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Abstract

Although the fuzzy c-means algorithm (FCM) has been widely used in many fields, they
are sensitive to noise and outliers. Recently, the Fuzzy C-Medoids (FCMdd) algorithm has
been shown to be more effective in dealing with noise data. The difference between FCM and
FCMdd is the formation mechanism of clusters. At the same time, FCM builds clusters based
on membership function and samples in the cluster. FCMdd selects some of the existing actual
samples as cluster medoids. This results in FCMdd being able to handle noise better than
FCM. This paper presents a hybrid approach of the whale optimization algorithm WOA with
FCMdd (FWCMdd) to optimize the clustering process. This hybridization prevents FWCMdd
from falling into the local trap and rapidly converging. This solution has been compared with
the Fuzzy k-Medoids (FKM) algorithm and the primitive FCMdd. The results indicate that
the proposed method is better than most of the evaluation indicators.
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1. Introduction

Data clustering is an unsupervised learning technique which used in many fields like
data mining, image processing, computer vision, geo-informatics, etc. The most common
clustering techniques are hierarchy and partitioning. The hierarchical methods create a
series of nested partitions of the input data. In contrast, the partitioning methods often
optimize a fitness function.

In the clustering approach, each data point of the dataset must be assigned exactly
one cluster. After the fuzzy set theory came into being, clustering allowed a data point
to belong to more than one cluster [1]. Thus, partition clustering is divided into two
methods: crisp and fuzzy [2]. However, fuzzy clustering is based on the idea that each
tiny piece of each member object (membership function of [0, 1]) is in a particular cluster
and is considered to be the best method for capturing the uncertainty of the actual data
[3]. The total value of the membership function of a given object on all clusters is
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always equal to 1. In partition clustering, there appear many clustering families, in
which the 2 clusters have the most research: These are cluster by mean [4] (average
point) such as k-Means (KM), fuzzy c-Means (FCM) [5], and the other according to
medoid (representative point) such as fuzzy k-Medoids (FKM) [6], fuzzy c-Medoids
(FCMdd) [7].

Each cluster has a representative point (medoid point) in the medoid-cluster family,
which acts as the cluster’s centroid. During the clustering process, it is swapping
another data point as a medoid to find the minimum value of the objective function.
Simultaneously, a better assessment of cluster quality is always considered and studied
in many ways. In [8], Yang et al. stated that the traditional FCM algorithm’s objective
function does not assume any spatial information. Hence, clustering only involves the
gray levels independent of the pixels of the image in the segment. This limitation makes
FCM very sensitive to noise.

Mei et al. [9] proposed a fuzzy clustering problem around medoids and present
it through a unified view, which mentions that there may be more than one medoid
in each cluster (FMMdd). In FKM, the membership function value allows an object’s
assignment to multiple clusters according to different measurement methods. Both FKM
and FMMdd offer formulations suitable for many contexts. However, they are non-convex
optimization problems. Their association algorithms can lead to many local minima of
unknown quality (There is a difference in noise added to the noise indicated by [10]).

Furthermore, FKM and FMMdd are usually sensitive to centroid initialization. Convex
fuzzy k-Medoids (CFKM) [10] improves with the assumption that subjects must be
divided entirely by one and only one medoid, for which the medoid must be wholly
assigned to one and only one cluster. This is like the preliminary clustering of objects
to clusters. This will reduce the random substitution of medoid, which at each cluster,
the source of replacement of medoid is limited to only preliminary clustered subjects.
However, CFKM requires more increased time costs for clustering to be found.

Shihong Yue et al. [11] reformatted based on two reward and penalty functions for
the original FCM algorithm’s objective function. The reward function is defined as
the original data in a given data set. Still, the penalty function is characterized by
an additional collection of data about the initial data distribution. These other data
are computed around each group of aggregated original data. Their effect extends the
objective function’s values to limit the specified cluster centroids’ tendency to reach
these data points. However, building and establishing suitable coefficients in the reward
and penalty mechanism is necessary when many data sets are inconsistent in distributed
clusters.

