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Abstract

Transfer learning aims to reuse the knowledge taken from different but related source
domains to enhance learning performance on target domains. In Genetic Programming (GP),
transfer learning methods have helped GP systems expand their applicability in real applica-
tions. In this work, two transfer learning methods based on semantic approximation techniques
(SAT) for GP are proposed. The proposed methods use the best individuals in the final
generation of the source task as transfer material to the target task. Before transferring, SAT
is applied on these individuals in order to simultaneously satisfy two objectives of reducing
the size of the transferred individuals and preserving the knowledge of them. The methods are
tested on ten symbolic regression datasets and compared with GP without transfer learning
and two GP transfer learning methods. Experimental results showed that the proposed methods
could effectively extract more useful knowledge from source domains to help to improve the
performance of GP systems on the target domains.

Index terms

Genetic Programming, Semantic Approximation, Transfer learning

1. Introduction

Transfer learning aims to improve the learning performance on target domains by
transferring the knowledge taking from different but related source domains. Along with
the above benefit, transfer learning has become a popular and promising area in machine
learning [1]. Generally, a formal definition of transfer learning has been characterized
as follows [1], [2]: Given some/an observation(s) corresponding to m® € N* source do-
main(s) and task(s) (i.e., {(Dgi, Tsi)|i=1,..., ms}) and some/an observation(s) about
m” € NT target domain(s) and task(s) (i.e., { (Dr;, Trj) |j = 1,...,m” }), transfer learn-
ing uses the knowledge implied in the source domain(s) to improve the performance
of the learned decision functions f77 (j =1,..., mT) on the target domain(s) where a
domain D = {X, P(X)} consists of the feature space X and the marginal probability
distribution P(X), X = {xy,29,...,x,} € X, and a task T = {), f(X)} consists of a
label space ) and a decision function f(X).
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GP is considered as a machine learning method that allows computer programs
encoded as a set of tree structures to be evolved using an evolutionary algorithm [3].
A GP system is started by initializing a population of individuals. The population is
then evolved for a number of generations using genetic operators such as crossover and
mutation. At each generation, the individuals are evaluated using a fitness function, and
a selection schema is used to choose better individuals to create the next population.
The evolutionary process is continued until a desired solution is found or when the
maximum number of generations is reached. GP has been successfully applied in many
real applications. As with other machine learning techniques, the research on transfer
learning in GP has rapidly increased in recent years to extend the applicability of GP.
There are some common approaches in these studies such as transferring knowledge
from generations evolved using a source domain to a target domain [4], [5], [6], [7],
[8], [9] using the useful source domain instances taken part in a target task [2], [10],
[11] or transferring data from a complete source domain to a different, incomplete
target domain [12], [13]. This work is one of the few attempts to improve the learning
performance of target domains inspired by two hypotheses:

« Firstly, the programs of the last generation in the source problem, going through
an evolutionary process, will contain the most knowledge about this domain. Thus,
these programs will have a potential to extract reusable knowledge of the source
domain to improve learning in the target domain.

« Secondly, replacing a subtree in a program with another subtree of approximate
knowledge may not significantly affect the ability of this program to transfer
knowledge from the source problem to the target problem.

The first hypothesis has been proven in several recent studies [4], [S], [7], [8],
[9]. These studies have showed the effectiveness of extracting useful knowledge of
the programs of the last generation in the source problem to the target problem. For
the second hypothesis, SAT proposed in our previous research [14], [15] helps to
produce a (sub)program whose semantics approximates a given semantics. Based on the
hypotheses, we propose two transfer learning methods in GP. In the proposed methods,
the best programs in the final generation on the source problem are used as the transfer
material to the target problem. Before these programs are transferred, SAT is applied on
them to simultaneously satisfy the two goals of reducing the size of the transfer programs
and preserving the useful knowledge of them. The main contribution of this paper is
to illustrate how to use semantic approximation to preserve knowledge extracted from
source domain stored in the evolved programs while reducing the size of these program.
The proposed methods are thoroughly examined and compared with traditional GP and
two GP transfer learning methods with the same approach on large regression problems.

