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ABSTRACT

$ OLQHDUO\ FRQIRUPLQJ SRLQW LQWHUSRODWLRQ
IRU WKH VROLG PHFKDQLFV SUREOHPV ,Q WKLV SDS
SHUIHFW YLVFR HODVWRSODVWLF DQDO\VHV RI ' VR
with displacements and stresses as the main variables is performed. The von-Mises yield
IXQFWLRQ DQG WKH 3UDQGWO 5HXVV ARZ UXOH DUH X
the stress variables are eliminated and the problem becomes only displacement-
dependent. The numerical results showtakKH /& 3,0 LV PXFK PRUH DFF.
FEM and possesses the upper bound property which is very meaningful for the visco-
elastoplastic analyses which almost have not got the analytical solutions. This suggests
WKDW ZH FDQ XVH WZR PRGHOV /& 3,0 DQG )(0 WR I
estimate the global relative error of numerical solutions.

Keywords 1XPHULFDO PHWKRGY PHVK IUHH PHWKRG
LOQOWHUSRODWLRQ PHWKRG /& 3,0 XSSHU ERXQG YL\

Introduction Among the above-mentioned mesh-
Many mesh-free methods havel UHH PHWKRGV 3,0 LV D PH\

been proposed and remarkable progreS@lerkin weak form in which the shape

LV DFKLHYHG LQ UHFHOQMWCiyD Bre copstrpgted pugingy gmple
smooth particle hydrodynamic methodnterpolatlon through asgt of nodes located

> @ JHQHUDO ¢ QLW HN @& |ofphsynpestrdamaing Baser en two

> @ WKH GLIIXVH HOHPFOWHPHWWRED Y LY AW LRQ!
element-free  Galerkin method (EFG}1@ve been developed including polynomial

> @ UHSURGXFLQJ NHUGMosgpempemaasisupgioRIGv

> @ WKH PHVKOHVV oRIPband mdigl BiM YRPIM)ising Nadigl

PHWKRG > @ WKH SRLQW PY M PSRFIODVRIRO>PHW @R 30!
3.0 >+ @ HWF SURYLGH OLQHDU FRQVLVWH
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however they cannot guarantee a line&wrmulate the LC-PIM for perfect visco-
HIDFWQHVV RI WKH VR @lxswpldsti@ Vandb/xed oiVID sbliddd A
LQFRPSDWLELOLW\ ,Q WAIR ftikdia¥dh for Ove TPV With
integration scheme is used to perform thfisplacements and stresses as the main
numerical integration. variables is performed. The von-Mises

5 HFHQWO\ D VFKHPHLRO G/ WHHFVOULRKPGDQG WKH 3
conforming nodal integration has beedd XOH DUH XVHG ,Q WKH QXP
proposed by Chen et al. [13]. In theiiKRZHYHU WKH VWUHVV Y
ZRUNV WKH WHFKQLT X Helirinatedantthe)prabiem Resoknesonly
is introduced in order to eliminate the errodlisplacement-dependent. The numerical
in the procedure of direct nodal integratiorresults show thathe LC-PIM is much
By using the stabilized conformingmore accurate thanthe FEM and possesses
QRGDO LQWHJUDWLRQ VA& #ppad bowK propedywHighy is WetyrR Q
FRQVWUDLQWY FDQ EH PmHeanim@IG f@ LtQeH pisgotglpsteplasiH Vv vV
in the solution can be guaranteed based 8nalyses which almost have not got the
the linear consistent shape functions [13analytical solutions. This suggests that we
Liu et al.have applied the scheme of nodaFDQ XVH WZR PRGHOV /& 3,0
integration into the original PIMs to give ERXQG WKH VROXWLRQ DQG
the linearly conforming PIM (LC-PIM) the global relative error of numerical
for elastic problems [14-16]. The LC-PIMsolutions.
possesses the fOIIOWing novel features: Strong formulation for visco-

