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Abstract

In this paper, the authors propose a solution to improve the secure of digital signature
schemes, this solution is implemented on two levels of digital signature scheme construction.
At the first level, the authors propose a new hard problem, this hard problem belongs to the
class of hard problems for which there is currently no solution (except by “brute force attack"
method). At the second level, the authors propose a method to construct new digital signature
algorithms based on this hard problem.
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1. Introduction

In [1], [2], the paper proposed a method for constructing digital signature schemes
based on a new hard problem on the prime finite field Fp. In this paper, we continue
to propose a new form of that problem on elliptic curves and a method for constructing
digital signature schemes based on this new hard problem. With this method, it is
possible to generate a new family of highly secure digital signature algorithms for
practical applications.

2. The new hard problem on the elliptic curve

2.1. The elliptic curve discrete logarithm problem

The discrete logarithm problem on elliptic curves (ECDLP) is described as follows:
Suppose G is a point on an elliptic curve E, generating the cyclic group ⟨G⟩. Let point
P ∈ ⟨G⟩. Find the integer k such that:

P = k ×G.
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2.2. The new hard problem on the elliptic curve

From ECDLP we see that if the point G is also kept secret, then the ECDLP will
become an unsolvable problem. In the simplest case, the x-coordinate of G (xG) can
be chosen as the secret parameter k, then the new hard problem on the elliptic curve
is stated in the first form as follows:

Form 1: Let E(Fp) be an elliptic curve defined on the finite field Fp and G be a
point on E(Fp) generating the cyclic group ⟨G⟩. Give a point P in ⟨G⟩, find point G
that satisfies the following equation:

P = xG ×G.

On the other hand, this hard problem can also be stated in the second form as follows:

Form 2: Let E(Fp) be an elliptic curve defined on the finite field Fp and G be a
point on E(Fp) generating the cyclic group ⟨G⟩. Give a point P in ⟨G⟩ and an integer
k in Fp, find point G that satisfies the following equation:

xG × P = k ×G.

It is easy to see those existing algorithms for the ECDLP cannot be used to solve this
problem. At present, there is no other solution to this problem other than the “brute
force attack" method.

In the proposed digital signature scheme construction method, the first form of the
hard problem is used to generate the public and private key pairs of the signer in the
Key generation algorithm, it is also used to generate signature in the Signing algorithm,
while the second form of this hard problem is used as the basis for construction the
Verification algorithm.

3. Construction digital signature schemes based on the new hard
problem on the elliptic curve

In this section, the method of construction digital signature schemes is presented
through design a specific signature scheme, including: the Key generation algorithm,
the Signing algorithm and the Verification algorithm, these algorithms are constructed
as follows:

3.1. The proposed scheme

3.1.1. The key generation algorithm: The set of domain parameters includes:

- p is a prime number specifying the underlying finite field Fp.
- E(Fp) is elliptic curve defined on the finite field Fp by equation:

y2 = x3 + ax+ b with: a, b ∈ Fp and satisfied: 4a3 + 27b2 ̸= 0 mod q
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The domain parameters here can be generated as specified in ISO/IEC 15946 [3], ANSI
X9.62 [4], FIPS 186 – 4 [5] or GOST R34.10 – 2012 [6].

The secret key of the signature entity is a point G of prime order q on the elliptic
curve E(Fp). The corresponding public key P is:

P = (−xG)×G. (1)

The Key generation algorithm (Algorithm 1.1) is described as follows:

3.1.2. The Signing algorithm: Assuming (R, s, Z) is the signature on the message to be
signed M , here: R,Z are points on the elliptic curve E(Fp), and s is a value in the
range (1, q).

The R component of the signature is calculated according to the following formula:

R = k ×G. (2)

Here, the k is a randomly chosen value in the range (1, q).

Also, assume that the component Z is generated from a value u according to the
formula:

Z = u×G. (3)

Here, the u is also randomly chosen in the range (1, q).

The generation of the s component of the signature is done as follows:

Assuming the condition for (R, s, Z) to be recognized as valid, also means is the
message M authenticated for origin and integrity is:

π(R)× Z = s× e×R + π(Z + s×R)× P. (4)

In (4), π() is a function that converts a point on the elliptic curve to an integer. With
E defined on Fp and Q as a point on E, then π(Q) = xQ.

The parameter e is the representative value of the message to be signed M (the hash
value of M ) and is generated by the hash function H() according to:

e = H (xQ, xR,M) .

In there, xQ and xR are the x-coordinates of point Q and point R on E(Fp).