2. Related work

This section briefly introduces previous work related to this work, including transfer
learning methods in GP and semantic approximation techniques.
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2.1. Transfer learning in GP

Research on transfer learning in GP has perhaps only received much attention in
recent years. With the approach of transferring knowledge from generations evolved
using a source problem to a target problem, Dinh et al. [4] proposed three methods,
consisting of FullTree, SubTree and BestTree. In the FullTree algorithm, k percent of the
best individuals in the final population of a source domain are chosen for initialing GP
individuals on a target domain. The algorithm of the other methods is similar to that of
FullTree. However, instead of taking the best individuals in the final generation as in
FullTree, random subtrees from the final generation (in SubTree), or the best individual
of all generations (in BestTree) are selected to initial the population in target problem.
Haslam et al. [5] next extended the research in [4] with the variety of source and target
problems and proposed a strategy for dynamically choosing the parameter k, namely
k Throttle. In the similar approach, O’Neill et al. [6] used common subtrees in the best
individuals produced in two source domains for initialization and mutation in the target
domain. The experimental results showed that the methods in these studies improved
the GP performance.

Recently, as the same above approach, Ardeh et al. [7], [8], [9] focused to solve the
Uncertain Capacitated Arc Routing Problem by using GP transfer learning techniques.
The work in [7] proposed a method called FreqSub. FreqSub extracts all subtrees
from the best individuals in the final generation of source domain, and all the most
frequent subtrees then are transferred as individuals of the initial population of the
target problem. The work in [8], [9] introduced the framework that extracts and stores
the transferred knowledge of the source domain to Probabilistic Prototype Tree (PPT).
The best individuals or the winner individuals of the tournament selections in the final
generation of the source problem are chosen. After that, PPT is constructed from the
these individuals by calculating the probability of each node. Final, PPT is used to
generate individuals in the initial population of target problem. The experimental results
on solving the Uncertain Capacitated Arc Routing Problem showed that the potential for
transfer learning of these methods is similar to FullTree, SubTree and BestTree in [4].
Wenlong Fu et al. [16] proposed a transferring schema for document classification
called Output-based transfer learning. In Output-based transfer learning, GP system is
run on the source domain with /N independent trials to product N programs/classifiers.
These programs and their mutations are then combined by a linear model for solving
the target domain problem. The weights of the linear model are optimized by Particle
Swarm Optimisation (PSO) with Differential Evolution (DE) technique.

Another approach is to utilize the useful source domain instances taken part in
a target task. Chen et al. [2], [10], [11] proposed instance-based transfer learning
methods to improve the symbol regression performance in target domains. In [2], a
local weighting scheme is utilized to weight the source domain instances when used
in solving a target task. The method in [10] uses differential evolution to search for
optimal weights for source-domain instances during the GP evolutionary process. This
method is time-consuming when the source domain has a large number of instances.
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The work in [10] was then extended in [11], where a more effective and efficient
instance weighting framework which attempts to alleviate the dominance of the source-
domain data in the learning process was proposed. Meanwhile, a distribution estimation
method is employed for providing better starting points for the search process while
discarding some irrelevant or less important source-domain instances before learning
regression models. Alexander Wild et al. [17], [18] used deep neural networks to identify
donor programs from already-solved problems in program synthesis field. In [18], code
fragments in the prior solved problem are stored and used to transfer in to new problems.
In the target problem, these code fragments are estimated by a neuron network, and the
code fragments with the highest ranking are selected. Then, GP run on the problem
with these highest ranking fragments to generate a training corpus of programs in a
step of the process of the program synthesis.

More recently, Al-Helali et al. [12] proposed a multi-tree genetic programming algo-
rithm based feature-based transformation for transferring data from a complete source
domain to a different, incomplete target domain. In this algorithm, each individual is
represented by a number of trees which is equal to the number of the target features.
The algorithm is used to evolve the individual that makes the transformed instances
from the source domain help improving the treatment of missing values in the target
domain. The limitation of the algorithm in [12] is that the transformation treats all source
features and instances equally. To address this limitation, the work in [13] proposed
another method that constructs an asymmetric mapping from a complete source domain
to an incomplete target domain. During the construction process, feature and instance
knowledge extracted from the learned models in the source domain are employed to
estimate the target missing values and reduce the distribution difference between the
two domains. The results showed that these methods improved the GP performance.

