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ABSTRACT

Natural frequencies and critical loads of functionally graded single span beams
UHVWLQJ RQ :LQNOHUYV HODVWLF IRXQGDWLRQ ZLWK
LQ WKLV SDSHU 7KH DQDO\WLFDO PRGHO RI WKH EHD!|
deformation theory, however, the transverse shear stress is derived from expression of
the normal stress and equilibrium equation and thus, its shear correction factor is then
obtained analytically. The effective material properties of the beam are assumed to
follow simple power law form. The governing equation of motion of the beam is derived
EDVHG RQ /DJUDQJHTVY HTXDWLRQV ZLWK VSHFL¢F E
/IDJUDQJHTVY PXOWLSOLHUV &RPSDULVRQV EHWZHHQ V
results in the literature show a good agreement. In addition, parametric analysis is
carried out, including material distribution, boundary conditions and axial load as well
as foundation factor and slenderness ratio.

Keywords 9LEUDWLRQ DQDO\WLYV %XFNOLQJ DQDO\V
elastic foundation.

Introduction the constituent materials. Since introduced

The development of the materialst @ WKH V. )*0V KDYH EHF
science now aims to answer to servicE PQ\ WHFKQLFDO DUHDV VX
conditions and it requires that materiald® HURVSDFH GHIHQVH LQGX:
performance vary with location withinbiotechnology. Because of the widespread
the component. These consideration? SSOLFDWLRQV ~ WKHVH VW
form the essential elements of the logiEGMSs have attracted the attention. The
underlying the conception of the majoritylevelopments and applications of FGMs
of functionally graded materials (FGMs)after the year 2000 were summarized in
They are special composite materials i€ Study of Birmat al(2007). Different
which material properties vary smoothlj@'€as are related to various aspects of
and continuously from one surfacdheory and application of FGM including

to the other to achieve the desirabld QLIRUPLW\ RI WKH PDWHUL
requirements. This is achieved bySUREOHPV VWUHVV VWDEL

gradually varying the volume fraction of PQDO\VHV —~ WHVWLQJ  PDQ>
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GHVLIJQ DSSOLFDWLRQVRabQ G.Hé&t BIF20AR)Uredddgated Bh® V R
UHAHFWHG LQ WKLV SD Spbst-buckling behavior of functionally

'XULQJ WKH sDvw 9aded Tengshenkorpgams under general
frequency and buckling analysis of beant R X QGDUV FRQGLWLR Q vV E\ Pl
structures has attracted more attentigiplution method. FG beams are considered

IURP WKH VFLHQWL¢F FRYEX&PWH p/EAHEWHE[HGE
by increasing number of publicationd!"ged-hinged end conditions. A closed-
devoted to that. Most of the investigation®rm solution is achieved for the post-
performed on the buckling problem arouckling deformation as a function of
concerned with determining the criticaIV\_/_K H HI H UWHG D[LDO ORDG V
buckling loads and their associategitical buckling load. In order to study
mode shapesNayfeh and Emam (2008)the vibrations taking place near a buckled
presented a closed form solution for thdl TXLOLEULXP SRVLWLRQ Wk
post buckling analysis of isotropic beame UREOHP LV H[DFWO\ VROYH
based on the EBT. They studied criicaAF XFNOHG FRQ¢(JXUDWLRQ RI
buckling loads and the associated mode® beam. Mohanty Seét al (2010) used
shapes. They also studied the free vibratioW KH ¢ QLWH HOHP H Q W PHWKR
behavior of the buckled isotropic beamB&am theory to analyze free vibration and
in the postbuckling domain. This type oftability of a functionally graded origin
vibration analysis means investigating thB€am and a functionally graded sandwich
YLEUDWLRQ FKDUDFW H U P&agy a0y Wigkter Falasiigp iQugdatiems p F H
LQ WKH YLFLQLW\ RI D EXB@@ﬁ"(@UFRVgléUXUWLQFQQ IRF.
$IWHUZDUGYV WKH\ H[WHQEHER Mk Rl u'LRRIPNIU HOD)Y
DQG IRXQG DQ H[DFW V R xWaenRiodistEnytionskqy TEaugRey
buckling behavior of symmetrically@nd critical load of hinged-hinged
laminated composite beams (Emam anﬁ H D PV LWK W K H_ v D_'_D H PHW
1D\IHK 7KH\ LQY HWEs193iednhe pargpriic instability of
critical buckling load and free vibration W K_H VH EHDPV VXEMHFWHG W
in the postbuckling region. An improved©@d in Mohantiet al(2011).
third order shear deformation theory is 7R WKH EHVW RI WKH DXW ¥
employed to investigate thermal bucklinghere are some approaches used for static
and vibration of the functionally gradedand forced analyses of functionally graded
beams is presented in (WattanasakulpongHDP EXW IUHH YLEUDWLR
et al ,Q WKLV VW Xapalysi®Vv BfHFGb Lbéains on  Winkler’s
method is adopted to solve the eigenvalgastic foundation with general boundary
problems that are associated with thermabnditions based on Lagrange’s equations
buckling and vibration in various types ohave been not presented in literature. In
immovable boundary conditions. FallahSUHVHQW SDSHU /DJUDQJHY
et al (2011) presented a simple analytcaV SHFL¢{F ERXQGDU\ FRQGLYV
HISUHVVLRQ WR VWXG\ QWt Qagarde’t) mulkptierg Ldatd) D&M R Q
and post - buckling analysis of FGM Euleto formulate the governing equation of
%HUQRXOOL EHDPV XQGHUWLDR®@ R Il RUKH SA\Q@HG + S
WKH VDPH DSSURDFK DQlampger @id Olamypel H tlab @y Beams.
studied thermo-mechanical buckling andhe analytical model of the beam is
nonlinear free vibration of functionallydescribed by using Timoshenko beam
graded (FG) beams in Fallehal (2012). WKHRU\ DQG 9RQ .DUPDQ UH
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PDWHULDO EHKDYLRU EXW,Q/ KWWV FROSHFW)I*R@HDP
factor is determined analytically. TheE\ D Q D [L B,ConONRRIE’s elastic