The FCMdd algorithm is shown to achieve better clustering results than FCM on
noisy data sets in most tests. They have the disadvantage of being prone to local
extremes because the selection process for medoids is from data samples [12]. FCMdd
is constructed the same way as FCM except that it constructs medoids (one of the actual
objects in sample space) that are not centroids (a point in continuity space). In FCMdd,
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with the current membership, each medoid is decided using a heuristic algorithm to
select the object xq as the medoid of cluster c. Finding medoids in FCMdd can make
FCMdd run faster in real-time. However, the consequence of a simplified heuristic search
has a trade-off inefficiency. FCMdd is prone to get stuck at a local minimum.

This paper proposes a hybrid algorithm (FWCMdd) between FCMdd and whale
optimization algorithm (WOA) [13] to optimize clustering results. This paper’s proposal
to use WOA to support FCMdd is to develop a better solution through each loop to
select the appropriate medoid. Therefore, to take advantage of FCMdd, the objective of
this paper is to minimize the possibility of falling to the local extremes of the FCMdd
algorithm.

The paper is organized as follows: Section II shows related basics: summarize some
basic knowledge about fuzzy clustering FCMdd, introducing the WOA whale optimiza-
tion algorithm. Section III proposes a method to hybridize WOA and FCMdd. Section
IV experimental results. Section V ends with some conclusions and references.

2. Preliminaries

2.1. Fuzzy C-medoids algorithm (FCMdd)

Fuzzy C-medoids clustering algorithm (FCMdd) [7] divides data into clusters, with
medoid points representing the centroids of the clusters. According to [14], the use of
medoid can reduce the effect of interference. Let a set X = {x1, x2, . . . , xN} of N
objects, for each object has M properties . Let dij = d (xi, xj) describe the difference
between the object xi and the object xj . Let Z = {z1, z2, . . . , zK} , zi ∈ X describe a
subset of x with K parts. Let XK represent the set of all K subsets Z of X . FCMdd
minimizes objective function:

Jm (Z,X) =
N∑
j=1

K∑
i=1

umijd (xj, zi) (1)

where uij is membership value of the jth object in the ith cluster. m is a fuzzier belong
to greater than or equal 1. Medoid specificity problems are often used in practice when
it is necessary to specify data objects available to play a certain role. The FCMdd
algorithm is then improved by the authors themselves in the initialization steps. Instead
of randomly taking K data points as initial medoids, only the first medoid z01 is randomly
taken. From the 2nd medoid z01 on, is taken on the principle that is furthest away from
the previous medoid point and does not coincide with the existing medoid point. This
can help reduce computational complexity.

Compared with the famous FCM clustering also partitioning a set of N data points
xj, j = 1, . . . , N into K fuzzy clusters with centroids by cluster’s distance averaging.
According to [2], FCM clustering can effectively increase speed even when applied
to multidimensional datasets. The advantages of FCM are ease of deployment, the
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applicability of multidimensional data, and the ability to model uncertainty in data
[15]. The FCM algorithm’s time complexity is O (N), and FCMdd algorithm’s one is
O (N2) [7]. Membership functions can be defined through distances, commonly used
according to FCM to describe the following:

uij =

(
1

d (xj, zi)

)1/(m−1)
/∑K

k=1

(
1

d (xj, zk)

)1/(m−1)

(2)

where m is a fuzzier (m > 1, usual get 2). The Equation 2 means that the total
membership value of an object xi across all clusters equals 1. The FCMdd’s pseudos
code is shown in Algorithm 1.

Algorithm 1: Fuzzy C-medoids algorithm

Input: X = {x1, x2, . . . , xN}, K clusters, t = 0, Tmax = 1000, J_ {best} =∞.

Output: Matrix U , set of medoids Z, objective function J .