In this paper, two transfer learning methods based on semantic approximation tech-
niques for GP are proposed. The most similar approach in this work is FullTree method [4].
Instead of transferring the best complete programs of the last generation in the source
problem to the target problem as in FullTree, we use them as transferred material. These
programs before transferring to the target problem are pruned to reduce the size but still
preserve the knowledge stored in them. A detailed description of the proposed methods
will be presented in the next section.

2.2. Semantic Approximation Techniques

SAT was proposed in [14], [15] allows to generate a program that approximates a
given semantics. In GP, the semantics of a program is often defined as the vector of
output values obtained by running that program on all samples [15], [19], [20]. SAT
is described as follows. Let S = (s1, S9, ..., S,) be the target semantics and sT'ree is
a small randomly generated tree. The objective of SAT is to grow a tree in the form:
newlTree = 6 - sTree so that the semantics of new7ree is most similar to S.

Let @ = (q1, 42, .--q,) be the semantics of sTree, then the semantics of newTree
is P=(0-q,0-qs,...,0 - q,). To approximate S, ¢ is found so that the squared
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Euclidean distance between two vectors S and P is minimal. In other words, the function
f(0) =N (- — s;)% with respect to # is minimized. The quadratic function f(f)
achieves the minimal value at #* calculated in Equation 1:
N
i iSi
0* — Zz]:vl q . (1)
> iz G

The (sub)tree newT'ree = 6* - sT'ree is grown and called the approximate tree of the
semantic vector S. The advantage of SAT is that the size of newT'ree can be constrained
by limiting the size of sT'ree. sT'ree can be randomly generated by using GP’s popular
population initialization methods or taken from a terminal set. Figure 1 illustrates an
example of SAT. In the figure, the set of {(xy,x2)}={(0.2,0.4);(0.2,0.5);(0.1,0.6)}
is the samples of the problem, sTree = 7 + x, and s = (0.9,1.1,1.0) is a given
semantics. So, the semantics of sTree is computed as ¢ = (0.6,0.7,0.7) and 6* is
caculated as 1.5 by using Equation 1.

e S,

06[07[0.7] g

Fig. 1. An example of Semantic Approximation Techniques.

3. Proposed methods

This section introduces in detail two proposed methods implemented for transfer
learning in GP, namely Transfer Learning based on Semantic Approximation Techniques
and Dynamic Transfer Learning based on Semantic Approximation Techniques.

3.1. Transfer Learning based on Semantic Approximation Techniques

The first proposed method is called Transfer Learning based on Semantic Approxi-
mation Techniques and shortened as TLSA. Figure 2 presents the algorithm of TLSA.

In the algorithm of TLSA, £% the best individuals in the last generation of the source
problem are used for transferred material to the target problem. These individuals are
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Fig. 2. Transfer Learning based on Semantic Approximation Techniques.

copied and stored in a pool. Then, a random subtree in each of them is replaced with a
small and semantically approximate subprogram by using SAT, hopefully preserving the
semantics of this subtree. After that, these substituted individuals are fed to the initial
population of the target problem.

Figure 3 illustrates an example of pruning a tree using SAT before transferring this
tree to the initial population of the target problem. Figure 3 (a) is an original tree taken
from the pool which is one of the best individuals of the final generation in the source
problem. A random subtree (indicated by a down arrow) of the tree is selected, and
semantics of this subtree is calculated. SAT is then used to generate a small subprogram
(Figure 3 (b)) in the form of newTree = 6 - sTree so that the semantics of this
subprogram (new’l'ree) approximates the semantics of this subtree. Finally, this subtree
in the original tree is replaced by this approximate subprogram to obtain an initialized
tree for the target problem as Figure 3 (c). It notes that the size of s7'ree needs to be
smaller than the size of the subtree —2 to reduce the size of this transferred individual.
If this condition is not satisfied, the process of selecting subtree and generating s7'ree
is repeated. If no pair of subtree and s7'ree is found after the maximum number of
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trials, no subtrees in this individual are replaced.

(c) Transferred tree

Fig. 3. An example of pruning a tree using SAT before transferring.

The rest of the initial population in the target problem are randomly generated
using GP’s common population initialization methods. It means that k% the substituted
individuals and (1 — k)% the randomly generated individuals are combined to the initial
population for the target problem. The process of TLSA is then done like a traditional GP.