(1) A simple scheme for local supporting|astoplasticity analyses of 2D solids

node selection is suggested based on Q WKH FROWH[W RI VPD80
WULDQJXODU RU WHWUD rlélns(u) VsueLz( Rdxd) { O

which overcomes the singular mome
sthes r|c fdis cement

PDWUL[ LVVXH DQG HQV%?e c\ﬁ‘ﬁ E ‘ﬁ 5959,

L HG L
computing PIM shape functions; (2) Shape (

u) =e(e) +p(&) (1)

functions generated using polynomial basis
functions and simple interpolation ensure ~ where &eR7'™ is an internal
that the PIM shape functions possesses ##{DULDEOH nlL @ fd@rKthé Kase
least linearly consistency and the DeltRl SHUIHFW YLVFRnMHQ@DVWR
IXQFWLRQ SURSHUW)\ ZHKor F dad bfCthendovepicy harierinyg
implementation of essential boundargnd m d,(d 23 IRU WKH FDVH |
conditions; (3) The use of nodal integratiokinematic hardening;p(&) e LZ(Q;R;”;:)
scheme with strain smoothing operatiois an irreversible plastic strain tensor;
converts the domain integration requirednd e(s)eL*(R%Y) is elastic strain
in the weak form to boundary integrationtensor satisfyinte(c)=C'¢ LQ ZE&LFK
RQ WKH ERXQGDU\ RI Wik H foufthPoRI&V t€msQrDof FrigadD Soropic
which ensures the conformability of theelastic material constants.

GLVSODFHPHQW 'XH WR WKid\gEscRR Hidserl Hite Vévoidtidry
WKH /& 3,0 LV HDV\ WRyRPIPHPEQRWKH SODVWLF
JXDUDQWHHV PRQRWRQL{y & REH M HREH! DlE@E VWL EOH
FRPSXWDWLRQDOO\ HI¢FLHSMVLRQ DQG DQ DVVRFLD
This paper attempts to further WKLV ZRUN ZH XVH WKH Y}
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IXQFWLRQ DQG WKH 3UDOMWKWGOGEXBROVNR WRZODX\OHRQ > @

let p DQG EH WKH REHYWWHYEY DSSUR[LPDWLR
YDULDEOHV RI WKH JHQ HIBenepusty wiiygle @%t@hssnd
and X=(s,0) be the corresponding ARZ UWrteh\n terms ofadmissible
JHQHUDOL]HG acRL"{iy e 3tespesH, Q WKLV SDSHU WKH GX
hardening parameter describing interna$ used for the LC-PIM.
VWUHVVHYV b ttbexht adrtissible Galerkin weakform

VWUHVVHV VHW  ZKLFK LV Brpf Q&Y Bi&todidBiid HidbieHif
containingd DQG GH¢QHG E\N gection 2 can now be stated generally in
bN:6 )6 a Galerkin weakform as follows: Seek

(2)
where ) is the von-Mises yield function U H's ;R? suchthau w, on *, and
Z.KLFK LV SUHVHQWHG VSI;}FI_‘.B(;!:RPO/P\HJR;Hd GV!_:|O|(M%HQW
visco-elastoplastic cases.

) WKH IROORZLQJ HTXDWLRQV

In the case of perfect visco- _

HODVWRSODVWLFLW\ W [,6):e()dQ=[b-vdQ+| Tvdl @y Hy
and. DUH RPLWWHG VR WKH VRO NI VHV \I HNOG

function is , —(Hdev(c)”—(fy) if |dev(e)|> o,
p=1v (6)
@(6) =|dev(o)| - oy 3) 0 if |dev(e)| <oy
where I/ is the yield stress|jx| is the Time discretization scheme
norm of tensox andde\x) is the deviator Equations (5) and (6) are formulated
tensor of tensoxk. as a sort of time-dependent problem
7KH 3UDQGWO 5HXVV AdR ZheJ%iDdd t KD, V] . WAKgeneralized
form PLGSRLQW UXOislused as the @

time-discretisation scheme. In each time
(4) VWHS D VSDWLDO SUREOHP

0 if |dev(e)| <oy with given variables (u(t),s(t),a(t))