BEGIN

1 Initialized K different medoids from X: Z = {z1, z2, . . . , zK} , zi ∈ X .

2 REPEAT

2.1 Compute membership function values U = uij by Equation 2.

2.2 FOR i = 1, 2, ..., K AND j = 1, 2, ..., N :

a) Save the current medoids Zold = Z.

b) Calculate new medoid zi with i = 1, 2, ..., K:

q = arg min
1≤k≤N

N∑
j=1

umijd (xk, xj)

zi = xq

c) Computing J and U : IF Jbest > J THEN save Z,U, Jbest = J .

2.3 t = t+ 1

3 UNTIL Zold = Zort = Tmax

END.

2.2. Whale optimization algorithm

Whale optimization algorithm (WOA) [13] is a herd optimization form inspired by
the hunting of humpback whales. The prey (target) of the whale swimming across the
water is surrounded by a shrinking funnel-shaped swirl of whales using a bubble strategy.
WOA mathematically models prey encirclement, spiral maneuver, and prey search to get
the optimal set of parameters for problems using numeric data. This hunt unifies the herd
(whales always work together). At a moment, one whale X (t) position is considered as
a reference basis for the position of the remaining whales. If the expected prey position
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X (t+ 1) is not within the control radius of X (t), then find another random prey
position (discovery). On the contrary, the prey is surrounded (exploitation). Updated a
new position of whale X (t) close to prey position (depends on the displacement vector).
The remaining whales have their position updated according to the displacement vector.

2.2.1. The siege of prey (Exploration): In the WOA, the optimal position at-next-loop
of the current whale is X ∗ (t) (prey position), the position of the remaining whales
was considered optimal. In the next loop, all whales update their positions according to
prey position X ∗ (t). −→

D = [
−→
C ∗
−→
X∗ (t)]−

−→
X (t) (3)

~X(t+ 1) = ~X∗(t)− [ ~A ∗ ~D] (4)

where ~D is the displacement vector, t is the number of iterations up to now,
−→
X is the

position vector of each whale, ~X∗ is the position vector of the prey in the tth loop. The
WOA states how to compute factor vectors

−→
A and

−→
C as follows:

−→
A = 2 ∗ [−→a ∗ −→r 1]−−→a (5)

−→
C = 2 ∗ −→r 2 (6)

where −→r 1,
−→r 2 are two random vectors in [0, 1] so that any position in the search space

can be reached by adjusting the values of the vectors
−→
A and

−→
C . −→a is reduced linearly

from 2 to 0 during the iteration, describing the shrinking radius of the spiral orbit.

2.2.2. Bubble siege strategy: The bubble siege strategy is a combination of two
narrow enclosure approaches and the helical helical position modeled mathematically.
The shrinking encircling mechanism reduce the distance the whale and the prey by ~a
of Equation 6, followed random

−→
A in [−a, a]. When any value

−→
A in [−1, 1], the new

whale’s position can belong to the range of the whale and the prey. Equation 8 created
a spiral trajectory between the current position of the whale and its prey; in a loop, that
whale’s new position is in that orbit: created a spiral line between the current whale’s
position and the his prey to mimic the whale’s movement, at a moment, his new position
is on it:

~D
′
= ~X∗(t)− ~X(t) (7)

~X(t+ 1) = ~D
′ ∗ ebl ∗ cos(2πl) + ~X∗(t) (8)

in which ~D
′ is the distance between the whale and the prey, b is the constant for the

logarithm shape, l is random in [−1, 1], denoting the elasticity of the spiral. WOA can
choose to either miniature enclosure or spiral motion, simulated by probability p (be
long to [0, 1]).

~X(t+ 1) =

{
~X∗(t)− [ ~A ∗ ~D] if p < 0.5
~D

′ ∗ ebl ∗ cos(2πl) + ~X∗(t) if p ≥ 0.5
(9)
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2.2.3. Search for prey: WOA uses
∣∣∣ ~A∣∣∣ > 1 to force prey away from the current focus

whale. At that time, the whale will not follow the current prey but search and update
the position according to other random alternate prey.

−→
D = [

−→
C ∗
−→
X rand]−

−→
X (10)

−→
X (t+ 1) =

−→
X rand − [

−→
A ∗
−→
D ] (11)

where
−→
X rand is a random position vector. Each iteration, the whales get updated their

position from Equation 11. The WOA’s pseudos code is presented in Algorithm 2.