material properties of the beams are assunfedindation have been investigated. The

to follow simple power law form. Somelength of the beams Is; thickness ish
QXPHULFDO H[DPSOHYV D Udrd miith sbH &Z R W WHR RWXIQ D W
WKH LQAXHQFHV RI VRPH &xPRaarfy HhY BrigMoRdhdnn ThPRg.

on vibration and instability behaviors. (1). The Winkler foundation has elastic
Formulation factor per unit length of the beadmn
Beam model

JLIXUH $ KLQJHG # KLQJHG )* EHDP RQ :LQNOHUTYV
EG Uchramic) b

%;g;gg s ggﬁﬂ

The effective material properties ofz h/2P P DQG Z KHQP,.

)* EHDP LQFOXGLQJ ERXQJIJTWDRRIGRQX¥LPRVKHQNR EF
Poisson’s ratio¢and shear modulus as WKH GLVSODFHPHQW (HOGV
well as mass densitygrade continuously y xt u, xt z , xit

in the thickness direction according to 2)

power-law distribution in terms of thew Xt WwgXt

volume fractions of the compositions

(Wakashimaet al DV IROORZvVwhere uxt wxt DUH D[LDO D
, 15" transverse displacements of any point of
P R R -3 R (1
h 2 EHDP UHYV S ki, XtH Cere

D[LDO DQG WUDQVYHUVH GL

properties of FG beanR, and R, are the B IEQ%GDC\)NHL ROQL QR |I_It ﬂgﬁ;eg?mﬂ;ivg\l;\/{?

effective material properties of the top —

layer (ceramic) and bottom — layer (metal) $FFRUGLQJ WR 9RQ .

FRQVWLWXHQWMs theHMdIgnher W HYOHON LtReQ Nokab Strai, W K H

IUDFWLRQ H[SRQHQW WKD VEghkat stvdill S B QLON WWKHH WY YD X L
It is clear from Eq. (1) that whenbeam are presented as:

Z K H WHis the effective material

Mo 1 WS ¥ il w{
i X 2 WX © X % To 0 XNV 3)
JURP (T ZH F D Qof largkHlispasehgvit. In the case of the

the relationship between strain andSLVSODFHPHQWwla *Yos\ VP D
displacement is nonlinear due to the effetihe behavior is linear.
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The normal and shear stresses are given by:
«V E z wWKG z (4)

XX

DQG LQWHUQQOVIKHDQ | EBIRMG L Q JVE Rre pte3atited by:

2a
N, oA Mo 1 WS g

X XX

wy W
— M, B
X 2 wxeg ox y

1 WS p W 0 ka, Mo [
2wx©<_<| X z st «

)

ZKHWHe, Db, ,A, DUH H[WHQVLRQDO FRXSOLQJ EHQG
respectively and taken as the following forms:

A, B, D Fz1z ZdA A, B zdA (6)

XX XX XX
A A

andk isthe shear correction factor andis usually taken the 5/6 value as homogeneous
UHFWDQJXODU FURVYV + VHFWLRQ 1HYHUWKHOHVV L