LC-PIM for visco-elastoplastic at time t, denoted as(u,,s,,a,) and
analyses of solids: a dual formulation  ynknowns at timet, t, t denoted as

, Q _W KH _ HQJLQ H_H UL Q(hl,c;dl)'NfﬂrﬁéQj\é\(i?faWés ard/ ll%blaced
elastoplastic evolution problem is usuallfby backward difference quotients: for

modeled ba;ed on the S0 -caljgimal O “instanceu is replaced byu' Yo where
dualformulation. In the primal formulation -'t

> @ WKH VWUDLQV DUHUYw (tH DM HEG Wi 142k i s Uhep D U\
variables and a discretization is requireime discrete problem now becomes: Seek

IRU VLPXOWDQHRXV DSSWURLPBWLWK DR P Wi f HG
WKH GLVSODFHPHQW DQG*S@dVWLF VWUDLQ (HOGV ,Q

. %(Hdev(c)”—(fy) if |dev(o)|> o,

J.Qc(ug):s(v)dQ:J.rNbg-de+J. t,-vdl') Wy e H})(Q;Rd) @)

1 (,9_ 0)_C71( 9 0) 1 S_H&l ()
_su u (g (g :|_v|:0 G:| a (8)

IAt £, —a,) “vla,-Ta,| (©®)
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h b 1 b - b triangular mesh (for 2D problems) which

V_V ere o - _) o~ 1 js generated naturally from the set of

t. @ )ty -t inwhichb, t,bp and N, (¢HOG QRGHV 7KH IROOR
t are body forces and surface forces #fill brief the point interpolation and

. nodal integration scheme with the strain-
timet,t, UHVSHFWLYHO\ smoothing operation in the LC-PIM.

,Q WKH SODVWLF SKDV %
G H ¢ Q Hom the Equation (8)(b) [21]. SREGW-VoWHUsKEpwLra

7KHUHIRUH WKH WLPH GLVFQHWIHD &% 13R® SRREQRPLD
will reduce into solving Equation (7) andi© Serve as basic functions to create shape
Equation (8)(a) which are in fact a dual XKQFWLRQV D Q G WKH LQWH
formulation containing both stress an@n @ small set of nodes in a local support
GLVSODFHPHQW DV ¢ H O @emaipidat eag eygrigp with othergupport
To solve the system of Equations (7) andomains. Consider a continuous function
D LQ WKLV SDSHU ZM HOEZBLEOWM RSV RGBFHPH

YDULDEOH E\ H[SUH V VL Q9rihg ¥sse-gasigripstiopoplepsy!ican v

in the form of displacemeni_ using EH DSSUR[LPDWHG L[Q@sWKH
(TXDWLRQ D DQG WHIPHS vXEVWLWXWLQJ LW
into Equation (7). The problem will then - " 9
EHFRPHV RQO\ GLVSODFHPREW:cHIHQ&HBwW®

and we need to solve the resultant form of : _
Equation (7) [21]. where n is the number of polynomial

W H WR»Y is complete polynomial basis
Discretization in space by the LC-PIM functions and is usually built by utilizing
,Q WKH /& 3,0 WKH SUREDRBP\GRIVQW K Li®Re) OH V
is discretized into a set df, nodes YHFWRU Rl 3,0 VKDSH IXQFWI
without having the connecting information .
RI HOHPHQWY +RZHYHU FEDERIORXE LFH® o0
around nodes are necessary and have to _ _
EH GH,QHG IRU SHUI RuPLQJThW&CHmpgt?PpH'XPB'P@d)aS'S
LOQWHJUDWLRQ ,Q WKH /& 8ragrs\f @nd g §3anp§ Wi g the
FHOOV DUH GH¢QHG EDVAIPNNRIIMEY KkH "HODXQD\