From (2) and (3), we have:

Z + s×R = u×G+ s× k ×G = (u+ k × s)×G. (5)

Set:
v = (u+ k × s) mod q. (6)

Then (5) will become:

Z + s×R = (u+ k × s)×G = v ×G = Q. (7)
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From (1), (2), (3), (4) and (7), we have:

π(R)× u×G = s× e× k ×G+ π(v ×G)× (−xG)×G. (8)

From (8) deduce:

π(R)× u ≡ s× e× k + π(Q)× (−xG) mod q. (9)

On the other hand, from (6) we have:

u = (v − k × s) mod q. (10)

Substituting (10) into (9), we get:

(v − k × s)× π(R) ≡ (k × s× e− xG × π(Q)) mod q. (11)

From (11) deduce:

s = (v × π(R) + xG × π(Q))× (k × (e+ π(R)))−1 mod q.

Finally, we get:

s = (v × xR + xG × xQ)× (k × (e+ xR))
−1 mod q. (12)

From (10) and (12), the component Z is calculated according to:

Z = (v − k × s)×G.

The Signing algorithm (Algorithm 1.2) is described as follows:

Algorithm 1.2:
input: E(Fp), G, P,M.
output: (R, s, Z)
[1]. select k, v : 1 < k, v < q
[2]. R← k ×G
[3]. Q← v ×G
[4]. e← H (xQ ∥xR∥M)

[5]. s← (v × xR + xG × xQ)× (k × (e+ xR))
−1 mod q

[6]. Z ← (v − k × s)×G
[7]. return (R, s, Z)

Note:

- M is the message to sign which has an arbitrary length (M ∈ {0, 1}∞).
- H() is the hash function with H : {0, 1}∗ 7→ Zh, q < h < p (eg: SHA-1, SHA-

256,... [7]).
- “∥" is the operator that concatenates of bit strings.

3.1.3. The Verification algorithm: The Verification algorithm of this scheme is also
construction from the assumption:

π(R)× Z = s× e×R + π(Z + s×R)× P. (13)
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Here, e = H (xQ ∥xR∥M) and Q = v ×G.

It can be seen that the above assumption is completely equivalent to:

R = (π(R)× Z − π(Z + s×R)× P )× (s× e)−1.

Therefore, if a point R̄ on E(Fp) is calculated according to the formula:

R̄ = (π(R)× Z − π(Z + s×R)× P )× (s× ē)−1

with ē = H
(
xQ̄ ∥xR∥M

)
and Q̄ = (Z + s×R), then we can infer: R̄ = R.

From here, if set: a = H
(
xQ̄ ∥xR∥M

)
and: b = H

(
xQ̄ ∥xR̄∥M

)
then the conditions

for a valid signature are: a = b.

Algorithm 1.3:
input: E(Fp), P,M, (R, s, Z) .
output: TRUE/FALSE.

[1]. Q̄← (Z + s×R)
[2]. a← H

(
xQ̄ ∥xR∥M

)
[3]. R̄← (s× a)−1 ×

(
xR × Z − xQ̄ × P

)
[4]. b← H

(
xQ̄ ∥xR̄∥M

)
[5]. if (a = b) then return (TRUE)
else return (FALSE)

(14)

Note:

- M, (R, s, Z) are message and signature to be verified, respectively.
- If the result is TRUE, then the integrity and origin of M are asserted. Otherwise,

if the result is FALSE, then M is denied for origin and integrity.

3.1.4. The correctness of the proposed signature schema: What needs to be proved
here is: if a = H

(
xQ̄ ∥xR∥M

)
and b = H

(
xQ̄ ∥xR̄∥M

)
with R̄ = (s × a)−1 ×(

xR × Z − xQ̄ × P
)
, in there: Q̄ = (Z + s×R) then: a = b.

Indeed, if the signature to be verified was not forged, we will have:

Q̄ = (Z + s×R) = u×G+ s× k ×G = (v − k × s)×G+ k × s×G

= v ×G− k × s×G− k × s×G = v ×G = Q.
(15)

From (15) if the message to be verified was also not forged, we get:

a = H
(
xQ̄ ∥xR∥M

)
= H (xQ ∥xR∥M) = e. (16)

From (13) we have:

R = (s+ e)−1 × (π(R)× Z − π(Z + s×R)× P ). (17)

Substituting (16) into (14), we have:

R̄ = (s× a)−1 × (xR × Z − π(Z + s×R)× P )

= (s× e)−1 × (xR × Z − π(Z + s×R)× P ) .
(18)
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From (17) and (18), it can be deduced:

R̄ = R. (19)

Finally, from (19) we have:

a = H
(
xQ̄ ∥xR∥M

)
= H

(
xQ̄ ∥xR̄∥M

)
= b.

Thus, the correctness of the schema has been proved.