3.2. Dynamic Transfer Learning based on Semantic Approximation Techniques

The second method is called Dynamic Transfer Learning based on Semantic Ap-
proximation Techniques and shortened as DTLSA. DTLSA aims at the average size
of the individuals transferred to the initial population of target problem similar to the
average size of individuals generating by popular population initialization methods as
in traditional GP. The structure of DTLSA is similar to that of TLSA. However, the
transferred programs in DTLSA are pruned repeatedly until the size of them less than
or equal to the average size of the individuals generated by random methods. Algorithm
of DTLSA is illustrated in Figure 4.

In the algorithm of DTLSA, £% good individuals in the last generation of the source
domain are copied to a pool as material to breed the initial population in the target
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Fig. 4. Dynamic Transfer Learning based on Semantic Approximation Techniques.

domain. Simultaneously, (100 — k)% remaining individuals in the initial population are
randomly generated, and their average size was calculated as the pruning threshold, Sj.
After that, the process of replacing a random subtree in each individual of the pool
with a approximate subprogram generated by SAT is repeated until the size of them
less than or equal to threshold Sy. Finally, these individuals and the randomly generated
individuals are included in the initial population in the target problem.

4. Experimental settings

In order to evaluate the performance of the proposed methods, we compared TLSA
and DTLSA with traditional GP (shortened as GP) and two transferred learning methods
in GP, including FullTree [4] and £ Throttle [5]. The number of valuable individuals in
the final population of the source problem transferred to partially initialize the population
in the target problem is set for FullTree and k Throttle as in [5], [9], k% = 50%
and referred to FullTree50 and Throttle50. For TLSA and DTLSA, k% is tested with
10%, 30% and 50% and shortened as TLSA10, TLSA30, TLSA50, DTLSA10, DTLSA30
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and DTLSASO, respectively. In SAT, the max depth of s7'ree is 2, and the maximum
number of trials to find a pair of subtree and sT'ree is set 100.

For datasets, due to the lack of benchmark datasets for transfer learning, we use the
symbolic regression datasets that the previous researches utilized for testing GP transfer
learning methods [5], [11], including two relational-knowledge transfer datasets, two
feature transfer datasets, two model transfer datasets and four real-word datasets taken
from UCI machine learning dataset [21]. In total, the tested system are evaluated in
ten datasets. The detailed descriptions of these datasets are shown in Table 1. In this
table, the data points are randomly taken with z in range of [—1, 1] for the problems
F1,F2,F5, F6, and x; in range of [2i — 1,2i + 1] for the problems F'3, F'4.

Table 1. Problems for testing the proposed methods

Number of samples

Shorthanded Name Features — -
Training  Testing

Relational-knowledge Transfer

Fi Source domain: z* + 23 4+ 22 + z 1 100 -
Target domain: z* + 2% +22% + 2 + 2 1 100 100

m Source domain: z* + z° + 27 + 1 100 -
Target domain: 2% + 2% + 32% + 323 + 222 4+ 2z 1 100 100
Feature Transfer
Source domain: 33°_, (x; — x;-1)> 4 100 -

F3 . 7=t 2
Target domain: >~ , (x; — xi—1) 4 100 100

Fa4 Source domain: x¢ + =1 2 100 -
Target domain: xo + (z1 + 1’2)2 3 100 100
Model Transfer

F5 Source domain: z* + 2% + 22 + z 1 100 -
Target domain: 2 + 22° + 322 + 4z 1 100 100

6 Source domain: 2% + :rd‘—i— 2+ 1 100 -
Target domain: —z* — 23 — 2% — 1 100 100
Abalone dataset

F7 Source domain: The male data 7 1528 -
Target domain: The female data 7 655 652
Housing dataset

F8 Source domain: The data with TAX < 600 13 172 -
Target domain: The data with TAX > 600 13 167 167
Wine quality dataset

F9 Source domain: The white wine dataset 11 4898 -
Target domain: The red wine dataset 11 800 799
Appliances energy prediction

F10 Source domain: The data with time from 5/7/2016 to 5/13/2016 26 721 -
Target domain: 26 721 686

- Training: The data with time from 5/14/2016 to 5/20/2016
- Testing: The data with time from 5/21/2016 to 5/27/2016