HTXLOLEULX® H¥%DWHPGLQJ WR
X wz

1

2
bA dB §
s 3 : ? 2 2 dA.. (7)
A Gz
Xz A ©

=

Az B z3 E 1 dh& p __Bu g P (8)
A Bxx AxxDxx Bxx AxD

XX XX

It is from Eq. (7) that the sheametween ceramic’s Young modulés and

correction factok,is not constant andmetal's Young modulug,, $V H[SHFWH
depends onthe effective material propertigfe traditional shear correction factor

and material contraste(/g,) of the FG (5,5 0833} is recovered in two

beams. This phenomenon is detailed Msesn 1andk 0 ZKLEK EFRUUHVS
Table | showing the variation of shea{0 homogeneous beams.

correction factor with difference values
Rl SRZHU = O DKZamt[tBdRr&tiBl Q W

7TDEOH 9DULDWLRQ RI VKHDU FRUUHFWLR@ndBF¥RIO ZLWK

n E/E,
K 1 5 38/7 8 10 15
0 0.8333 0.8333 0.8333 0.8333 0.8333 0.8333
1 0.8333 0.8304 0.8304 0.8308 0.8312 0.8319
2 0.8333 0.8596 0.8602 0.8625 0.8634 0.8645
5 0.8333 0.8674 0.8678 0.8693 0.8698 0.8703
8 0.8333 0.8582 0.8584 0.8593 0.8595 0.8598

10 0.8333 0.8532 0.8534 0.8541 0.8542 0.8544
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Equation of motion systems are the equations of constrain for general

The Lagrangian functional of problemPoundary - condition cases showing in
(Clough et al LV JLYHQ E\ Table Il; K is kinetic energy;U is strain
energy andw is work done of beam on

— |
KU W g fp ot ®) HODVWLF IRXQGDWLRQ ZLWK

where  are the Lagrange multipliersl©@d- They are presented by:
which are also support reactions; x

2 2a
W W w | ®
K —3|A —g 0 « §B_O_VM |D—§V@X
L tow 1 «Wo t t1 wito W
N W §2
W = kw, Xt wyxt dx X3 —027 dx (10)
L 2 L W ©
1 W, 1 Wv§2"32 W 1 w 20 - W 2 8 Wa%
u laa, Mo 1 WS o oop W UE L WHE L , Wo o S Wy
2L X2WX©<_<| IXW X 2 X@© %Wlx W o X e \

In which k,is Winkler's elastic x°x'x?..xN ! and time - dependent

foundation factor. generalized coordinates,, c. in order to

,Q WKLV SDSHU W Kapply Gdgkasge Bdustibris QCIdugh al
IXQFWLRQV FDQ EH DSS19Bj)larddeVad G E\ XVLQJ
space - dependent polynomial terms

N N
U, Xt ibnth1 o Xt icnth1 (11)

H )

The governing equations will be derived by using Lagrange equations (&bugh

N

] N 1
W, Xt a,tx

al DUH JLYHQ DV IROORZV
L L (12)
W AU g

whereq, DUH GH¢{QHG DV

0. &, n 12,...N

d, b,y n N,.2N

G Cnan n 2N,..,3N (13)
UGy m @

After substituting Eg. (11) into systems of equations of motion of a hinged
Eq. (10) and then using the Lagrange’s hinged beam as follows
HTXDWLRQV JLYHQ E\ (T WKH FRXSOHG
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1Lli'NxN K/‘;V NxN a(_('; NxN ° P @N : _|‘<1L3a"r\?xN Ya &/54 NX4?< ;_'t - (
E@N é_ZE:'NxN Ie]l’;? NxN K\; Nx4:: lsz/‘lt :
?’Lji‘NxN 01/4 ?’in‘NxN I%ALii NXN aD_'@4 zo;%%tt :
5161.4)(,\, Y, pd N B0, »@, « é
Ki ap t i‘NxN Ko ap t NXN 5K st ant NXN "3 42 a, t- (14)
KZN]'L a" t iNXN B@N czl‘/4 :@@N :8@42 bn t z@
KM a, t 2 ® @, % P@ » @« ‘at"
NxN 4 N 4 te
D@N :@@N :0@\‘ })@éﬂ
. - Y2
M @N B @N ® @N :8@42 an t7 o .
® @, M, @, M@, P@u« 2 . ° 0 o %
« Q@ t 3 ® EZ)
® @N M, @N M 33 @N :@@4« : :64 : :
E@N :@@N D@N m@4(—<| n to o ¢ .
0 - g
where K2 are linear stiffness® D W U L F HVhe terms of matrice  Ki'2
KM2 are nonlinear stiffnessnatrices are given by:
which are dependent orgeneralized o 42, i1 ,it'g ..
coordinatey, t  M;? aremass matrices ' " 2 b 12N
i Ra Wa
and two rest of matrices;? and K"2 Iﬁw « ¥2 gigtgy (15)
HILVW GXH WiRultipheid) &nQ J L/2 L] 12,..N

Winkler's elastic RXQGDWLRQ %FHV
K® are geometric stiffness matrices

RZLQJ WR WKH HIITHFW R

tﬁthErW}&%fRér matrices in Eq.

