời gian tính toán. Một kỹ thuật phát hiện dị thường
trên ảnh UAV rất hiệu quả đã được các nhà nghiên cứu đề xuất đó là áp dụng quy tắc
Neyman–Pearson dựa trên việc tính toán hàm mật độ xác suất thông qua ước tính hàm mật
độ hạt nhân (Kernel Density Estimation - KDE) của dữ liệu nền để đưa ra quyết định. Trong
phương pháp này, việc lựa chọn hàm hạt nhân (kernel) và băng thông đóng vai trò quyết định
đến hiệu suất phát hiện dị thường. Tuy nhiên, cho đến nay chưa có bất kỳ nghiên cứu nào
đề cập đến vấn đề này. Vì vậy, trong bài báo này, chúng tôi đánh giá hiệu suất phát hiện
dị thường trên ảnh UAV qua một số hàm hạt nhân thông dụng thường được trích dẫn trong
các nghiên cứu cho KDE, từ đó đưa khuyến nghị sử dụng hàm hạt nhân phù hợp. Các thử
nghiệm, đánh giá được thực hiện trên bộ dữ liệu mẫu được chụp trên các loại địa hình khác
nhau và các đối tượng cần tìm kiếm khác nhau.
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