The experimental GP parameters are shown in Table 2. These are the typical settings
often used by GP researchers. The raw fitness is the root mean squared error on all
fitness cases (samples). Therefore, smaller values are better. For each problem and each
parameter setting, 30 runs were performed.
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Table 2. Evolutionary parameter values

Parameter Value
Population size 500
Generations 100

Selection Tournament
Tournament size 3

Crossover, mutation probability 0.9; 0.1
Function set +,—,%,/, sin, cos
Terminal set X1, X9, .., X0
Initial Max depth 6

Max depth 17

Max depth of mutation tree 15

Raw fitness root mean squared error on all fitness cases
Trials per treatment 30 independent runs for each value
Elitism Copy the best individual to the next generation.

For statistical analysis, Kruskal-Wallis test with a confident level of 95% is used on
the results in all result tables. If the result of Kruskal-Wallis test shows that at least
one method is significantly different from the others, a post hoc analysis with Dunn’s
Test is conducted. p-values are adjusted with the Benjamini-Hochberg method. The ST
column of the result tables refers to the significance of the difference between the test
method compared to GP without transfer learning. The symbol “+" (“-") means that
the corresponding method outperforms (is outperformed by) GP, whereas “=" refers
to no significant difference. In addition, if the result is the best (the lowest), it is
printed underline.

5. Results and discussion

The effectiveness of the tested systems is compared using their performance on the
target domain, which is the focal point of transfer learning approaches. Four popular
metrics in GP research, including training error, testing error, solution size and running
time are analyzed in this section.

The first metric analyzed in this section is the learning performance on target data.
The mean of the best fitness values across 30 runs is presented in Table 3. It can be
seen from this table that the proposed methods, TLSA and DTLSA, outperform GP.
TLSA is probably the best method among the tested methods in learning performance.
The training error of TLSA10, TLSA30 and TLSASO is respectively smaller than that
of GP on 8, 7 and 9 problems out of 10 tested problems. DTLSA also achieves good
learning performance. Compared to GP, DTLSA is better than GP on 8 problems with
k% = 10% and 30%, and on 7 problems with k% = 50%. For FullTree and k Throttle,
the training error of FullTree50 and Throttle50 is also smaller than that of GP on 6 and
8 problems, respectively.

In terms of statistical comparison, the results of Kruskal-Wallis test again confirm the
good learning performance of all tested transfer learning methods. The training error of
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Fig. 5. Mean of the best fitness over generations.
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Table 3. The mean of the best fitness on all training data

Pro GP |FullTree50 |Throttle50 | TLSA10 TLSA30 TLSA50 |DTLSA10 DTLSA30 DTLSAS0
Mean [Mean ST Mean ST Mean ST |[Mean ST |[Mean ST Mean ST |[Mean ST |[Mean ST
F1 ]0.024 [0.024 = |0.027 = |0.019 = [0.024 = (0.024 = |(0.014 = |0.022 = |0.015 =
F2 ]0.046 |0.048 = [0.040 = |0.035 = [0.048 = |0.033 = [0.045 = |0.043 = [0.045 =
F3 10984 [0.846 + (0842 + |0.878 + [0.821 + (0.849 + (0981 = [0.936 = |0992 =
F4 10548 [0.557 = (0544 = |0.548 = [0.546 = (0547 = (0542 = |0.547 = |0.544 =
F5 10.024 [0.031 = (0.022 = |0.030 = [0.025 = (0033 = [0.021 = |0.021 = |0.019 =
F6 10.012 |0.013 = |0.012 = |0.013 = |0.013 = (0010 = |(0.017 = |0.014 = |0.014 =
F7 2500 (2486 = |2.484 = |2481 = (2476 = (2468 + (2540 = |2.509 = |2.520 =
F8 [3.116 [2.745 + (2704 + |2.705 + |2.608 + (2.654 + (2905 = |2.744 + |2.743 +
F9 10.648 |0.635 + [0.637 + |0.640 = [0.635 + |0.634 + [0.644 = |0.637 = |0.638 =
F10 |54.34 [54.08 = |54.10 = |53.28 = (5388 = |53.77 = |[53.65 = |5340 = |53.56 =

FullTree50 and Throttle50 is significantly better than that of GP on 3 problems. TLSA10
and TLSA30 are significantly better than GP on 2 and 3 problems, respectively. TLSA50
probably achieves the best performance among the tested systems. The training error
of TLSASO is significantly better than that of GP on 4 problems and the smallest on
4 problems. For DTLSA, it is also significantly better than GP on one problem with
k% = 30% and 50%. Conversely, the training error of GP is not significantly better
than that of the transfer learning methods any problems.