Algorithm 2: The Whale Optimization Algorithm

Input: X = {x1, x2, . . . , xN}, K clusters, t = 0, Tmax = 1000.

Output: X∗ is the best search agents.

1. Initializing the whale population Xi, i = 1...n is the solution to look for.

2. Calculate the value of the fitness function:

2.1 WHILE t < Tmax

FOR EACH the current Whale i:

IF (p < 0.5)

IF (|A| < 1)

Updates position of the current whale by Equation 5.

ELSE

Randomly select a prey Xrand.

Updated position of the whales by Equation 11.

Updated position of the whales by Equation 8.

Check if any prey gets out of the search space and improve it.

Calculate the fitness function value.

Update X∗ if there is better solution.

t = t+ 1.

2.2 END WHILE
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3. Proposal to hybrid WOA with FCMdd

Based on the presented content, we proposed an improved solution for FCMdd to
optimize clustering results with objective function as follow:

J =
K∑
i=1

N∑
j=1

u∗ijd (zi, xj) (12)

According to medoid-based clustering methods, it is necessary to alternate data points
as medoid so that J reaches the minimum value. The selection of zi medoid will
determine the appropriate U∗ =

{
u∗ij
}

matrix for better results. Here
{
u∗ij
}

need to apply
the new calculation according to the location of the selected medoid. We use existing
FCMdd and FCM clustering formulas to find the new formula for

{
u∗ij
}

according to
the proposed algorithm.

3.1. Propose on how to initiate and search for medoids

Using FCM to get a membership functional matrix µFCM = {µij}, in each cluster,
select initial medoid zi as the points with the highest of µij . In the original FCMdd
algorithm, the process of finding an alternative medoid closest to the average centroid
should satisfy Equation 3) makes the complexity difficult to improve. In essence, the
procedure for finding the medoid is randomized and stores the best values so reducing
the objective function will take a long time to converge. We propose to use WOA
to better step-by-step identification of medoid search. When keeping the centroid of
the other clusters fixed, WOA gives the optimal position v∗i as the new centroid for
the current cluster, and v∗i is the base to start choosing the centroid of other clusters.
Selecting the centroids of the clusters as the major ones, the adjustment as above will
gradually get the best set of centroids.

How to perform, use the loop to look at each cluster in turn. At the current cluster
i, consider medoid zi, and at the same time keep (K − 1) medoids zk in other clusters
(temporarily consider the best zk, fixed to focus on finding new zi). WOA needs to
indicate that the best new alternative to zi is v∗i . If the WOA cannot find any v∗i , then
randomly select any v∗i . On the contrary, (if found), WOA indicates an optimal location
v∗i to replace zi according to Equation 5, for the convenience of observation, it can be
rewritten to:

~v∗i = ~zi − [ ~A ∗ ~D] (13)

where A and D are WOA parameters explained in Equation 5.

Algorithm 3: The FWCMdd Algorithm

Input: X = {x1, x2, . . . , xN}, K is the number of pre-clusters, t = 0, Tmax = 1000,
J_ {best} =∞.
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Output: The membership function values U∗; The id of the medoids z; The fitness
function value Jm.

1. Load database X , initialize the variables: U,K.

2. Select K different points zi as medoid form X , using FCM to get set Z:

Z = {zt}Kt=1|zt=xk with uik = max{uij}Nj=1

3. WHILE (t < Tmax)

3.1 FOR EACH cluster i DO:

a. Calculate distances D(t) = d(zi, xj), i = 1, ..., K; j = 1, ..., N .

b. FOR EACH zi DO (Using Equation of WOA)

+ Update a,A,C, l, p (of WOA).

+ IF (p < 0.5) THEN

IF (|A| < 1) THEN Update zi by Equation 21.

ELSE

Random zi.

Update zk(k 6= i) by Equation 23.