Pr(X) A x y Complete 1st order for 2D

o i \ (12)
p' (X) X Yy X° Xy y Complete 2nd order for 2D

2

The kth derivative of the shapebackground three-node triangular cell
functions can be easily obtained. They afgor 2D problems) are taken to perform
however not required in the LC-PIM dudhe interpolation of the interest points
to the use of strain-smoothing operatiolocated inside the cell. This can be easily
ZKLFK ZLOO EH GHVFUL E HntplénG@n@d pid vax EvwakisFaiduie @he

'Q WKH SUHVHOwW POQWREWLEBPbWpPpH!I WKH PRPI
monomials are used to serve as thPV WKH WKUHH YHUWH[HV R
basis functions. This also gives th&0ton aline (for 2D problems).
easiest and also workable way of node Nodal integration scheme with
VHOHFWLRQ LQ ZKLFK WKWHBLQHWPRHRWKLRIJ WEHUD W
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,Q WKH /& 3,0 WKH E BRdothihdR ¥a&pn@in Ffek OnOdd can be
DUH GH¢{QHG EDVHG RQ conktidcteH 6y DntiQgaN the sud-komains.

which is generated naturally from the set o WKH /& Zompawbltbtal
of N, ¢HOG QRGHV ,Q DGGhiMs—v u, iiHs EmboiiiRiohains
integration scheme with strain-smoothing. s associated with node LV PRGL¢HG |

operation [13] is adopted to perform thgpen et al. [17] as follows
integration. Basing on this Delaunay.

PHVK WKH SURE @ Hipid@R® " | *()®(x)d2= [V, (x)o,(x)aa (12)

o o5
into N, background celliz . associated where %) %/ Al X e ,; 13)
with nodek suchthat: I , LQ ZKLFK X® ok

<0
N LV WKH WRWDO QXPEHﬁfFﬂWOOImP@;j_ ”fc%?’?érﬁf\/“‘g?ﬁﬁe?
" SUREOHPV WKH EDF & RBpethipg,gomain. Substituting
Equation (13) into Equation (12) and

associated with nod& is generated by
gDSSO\LQJ *UHHQ IRUPXODWLI

sub-triangles of the triangles containin
n0d€k Ek — %J}s nkugdr (14)

The smoothing domain for each . 2 ko _
¢HOG QRGH LV FHQWH UW®Ereg\is [iadpundapy af the pregehing
constructed based on the background ceflémain for nodek and n*is the outward
of three-node triangles. As illustrated "noRUPDO YHFWRU PDWUL[ RI
YLIXUH WKH VXE GRPDLQ I?IWKH VPRRWKLQOTJ

: : : n the discrete version the
domain for nodd located in the particular

1 .
cell j can be obtained by connecting th(g\S UREOHP WKH VEDFHYV

1 .pd.
PLG HGJH SRLQWV WKH %e%é%au’ﬁggfa%e%bﬁw@ﬁFHG E
_VXU_IDFH WULDQJO_HV D%O.VO_ e bi ; H, Eﬁ(%uﬁnlaoo
J- Finding qut other gub-domalns locategt,a | c-PIM now becomes: Seek V"

in cells which contain nodé and the ¢,ch thau_ w, on *, and

J.QGQ (E(ug _uo) n Cflco) . E(V)dQ — Ile9 -vdQ + LN ?19 -vdl" for Vv e Vél (15)

Let ..M, be the nodal basis ofcondition Kronecker Mi 1 and
WKH ¢ QLWH GLPHMHQAKHROHDM®|V8DEH IVKHQ WKH GLVFUH
is the total number of nodes in the problemow becomes: seeking. V" such that
domain; and #: is the independent scalaru_.  w, on *, and
hat shape function on node satisfying

K= .[96‘9 (§(u9 _uo) +C7160) : E((Di)dQ—J.leg -.dQ —IFN t,-pdl =0 (16)

for i ,.,N, ZKLFK SUR& XfF WhereDthe parQ, depends oru_ and is
N_d nonlinear equations; in Equation (16) given by
can be written in the form of two parts [21] Q,(u,)=Q, - I 6, (2, ~u,)+C s, ): 5(p)d0