Figure 5 shows the mean training fitness per generation of each method for three real
world problems, including F7, F8 and F9 for £% = 50%. The figure clearly showed
that the transfer learning methods reliably reach a much lower training error than GP,
especially at the first generations. This indicates that the source domain has useful
knowledge that can be transferred to help improve the learning performance over the
target domain. Considering the transfer learning methods, the training error TLSA50
is slightly smaller than that of others during the evolutionary process. That once again
confirms the good improvement performance of TLSA on the learning process.

The second metric is the generalisation performance of the learnt models on the target
test data. In each run, the best solution is selected and evaluated on the testing data (an
unseen data set). The mean of these values across 30 runs is calculated, and the results
are shown in Table 4.

The table showed that the testing error of TLSA and DTLSA is often smaller than
that of GP. Especially, TLSA and DTLSA are better than GP on most tested problems
with £% = 50%. TLSAS50 and DTLSAS50 are better than GP on 7 and 9 problems,
respectively. The testing error of FullTree and k£ T'hrottle is also smaller than that of
GP corresponding on 3 and 5 problems. In terms of statistical tests, there is no difference
between all learning transfer methods and GP.

The third metric to be analyzed is the size of solutions. To do this, we record the
size of the selected solution (the number of nodes of this solution) in each run. These
values are then averaged over 30 runs and presented in Table 5.
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Table 4. The mean of testing error

Pro GP |FullTree50 | Throttle50 TLSA10 TLSA30 TLSA50 |DTLSA10 DTLSA30 DTLSAS0
Mean [Mean ST |Mean ST Mean ST |[Mean ST |[Mean ST |[Mean ST |Mean ST |[Mean ST
F1 ]0.024 [0.025 = |0.0319 = |0.020 = |0.029 = ]0.023 = |0.028 = |0.022 = |0.016 =
F2 ]0.047 |0.055 = [0.043 = [0.038 = [0.048 = (0.033 = [0.050 = |0.047 = [0.047 =
F3 |1.138 [1.042 = (0995 = |1215 = |1.041 + (0994 = (2.009 = |1.022 = [1.094 =
F4 10590 [1.013 = |0.618 = |0.591 = |0.604 = |0.590 = [0598 = |0.673 = [0.590 =
F5 10.027 [0.031 = |0.022 = |0.033 = [0.026 = [0.048 = [0.021 = |0.021 = |0.020 =
F6 10.014 [0.013 = |0.013 = |0.013 = |0.013 = |0.010 = |0.017 = |0.014 = ]0.014 =
F7 |2415 (2537 = (2410 = (2402 = |2451 = |2406 = (2550 = |2397 = |2414 =
F8 12032 [39.60 = |2681 = |2259 = |1974 = |9.18 = (6082 = |8.66 = (1639 =
F9 ]0.706 |0.706 = [0976 = [0.705 = |0.700 = |0.780 = |0.711 = |0.694 = [0.701 =
F10 |142.7 [138.0 = |159.7 = [1493 = (1351 = (1398 = |1424 = |136.8 = (1355 =