+ ELSE

Update zk(k 6= i) by Equation 23, with D̄ = |v∗i − zi|
v∗k = D̄ ∗ ebl ∗ cos(2πl) + zk

Calculate the matrix U∗ according Algorithm 4 (PEP).

Calculate the fitness function value Jm by Equation 12.

IF (J < Jbest) THEN Jbest = J . save Jbest, U∗, z.

3.2 t+ +

4. END WHILE

3.2. Propose on how to correct the bias

Since the clustering-medoid family requires a data point as a cluster centroid (repre-
sentative point), it is necessary to choose a data point to replace position v∗i (as indicated
by WOA). We propose selecting the candidate point closest to v∗i . Because this selection
is biased, it is necessary to optimize the expected value of the target function, or penalty
for the chosen position. From here it can be assumed that the value of the objective
function Jv calculated by the set V = {vi} that WOA indicates is the expected value,
and that the set Z = {zi} to compute Jz is the real value. Jz is as close to the expected
value Jv as possible, so in the calculation of other parameters, these two values are said
to be equal. To calculate U∗ =

{
u∗ij
}

in terms of U = {uij}, we give Jv = Jz and
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subdivide these two objective functions into clusters i.

J = Jv =
∑K

i=1
Jvi; J = Jz =

∑K

i=1
Jzi (14)

To evaluate the role of each cluster, calculate the weight of each cluster k:

Wvk =
Jvk
Jv

;Wzk =
Jzk
Jz

;∀k = 1 . . . K (15)

where Wvk,Wzk is the weight of the kth cluster by two ways of calculating the objective
function with the expected cluster center V = {v∗i }, and with the actual center set
Z = {z∗i }. Jvk, Jzk are the value parts of J in the kth cluster. Do the Wvk/Wzk division
and get:

λk =
Wvk

Wzk

=
Jvk
Jv

/
Jzk
Jz

=
Jvk · Jz
Jzk · Jv

,∀k = 1 . . . K (16)

Since the value Jz = Jv we have:

λk =
Jvk
Jzk

,∀k = 1 . . . K (17)

Expanding an ith cluster:

λi =
Jvi
Jzi

=

∑N
j=1 µijdvij∑N
j=1 uijdzij

with

{
dvij = ‖vi − xj‖ ,
dzij = ‖zi − xj‖ .

(18)

Apply the distribution law of the addition obtained:

Jvi = Jzi · λi = λi

N∑
j=1

uijdij =
N∑
j=1

(λiuij) dij, withdij = ‖zi − xj‖ (19)

So from Equation 12 and Equation 19 deduced:

u∗ij = λiuij (20)

So the value of the matrix U∗ =
{
u∗ij
}

need to find is multiplying the coefficient λi
by the value U = {uij} of the standard KCMdd cluster. Naturally, U∗ =

{
u∗ij
}

still
have to normalize for each object to comply with the constraint that the total value of
the membership function of each point for all clusters must be equal to 1. Updating the
znewi closest to v∗i of WOA. Or is:

q = arg min
xj∈X

d (v∗i , xj) ; znewi = xq (21)

Apply WOA to update other v∗k points according to Equation 5

~v∗k = ~zk − [ ~A ∗ ~D] (22)

Pick out the znewk :
q = arg min

xj∈X
d (v∗k, xj) ; znewk = xq (23)
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Based on the above argument, we propose the FWCMdd method which is a hybrid
between WOA and FCMdd, using Equation 12 as the value of fitness function. Where
PEP (Position Expectation Penalty) is proposed as follows:

Algorithm 4: The Position Expectation Penalty (PEP) algorithm

Input: Dataset: K, the suggested centroids set: V = {vi}Ki=1

Output: Set of medoids: Z = {zi}Ki=1 , zi = xq ∈ X , Set value matrix U∗ =
{
u∗ij
}

.

1 Get X, V .

2 Determine the medoids Z = {zi} by Equation 21.

3 Calculate the distance matrix Dvij = {d (vi, xj)}, Dzij = {d (zi, xj)}.
4 Calculate the membership matrix µij, uij by Equation 2.