3.2. Some assessments of the secure of the proposed signature scheme

The secure of the proposed signature scheme can be evaluated through its ability to
resist some types of attacks such as:

3.2.1. Secret key attack: In proposed scheme, a secret key attack can be made on the
Key generation algorithm (Algorithm 1.1) and the steps [2], [3], [5], and [6] of the
Signing algorithm (Algorithm 1.2). In step [2] and [3] of the Signing algorithm, since k
or v is also a secret parameter, finding G from step [2] and [3] of the Signing algorithm
is as difficult as finding G from the Key generation algorithm, as it is known this is
a type of hard problem that currently there is no solution [8]–[16]. In step [5] and [6]
of the Signature algorithm, in addition to xG being the secret parameter to be found, k
and v are also secret parameters, then finding xG from step [5] and [6] of the Signing
algorithms is also impossible.

3.2.2. Signature forgery attack: From the Verification algorithms (Algorithm 1.3) of
the proposed scheme, a set of 3 components (R, s, Z) will be recognized as a valid
signature with the message to be verified M if the condition is satisfied:

π(R)× Z = s× e×R + π(Z + s×R)× P, here: e = H (xQ ∥xR∥M) .

It can be seen that, even if 2 of the 3 components (R, s, Z) of the signature are
pre-selected, calculating the remaining component that satisfies the above mentioned
condition is essentially the second form of the hard problem mentioned in section 2.2.
As we know, this is a type of hard problem for which currently in mathematics there
is no other solution than the “brute force attack” method [8]–[16].

3.3. Performance of the proposed signature schemes

Performance of the signature scheme constructed according to the proposed method
is basically evaluated by comparing the computational cost of this scheme with the
computational cost of the ECDSA digital signature scheme in the US DSS standard [5]
and GOST R34.10-2012 of the Russian Federation [6].

The computational cost (or cost) is the number of operations to be performed, where
the symbols are defined as follows:

• Nmp is the number of multiplications on E(Fp).
• Nmul is the number of modulo multiplications.
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• Ninv is the number of modulo division (inversion).
• Nh is the number of hash operations.

Note: The Key generation algorithm only needs to be done once for every schema.
Therefore, the computational cost for the Key generation algorithm can be ignored
when comparing the costs of the schemas.

The cost for the Signing algorithms and the Verification algorithms of the ECDSA
and GOST R34.10-2012 compared with the proposed scheme is shown in Table 1 and
Table 2 as follows:

Table 1. The computational cost of the Signing algorithms

Nmp Nmul Ninv Nh

ECDSA 1 2 1 1
GOST R34.10-2012 1 2 0 1
The proposed scheme 3 5 1 1

Table 2. The computational cost of the Verification algorithms

Nmp Nmul Ninv Nh

ECDSA 2 2 1 1
GOST R34.10-2012 2 2 1 1
The proposed scheme 3 2 1 2

Comment:
Comparing the cost of the proposed schemes with the ECDSA and GOST R34.10-2012,
as shown in Table 1 and Table 2, shows that the performance of the proposed schemes
is lower than that of ECDSA and GOST R34.10-2012. It can be seen that this is the
cost of improving the security of the schemes constructed by the proposed method.

4. Conclusion

In this paper, the authors propose a solution to improve the security of the digital
signature scheme based on a new hard problem on the elliptic curve, which is developed
from the elliptic curve discrete logarithm problem. Currently, this is a hard problem that
belongs to the class of unsolvable problems. On the other hand, the signature scheme
construction here is carried out according to a completely new method, which is also
an important factor allowing the improvement of the security of the digital signature
scheme according to this new solution. From the proposed new solution, it is possible
to generate a new family of highly secure digital signature schemes suitable for different
choices in practical applications.
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PHƯƠNG PHÁP XÂY DỰNG LƯỢC ĐỒ CHỮ KÝ SỐ
DỰA TRÊN BÀI TOÁN KHÓ MỚI
TRÊN ĐƯỜNG CONG ELLIPTIC

Lưu Hồng Dũng, Đỗ Anh Tuấn, Tống Minh Đức, Bùi Thế Truyền

Tóm tắt

Trong bài báo này, nhóm tác giả đề xuất giải pháp nâng cao tính an toàn của lược đồ
chữ ký số, giải pháp này được triển khai trên hai cấp độ xây dựng lược đồ chữ ký số. Ở cấp
độ thứ nhất, nhóm tác giả đề xuất một dạng bài toán khó mới, bài toán khó này thuộc lớp
bài toán khó mà hiện nay chưa có cách giải (ngoại trừ phương pháp “tấn công vét cạn"). Ở
cấp độ thứ hai, nhóm tác giả đề xuất phương pháp xây dựng thuật toán chữ ký số mới dựa
trên bài toán khó này.

Từ khóa

Chữ ký số, lược đồ chữ ký số, bài toán logarithm rời rạc, bài toán logarithm rời rạc trên
đường cong elliptic, mật mã trên đường cong elliptic.
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