Table 5. The average of solution size

Pro GP |FullTree50 |Throttle50 | TLSA10 TLSA30 TLSA50 |DTLSA10 DTLSA30 DTLSAS0

Mean [Mean ST Mean ST Mean ST |[Mean ST |Mean ST Mean ST |[Mean ST |Mean ST
F1 151.8 {1482 = [1792 = |1504 = |1847 = |1695 = |1640 = [166.0 = |1523 =
F2 [189.0 [185.2 = (2042 = |1685 = (1670 = |(181.6 = (161.0 = |146.0 = [1509 =
F3 |171.8 |219.6 - (2214 - |189.1 = (2103 - |202.7 = (1604 = |155.7 = |155.1 =
F4 |175.0 |167.8 = |1848 = (1694 = [170.2 = |1689 = |1543 = (1754 = |1772 =
F5 [1493 |1612 = |166.6 = |1651 = [1789 = |[181.7 - |1425 = |1639 = |1352 =
F6 |133.6 (162.1 = |150.6 = [1582 = |[1529 = |163.7 = |171.1 = |1359 = [1349 =
F7 173.3 |264.6 - 2675 - |268.1 - [2454 - 2594 - (1731 = |1778 = |1562 =
F8 [1654 |255.6 - |293.8 - |268.8 - (2423 - (2705 - (1747 = |189.6 = |1775 =
F9 |124.6 |1894 - |171.8 - |1634 - [1693 - |[1698 - (1325 = |1449 = |1450 =
F10 |161.3 [214.6 - |2206 - |1793 = (2163 - (2015 - |[181.6 = |1740 = |163.6 =

It can be observed on Table 5 that the solutions found by FullTree, & T'hrottle and
TLSA are slightly more complex than those of GP. The sizes of the solutions obtained by
FullTree50, Throttle50, TLSA10, TLSA30 and TLSASO are on average 124%, 129%,
118%, 122% and 124% respectively of the size of the solution obtained by GP. For
DTLSA, apparently, the solutions evolved by it are as simple as those evolved by GP.
The size of solution created by DTLSA achieves the smallest on 3 problems. Considering
the transfer learning methods, the solutions obtained by TLSA and DTLSA are simple
than those of FullTree and k T'hrottle.

Figure 6 presents the average of population size during the evolution of the tested
systems on three real world problems F7, F8 and F9 with £% = 50%. It can be observed
in this figure that the average population size of FullTree50, Throttle50 and TLSASO is
much higher than that for GP and DTLSAS50 throughout the evolutionary process. This
can be caused by copying individuals from the last generation in the source problem
to initialize the population for the target problem in FullTree and k T'hrottle, and
substituted only one subtree on the copied individuals from the final generation in the
source problem to the first generation in the target problem in TLSA. Comparing among
FullTree, k& Throttle and TLSA, TLSA is started (at the first generations) with lower
than FullTree and & T'hrottle.
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For DTLSA, the average size of its population is no much difference to that of GP.
It can be seen from Figure 6 that the mean of population size of DTLSA is slightly
lower than that of GP in the problem F7, and is slightly higher than that of GP in the
problems F8 and F9. It partially explains why the solutions found by DTLSA is simple
as that of GP.

The last metric we examine is the computational cost of all tested GP systems. The
total time needed to complete a GP run is recorded, and these values are then averaged
over 30 runs. The results are shown in Table 6.

Table 6. The average of running time in seconds

Pro GP  |FullTree50 |Throttle50 | TLSA10 TLSA30 TLSA50 |DTLSA10 DTLSA30 DTLSAS0
Mean [Mean ST Mean ST [Mean ST |[Mean ST |[Mean ST Mean ST [Mean ST |[Mean ST
F1 30.0 704 - 51.7 - 64 + 12.2 + 89 + 77 + 9.7 + 119 +
F2 32.4 509 - 58.1 - 69 + 11.2 + 104 + 6.7 + 86 + 78 +
F3 |34.1 326 = | 713 - 69 + 148 + 73 + 43 + 10.2  + 44 +
F4 26.7 513 - 30.5 = 6.1 + 89 + 6.2 + 49 + 12.8 + 6.2 +
F5 257 619 - 313 = 6.6 + 115 + 112 + 56 + 74 + 71 +
F6 27.4 672 - 327 = 10.7 + 16.9 + 77 + 8.0 + 148 + 68 +
F7 53.5 96.7 - |1339 - 564 = 82.7 - 98.8 - 228 + 326 + 556 =
F8 20.3 516 - 484 - 18.0 = 16.5 = 239 = 6.7 + 12.8 + 12.7 +
F9 40.2 |110.1 - 746 - 399 = 7719 - 59.3 221 + 368 = 464 =
F10 | 30.7 63.0 - 63.4 - 30.8 = 36.1 = 43.2 237 = 308 = 234 =

This table highlights that TLSA and DTLSA run significantly faster than GP in the
Relational-knowledge transfer problems, the Feature transfer problems and the Model
transfer problems. In four real word problems, the running time of DTLSA10, DTLSA30
and DTLSASO is significantly smaller than that of GP on 3, 2 and 1 problems, re-
spectively. Conversely, the running time of GP is not significantly smaller than that of
DTLSA on any problems. TLSA takes longer than GP in 2 problems with £% = 30% and
3 problems with £% = 50% in terms of statistical testing. Conversely, the computational
cost of FullTree and k£ T'hrottle is expensive than that of GP. The running time of
FullTree50 and Throttle50 is significantly longer than that of GP on 9 and 7 problems
out of 10 problems, respectively.