5 Calculate conversion coefficient matrix by cluster λ = {λk} by Equation 17.

6 Calculate U∗ =
{
u∗ij
}

by Equation 20.

Computational complexity: Due to the proposed algorithm using 2 loops with N
nested objects the worst probability and maximum is N cases. Using the rule of taking
max and ignoring single lines of constant value is O (1), so this complexity is reduced
to O (N2).

4. Experiments

The proposal was experimented on several UCI data sets [16] with the number of
instances, attributes and clusters in Table 1. In this study, the authors chose to test on
UCI datasets due to the richness and diversity of data types. In practice, most data
sets have noise due to data acquisition or data normalization. Moreover, to increase the
reliability of the method, the authors have selected 10 datasets on different subjects for
testing and used 10 different indexes to evaluate the clustering quality.

The tests in the article are installed on Matlab 2018 software, the computer: core i5, 16
Gb RAM, 1.7GHz. The input parameters are selected according to the suggestions from
the original algorithms. The clustering results are presented in Table 2. The clustering
evaluation indicators are recorded at the top of the column, if there is the symbol (−),
the smaller the value, the better. Similar to (+), the better the value. The formula for
calculating these indices is set according to [17], [18]. Better metrics are automatically
highlighted.

The ratios are computed using the following formula:

- The objective function value is as small as possible, according to Equation 12.
The partition entropy VPE index (a is the logarithmic radix, usually a = 10), mea-
sures the scalar of the fuzzy amount in a membership function, giving good clustering
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performance the smaller it is.

VPE = − (1/N)
∑K

i=1

∑N

j=1
uijloga (uij) (24)

- The smaller Fukuyama – Sugeno Index value (VFS) considers compact and segre-
gation, the better.

VFS = Jm (U, V )−Km (U, V ) = Jm −
∑N

j=1

∑K
i=1 u

m
ij ‖vi − x̄‖

wherex̄ = (1/N)
∑N

j=1 xj
(25)

- The smaller Xie – Beni index (VXB) to measure the smaller the overall average
tightness and distinctiveness, the better the partitioning results:

VXB = Jm
/(
N ×mini,k=1,...,K,i6=k‖vi − vk‖2

)
(26)

- The smaller Kwon index value, to eliminate the monotonous downtrend of VXB
when the number of K clusters approaches the number of data points N , the better.

VK =

∑N
j=1

∑K
i=1 u

2
ij‖xj − vi‖

2 + (1/K)
∑K

i=1 ‖vi − x̄‖
2

mini 6=k‖vi − vk‖2
wherex̄ =

∑N

j=1
xj/N

(27)

- The smaller the VT index value, using penalty functions in both the numerator
and the sample, eliminates the decreasing trend when K → N , enhances the numerical
stability when m→∞, the better.

VT =

K∑
i=1

N∑
j=1

u2ij‖xj − vi‖
2 + 1

K(K−1)

K∑
i=1

K∑
k=1;k 6=i

‖vi − vk‖2

min
i 6=k
‖vi − vk‖2 + 1/K

(28)

The lower the value SEP of the isolation distance between fuzzy clusters is the better.

SEP = D2
max

D2
min

K∑
i=1

(
K∑
k=1

‖vi − vk‖2
)−1

where

Dmin = mini 6=k ‖vi − vk‖ , Dmax = maxi 6=k ‖vi − vk‖
(29)

- NC (novel compression) improves the performance of the partition coefficient PC,
the larger the value of NC, the higher the internal compression and the better the fuzzy
clustering results.

NC =
N∑
j=1

K∑
i=1

u2ij
umax

whereumax = max
1≤j≤N

{
K∑
i=1

u2ij

}
(30)

The VPC index indicates the number of average member values taken between pairs
of fuzzy subset, by combining into a single number, the larger value is the better.

VPC = (1/N)
∑K

i=1

∑N

j=1
u2ij (31)
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- The greater its modified PC index (MPC), the better the partitioning results:

VMPC = 1− (K/(K − 1)) (1− VPC) (32)

Set up parameters for the experiment: In the membership formula, the objective function,
MAXITER = 100 (maximum loop index), b = 1, constant in WOA (Eq. 24).