F(u) Q(u) R (17) (18)
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and the parP, is independent ofi. D Q@nditions imposed through Lagrange

is given by multipliers € WKH H[WHQGHG V\
P b d 3 TMd (19) equations is obtained
o DF(u}) G")(ub™) (f
lterative solution G o a7 \w, (20)

,Q RUGHU WR VROYH (TXDWLRQ
I1HZWRQ = 5DSKVRQ PHWWKMRG DFWPKY B(@) >and G is a

@ ORUHRYHU WR SBERWHILD\FDEDWHWKHIRP 'LUL
Dirichlet boundary conditions for theconditions such thaGu®* w,. DF isin
QRQOLQHDU SUREOHP ZIHDBPW MW KWKN\DYSHPROWKIITQHV\
of Lagrange multipliers. Combining theORFDO HQWULHY DUH GH¢QH
Newton iteration and the set of boundary

DF u®,...u®y 4 Fouf,..uPy, /(/vup,w_ (21)

'w

where rw <. which is the set conducted. The results of LC-PIM will
containing degrees of freedom of wholée compared with those of the standard
problem domain. FEM using triangular elements (FEM-T3)

We also note that the trial function[21]' In orde_r to estimate _the accuracy
u x for elements in the LC-PIM is theOf the solution of numerical methods

same as in the standard FEM and therefo U WKH YLVFR HODVWRSOL

the force vectorP, in the LC-PIM is XDQWLWDWLYH 1DLU DQG I

computed in the same way as in the FEI\fI)f. the numerical SOIUUOOS s needed. I.n
this assessment for visco-elastoplastic

A-posteriori error estimator PDWHULDO ZH XVH WKH IRC
,Q QH[W VHFWLRQ a\pNasteriori@xd? estinmafidh@®ased b
performances by the LC-LIM usingelements:’ to measure the error in stress

the complete 3 order polynomial are VROXWLRQ > @
ol h_ _h h_ _h :
. [ZIIQ?(G ):(6" o )ag]
ho_ _\i= 22
. : % -
(@) {,ZEJ.Q " :cth]
- . - 3
where is the numerical stress ian ahZZNj(X)Gh(Xj) (23)
element by the numerical methods. For j=1

WKH )(0O WKH HOHPHQW VWUHVV LV FRPSXWHG
GLUHFWO\ ZKLOH IRU wWweieN gx argthelReaisiappe functions
the element stress is computed by (areattriangles used in the standayd0 D QG
We|ghted) averaging Of stresses cGh (Xj) are stress ValueS at nOdF Of the
smoothing domains associated with th&ementof any numericaiethods. For the

/& 3,0 WKHe"(x;) @thudex; is
element> @ BOeErecovery ’ J j
VWUHVV LQ DQ HOHPHQW BRZEWE G CLUHFWOL ZKLOH
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o (x;) {is computed by (area—weighted)ul:r,1 |L0{/mKste[§) f/Of\t/'rEeRt - %OB'L l(Jgsm)ng;ex UH
averaging of stresses of elements or ql_‘J HPDLQV HODVWLF LWHUDW
smoothing domainsurrounding nodex;
> @ steps betwgen 0.03 andt 0.18 fo_r all
-two numerical methods as shown in Table

The quantityK can monitor the local 1. The material becomes plastictat0.21
VSDWLDO DSSURJ[LPDWL Riteratibk 1R The Buihker bf it€rddidhs iU
value of K implies a larger spatial error.Newton’s method of LC-PIM and FEM-T3
Also note that in the case the problemha® OVR VKRZQ LQ 7DEOH LV C
WKH DQDO\WLFDO VRO X Wut fh@ estvittdd ErrbFsR byyHEduatiovV U H V \

LV UHSODFHG E\ WKH (2p) BfA \G-PMMAkS HBOME thvo tih@sTess
the estimated errorK will become the than those of EEM-T3.