Overall, the results in this section show that TLSA and DTLSA improve the training
error and the testing error compared to GP and two transfer learning methods in
GP (FullTree and k T'hrottle). Moreover, the running time of TLSA and DTLSA is
significantly faster than GP, FullTree and k& T hrottle. Additionally, the solutions evolved
by DTLSA are simple as that of GP. These results partly confirm the correctness of
two hypotheses in Section 1. The individuals in the final generation of the source
problem apparently contain useful knowledge for the target problem. Furthermore, the
substitution of subtrees by other approximate subprograms not only preserves probably
this knowledge but also reduces the size of the initial population in the target problem.
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6. Conclusions

In this work, two semantic approximation techniques based transfer learning methods
have been proposed for GP. The first method is called TLSA. TLSA copies a number
good individuals in the final generation of the source problem and substitutes a random
subtree of them by using SAT [15]. These individuals are then utilized to initialize
the population in the target problem. The second method is called DTLSA. DTLSA is
slightly similar to TLSA. The difference between them is that in DTLSA, the process of
replacing a random subtree in each cloned individual with a approximate subprogram
grown by SAT is repeated until this individual reaches the size as that of randomly
generating.

TLSA and DTLSA are evaluated on ten symbolic regression datasets, including two
relational-knowledge transfer datasets, two feature transfer datasets, two model transfer
datasets and four real-word datasets, and compared with GP without transfer learning
and two GP transfer learning methods, FullTree and &k T'hrottle. The analysis on the
experimental results showed that the training error and testing error of TLSA and
DTLSA are enhanced on the target problem. Furthermore, TLSA and DTLSA run
much faster comparing with traditional GP and two compared transfer learning methods.
DTLSA also obtained solutions that are simple as that of tradition GP and much more
simple than that of FullTree and k T'hrottle.

Overall, the proposed transfer learning methods, TLSA and DTLSA could effectively
extract more useful knowledge from the source domain to help to improve the perfor-
mance of GP systems on the target domain.
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HOC CHUYEN GIAO DUA TREN KY THUAT

XAP Xi NGU NGHIA TRONG LAP TRINH DI TRUYEN

Chu Thi Huong

Tém tit

Hoc chuyén giao nhiam muc dich sit dung lai céc tri thic tr cac vin dé ngudn khic nhau
nhung c6 lién quan dé€ ning cao hiéu suit hoc trong vAn dé dich. Trong lap trinh di truyén
(GP) phudng phdp hoc chuyén giao glup céc hé thong GP mé rong kha nang u’ng dung trong
cdc bai toan thuc tién. V&i nghién ctiu nay, ‘hai phuong phép hoc chuyén giao dya trén ky
thuét xap xi ngit nghla cho lap trinh di truyén dugc dé xuat Phuong phap dé xuat st dung
cic cd thé tot nhit ctia thé hé cudi cung trong bai toan nguon lam nguyén liéu chuyén glao
sang bai todn dich. Truc khi chuyén giao, ky thuat xap xi nglt nghia dugc ap dung trén cac
c4 thé€ nay nhiam thda man dong thoi hai muyc tiéu: gidm kich thudc cua cd thé chuyén g1ao
va bdo toan tri thic clia cic cd thé nay. Phuong thic dé xuit dudc thi nghiém trén mudi
bai toan hdi quy va dudc so sanh véi GP truyen thong va hai phu’dng phép hoc chuyen giao
trong GP. Két qua thuc nghlem cho thay céc phUOng phap dugc dé xuat c6 thé trich xuét
hiéu qua tri thic hitu ich tif cdc vin dé ngudn dé gitp ci thién hiéu suét ctia hé théng GP
trén van dé dich.
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