The experimental results show that the smaller the Cost, VPE, VFS, VXB, VK, VT,
Sep indexes, the better the cluster quality. The higher the NC, VPC and VMPC indexes,
the better the cluster quality. The clustering results by indicators are shown in Table 2,
indicating that the proposed method gave significantly better results in most test cases.
There are 100 measure values, in which the algorithm proposed FWCMdd shows better
values at 88/100 values, only 9/100 values are FKM algorithm for better results, and
3/100 standard FCMdd value gives a better result.

FWCMdd has 2/10 datasets giving better values in ten indicators; 5/10 datasets give
better values at nine indicators; 2/10 data sets are better for the eight indicators, and
1/10 dataset give good values in the seven indicators.

Table 1. List of test datasets from UCI database

Name Datasets No. Instances No. Atributes No. Clusters
Data1 Auto MPG Data Set 398 8 3C

Data2 Breast Cancer Wisconsin 699 10 2C

Data3 Liver Disorders Data Set 345 7 2C

Data4 Contraceptive Method Choice 1473 9 3C

Data5 Glass Identification 214 10 6C

Data6 Hayes-Roth 132 5 3C

Data7 Iris Data Set 150 4 3C

Data8 Computer Hardware 209 9 7C

Data9 Wine 178 13 3C

Data10 Vehicle-xaa 94 18 4C

Table 2 shows that the proposed algorithm gives the best results in most of the
indicators in all ten experimental datasets. With this result, the support of the WOA
algorithm for FCMdd clustering helped find the optimal parameter sets to increase
clustering results’ accuracy. This study also showed the potential of WOA in assign-
ing optimal points for mean family clustering algorithms and serving as a basis for
calibrating the medoid family clustering algorithm.

The combination uses the WOA algorithm to correct the medoids so that they are
closer to the actual cluster centers. Thereby limiting the risk of falling into local
optimization and helping the algorithm to be stable and tend to converge faster. There-
fore, the proposed algorithm gives better clustering results than the pre-improvement
algorithm.
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Table 2. Some results of cluster quality assessment by validity indexes

Data Alg. Cost VPE VFS VXB VK VT Sep NC VPC VMPC
FKM 286.819 1.439 35.547 0.365 145.778 245.250 2.336 163.112 0.410 0.115

1 FCMdd 228.891 1.363 3.958 0.908 363.349 151.155 2.214 177.002 0.445 0.167
FWCMdd 179.845 0.933 66.557 0.320 128.855 118.903 1.688 253.267 0.636 0.455

FKM 537.871 0.741 45.126 0.142 99.726 537.384 0.469 465.401 0.666 0.332
2 FCMdd 506.776 0.809 270.569 1.132 791.374 630.570 0.553 396.189 0.637 0.274

FWCMdd 404.998 0.400 297.002 0.087 60.774 420.203 0.211 589.982 0.844 0.688
FKM 125.421 0.915 19.373 0.476 164.566 55.200 0.705 193.099 0.560 0.119

3 FCMdd 104.985 0.988 22.033 15.675 540.803 644.435 0.897 176.245 0.511 0.022
FWCMdd 104.135 0.875 18.205 1.201 414.565 41.552 0.649 201.555 0.584 0.168

FKM 164.405 1.496 329.479 1.905 280.884 198.004 2.518 550.492 0.374 0.061
4 FCMdd 135.381 1.535 483.156 44.430 654.492 148.834 2.672 393.698 0.360 0.041

FWCMdd 130.657 1.290 216.338 0.400 58.905 140.958 2.107 701.584 0.476 0.214
FKM 148.43 2.211 18.495 0.469 105.172 136.304 12.724 68.925 0.322 0.186

5 FCMdd 90.916 2.411 8.966 33.869 728.167 67.432 12.249 53.928 0.252 0.102
FWCMdd 73.102 1.745 11.106 1.220 269.104 50.373 11.748 98.322 0.459 0.351