HIDFWAUURU Figure 5 shows the evolution

$ QXPHULFDO H[DP SO process of the elastic shear energy density

'Q WKLV VHFWLRQ W Kdev(@)) K Biwfouy ifferent gtime
PIM are observed through a numericdNstances by using the LC-PIM. It is seen
H[DPSOH FRPSXWHG IRWKIW WKW SORMEWLFLWY GRP
HODVWRSODVWLFLW)\ 7K mnspeaaining\poind u w 1R G
2D problems and the numerical results dhen at the corner containing poBit
LC-PIM will be compared with those of The comparison between the

FEM-T3 [21]. displacements of point& DQG WKRY\
2D plate with a circular hole: perfect Of point B DW GLITHUHQW WL
visco-elastoplasticity shown in Table 2. The results show that the

displacements of LC-PIM are larger than
_ _ hose of FEM-T3. This implies that the
[ 22 [u2? with a central circular | _pim is softer than the FEM-T3. This
KROH W@D@®LXVXEMHFWH Gropéfty cal bePilldstrated even clearer in
dependent surface forcgét) 50a atthe Figure 6 which shows the converaence of
top and the bottom edges. The rest of tiilee elastic strain energE:J.ch re,dQ
boundary is free. There is no volume forceversus the degrees of freedomtat0.2.

%WHFDXVH RI WKH O Esyisshawglepythat the LC-PIM
FKDUDFWHULVWLF RI \WiEHt ard ggs sy #pper@?%@?'\"f the
the upper right quadrant of the plateH [ D_F W VROXWLRQ KLOH WK
LV PRGHOHG DV VKRZQ 204Ves § leyegboundp g g
symmetric conditions are imposed on  This upper bound property of LC-
WKH OHIW DQG ERWWRPPINIGS] ¥y mPai®fulViK HheseQugdd-U
boundary of the hole is traction freeelastoplasticity analyses which almost
Figure 4 gives a discretization of thdiave not got the analytical solutions. This
domain using 81 nodes for a quarter o XJJHVWV WKDW ZH FDQ X\
plate. Assuming that the material is perfect& 3,0 DQG )(0 7 RU RWKH
visco-elastoplasticity with Young's moduluselement methods that give the lower
E 206 90C SRLVVRQYWO29DWRRKQG XVLQJ RQO\ WKH G
yield stressk¥ 450 DQG WKH LQRWHNOD&DWIBOH (¢HOG YDULD
for the stress vectol is set zero. VROXWLRQ )RU H[DPSOH 7D

The solution is computed in the timgdlobal relative errole (%) in the elastic
interval from t 0.03 to t 0.3 in 10 Stain energiE = o, :e,d0 between the

Figure 3 represents a 2D plat
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solution of LC-PIM and that of FEM-T3 This suggests that we can use two
att 0.3 ,Q WKLV FDVH ZH HYHRGROQYRW 3,0 DQG ) ((
QHHG WKH H[DFW VROXWLR QusWIR trieingDad XelEhverts W H

errore. It is seen that the errerdecreases bound the solution: in both

from 5.18% to 0.32% when the degrees displacement and stress solutions.

of freedom (DOFs) increase from 182 The reliability of numerical results

to 3306. These results illustrate clearly a LV KHQFH LQFUHDVHG

relative evaluation about the accuracy of We can even estimate the global

numerical solutions. relative error of numerical
Conclusion solutions without knowing the

HIDFW VROXWLRQ ,Q SD
models use only the displacement

DW QRGHYV DV WKH ¢HOC
their numerical performance is

quite straightforward.