FKM 111.958 1.515 13.541 0.298 39.802 105.998 2.514 50.897 0.386 0.078
6 FCMdd 100.384 1.554 25.513 0.992 131.234 88.313 2.658 48.509 0.367 0.051

FWCMdd 96.299 1.377 13.265 0.448 59.658 86.063 2.233 59.094 0.448 0.172
FKM 74.543 1.319 9.126 0.220 33.853 44.259 2.069 71.856 0.479 0.219

7 FCMdd 71.254 1.481 15.950 3.115 46.746 48.725 2.405 59.952 0.400 0.100
FWCMdd 38.212 0.718 22.566 0.151 23.654 18.490 1.421 111.069 0.740 0.611

FKM 125.617 2.335 33.890 218.982 492.729 102.767 17.88 69.413 0.332 0.221
8 FCMdd 61.028 2.643 4.578 10.572 222.419 42.930 18.736 47.549 0.228 0.090

FWCMdd 49.922 1.955 7.137 1.158 252.126 28.979 16.959 87.507 0.419 0.322
FKM 165.368 1.546 34.551 3.254 583.676 168.943 2.626 64.844 0.364 0.046

9 FCMdd 139.879 1.542 29.468 0.848 151.567 122.419 2.597 65.599 0.369 0.053
FWCMdd 125.854 1.249 1.641 0.208 37.473 108.695 1.986 90.984 0.511 0.267

FKM 100.281 1.912 0.448 0.858 84.427 135.346 5.057 30.696 0.327 0.102
10 FCMdd 84.481 1.991 23.189 3.528 332.386 100.203 5.375 28.312 0.301 0.068

FWCMdd 69.982 1.599 7.960 0.668 64.790 75.766 4.383 42.345 0.450 0.267

5. Conclusion

In this paper, the WOA is applied to find the optimal centroids for the FCMdd
clustering problem. Using the WOA algorithm can significantly improve the clustering
algorithm’s accuracy, especially the medoid family cluster. The experimental results of
clustering on ten different data sets show that the proposed algorithm gives significantly
better results than the FKM and FCMdd algorithms. This result also shows the potential
in combining clustering algorithms with optimization techniques that can help clustering
algorithms work more efficiently.

In the future, we will study the combination of the WOA algorithm with clustering
methods based on particle calculation to help improve computation time on large data
sets, multidimensional data.
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PHÂN CỤM C-MEDOIDS MỜ LAI SỬ DỤNG
THUẬT TOÁN TỐI ƯU HÓA CÁ VOI

Nguyễn Anh Cường, Ngô Thành Long, Mai Đình Sinh, Phạm Thế Long

Tóm tắt

Mặc dù thuật toán c-mean mờ (FCM) đã được sử dụng rộng rãi trong nhiều lĩnh vực,
nhưng chúng rất nhạy cảm với nhiễu và các giá trị ngoại lai. Gần đây, thuật toán C-Medoids
mờ (FCMdd) đã được chứng minh là hiệu quả hơn trong việc xử lý dữ liệu nhiễu. Sự khác
biệt giữa FCM và FCMdd là cơ chế hình thành các cụm; trong khi FCM xây dựng các cụm
dựa trên chức năng thành viên và các mẫu trong cụm, FCMdd chọn một số mẫu thực tế hiện
có làm trung gian cụm. Điều này dẫn đến việc FCMdd có thể xử lý nhiễu tốt hơn FCM.
Bài báo này đề xuất một cách tiếp cận kết hợp giữa thuật toán tối ưu hóa cá voi (WOA) với
FCMdd để tối ưu hóa quá trình phân cụm. Sự lai ghép này ngăn cản FWCMdd rơi vào bẫy
cục bộ và giúp nhanh chóng hội tụ. Giải pháp này đã được so sánh với thuật toán k-Medoids
mờ (FKM) và FCMdd ban đầu. Kết quả chỉ ra rằng phương pháp đề xuất tốt hơn so với FKM
và FCMdd trên hầu hết các chỉ số đánh giá.
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