This paper attempts to further
formulate the LC-PIM for more
complicated visco-elastoplastic analyses
of 2D using Delaunay triangular meshes.
The material behavior includes perfect

visco-elastoplasticity. A dual formulation T The a-posteriori estimated error
for the LC-PIM with displacements and K used in this work is shown
stresses as the main variables is performed. to be reliable in estimating the
The von-Mises yield function and the error of the stress solution of all

SUDQGWO 5HXVV ARZ UXOH Dnurheri¥aV Hn@thod€ uééH HFor
QXPHULFDO SURFHGXUH KRZHYBURMKHPVWWMWKW D S

variables are eliminated and the problem estimated error® of the LC-
becomes only displacement-dependent. PIM is about 2-3 times smaller
The numerical results of LC-PIM in than those of FEM-T3.

comparison with those of FEM-T3 lead to
the following remarks:

¥ The LC-PIM is soft and gives
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TABLES

Table 1. Number of iterations and the estimated errorK using the FEM-T3 and
LC-PIM at various time steps for the 2D plate with hole

FEM-T3 LC-PIM
Step
lterations R lterations R
t=0.03 1 0.0792 1 0.0357
t=0.06 1 0.0792 1 0.0357
t=0.09 1 0.0792 1 0.0357
t=0.12 1 0.0792 1 0.0357
t=0.15 1 0.0792 1 0.0357
t=0.18 1 0.0792 1 0.0357
t=0.21 3 0.0792 1 0.0357
t=0.24 4 0.0816 3 0.0357
t=0.27 4 0.0874 3 0.0329
t=0.30 4 0.0933 4 0.0327

Table 2. Horizontal displacementu, at point A(1,0) and vertical displacementv, at point
B(0,1) using FEM-T3 and LC-PIM at various time steps for the 2D plate with hole

FEM-T3 LC-PIM
Step
A VB uA VB
t=0.03 -0.312 0.4862 -0.321  0.4978
t=0.06 -0.624 0.9724 -0.642  0.9956
t=0.09 -0.936 1.4586 -0.963  1.4934
t=0.12 -1.248 1.9448 -1.284 1.9911
t=0.15 -1.56 2.4311 -1.6051  2.4889
t=0.18 -1.871 2.9173 -1.9261  2.9867
t=0.21 -2.184 3.4038 -2.2466  3.4852
t=0.24 -2.503 3.9016 -2.5688  4.0002
t=0.27 -2.823 4.4286 -2.8973 4.5524

t=0.30 -3.159 4.9956 -3.218  5.152
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Table 3. Global relative error e (%) in the elastic strain energy E :J‘ch 1e,dQ at

t 0.3 between the solution of FEM-T3 and that of LC-PIM for
the 2D plate with hole

Elastic strain energy Elastic strain energy Global relative error (%)
DOFs E, E, E, E
e —— 1000 u

by FEM-T3 by LC-PIM 1 )
182 0.2803 0.3109 5.18
256 0.2871 0.3057 3.14
462 0.2907 0.3032 2.10
650 0.2929 0.3018 1.50
870 0.2942 0.3010 1.14
1122 0.2951 0.3004 0.89
1406 0.2958 0.3000 0.70
1722 0.2963 0.2997 0.57
2450 0.2969 0.2994 0.42
3306 0.2973 0.2992 0.32
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Figure 2. Background cells are based on the Delaunay triangular mesh and the

smoothing domains are associated with nodes in the LC-PIM
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Figure 3. Plate with a circular hole subjected to time dependent surface forces \&4hd
its quarter model with symmetric conditions imposed on the left and bottom edges
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Figure 4. A domain discretization using 81 nodes for a quarter of plate with a circular
hole subjected to time dependent surface force3 W
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Figure 5. Evolution of the elastic shear energy densinmv(&h)‘2 / (44) using
WKH /& 3,0 DW VRPH GLIITHUHQW WLPH VWHSV IRU WKH
a)t=0.1;b)t=0.15;¢c)t=0.2;d)t=0.25

a)t 0.1 byt 0.15

ot 0.2 dt 0.25



22 Journal of Science Ho Chi Minh City Open University - No. 3(8) 2013

Figure 6. Convergence of the elastic strain enerc E :J.ch 1e,dQ) versus the number of

degrees of freedom using the FEM-T3 and LC-PIM at 0.2 for the plate with hole (the
VROXWLRQ RI WKH (6 )(0 7 XVLQJ D YHU\ 4+ RHMVK HKER KX
used as reference solution
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