‘(\‘1:51% )[;:an be referred to Simsg010) and

&Patd RgdyRiP(2012).

Table 2. Equations of constrain with different boundary conditions

Boundary conditions

Equations of constrain

w, L/2t Ow,L/2t Ou, L/2t O
Hinged — Hinged (H-H)

u, L/72t 0

w, L/2t Ow,L/2t Ou, L/2t O
Hinged — Clamped (H-C)

Uy L/2t 0, , L/2t1 0O

w, L/2t Ow,L/2t Ou, L/2t 0
Clamped — Clamped (C-C)

up L/2t 0, o L/2t1 0, o1 L/2t O
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Solution algorithm
The shortened form of the governing equation Eq. (13) is written as follows

M@ te KL@{V Ke KMqgt 24t "o (16)
<
whereqt At bt ct Dt

JRU IUHH YLEUDWLRQFRQDIOVYVLM WHKXHWWLIPM LV IF
— dependent generalized coordinates caondition that the determinant of the

_ _ system of equations given by Eq. (16)
EH H[SUdtt)V ¥eDand the matrices st vanish.

KM@ty LV VHW WR JHUR LQ fTL W WK%_MV
- . K- KY K | o
situation results in a set of frequency

equation that can be shown on following

R VWDELOLW\ DQDO\VL
form with Zis the natural frequency of the ) _U _ © \_ QDboOl
beam: of buckling load N, is determined by

solving the following equation:
‘KL KW ke| o (19)
W LV QRWHG WKDW WKH D[LDO, IRUFH DQG
Igorithm

Winkler's elastic foundation factor Astep-Dby—stepofsolutiona

appear in the dynamic equation allows &V ‘? UHVHQWHG LQ D ARZFK
investigate their effect on free vibration #DVHG RQ WKLV DOJRUL!
behaviors. Eq. (17) is general form foProgram using Matlab was developed
YLEUDWLRQ RI D[LDOO\ PR OéfTOt@ﬁatgfﬁ'df qyency and

which can be used to calculate the natur(érlItICaI € accuracy of the program

IUHTXHQFLHVY ORDG IUHTHBEN V8 W H: W HRY

(18)

K- KY K°q &M 0 (17)

Figure 2. Flowchart of solution algorithm

Data of problem Compute general matrixes
L,b,h, N, kz, Em, pm, Vin, (K], [K™],[KOLIK™, [M]
Ee, pe, Ve ™ [Eq. (/5) and refer to
Nguyen and Nguyen (2012)]

-

Compute material properties Compute natural frequency
E, G, p, v [Eq. (/)] [Eq. (/18)]
l and critical load N,
[Eq. (/9)]

Compute general coefficients
Axm Bxxa Dxx-.a A.\z: ].'\9 IB; ID. ks
[Eq. (6), (7), (10)]
|

End
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IXPHULFDO H[DPSOHVshear moduluss as well as mass density

,Q WKLV SDSHU WZR QXBrtl the FuRdBort$ [ & RSumEl ¥action
are presented and discussed to verify the [ S R Qx Hu@l\dhange continuously along
convergence and accuracy of the proposedl. WK EHDP WKLFNQHVV VKRZ

SURJUDP (VSHFLDOO\ ¥édiingd tHat bbanfslnfakbdinetR Q

and buckling analysis of FG Tlmoshenkf(Em —70GPa, p, =2700kg | m* v =0.3)

beam acted on elastic foundation arc

thoroughly investigated through somend ceramic

HIDPSOHV =~ 6RPH QRQ (E =380GPa, p, =5700kg / m’,v.=0.3),
parameters have been used in this paper ..$ e ‘o _
follows the non — dimensional Winkler'sthe variation of the non — dimensional

tive terial, properties along the
modulusp k,L*/E,! WKH GLPH fi(ZIinés r@ﬁ_gg;r/n are displayed in Fig.

fundamental frequency o,/ ZA/E,I  (3). It can be seen that effective material
and non — dimensional buckling loagyroperties vary quickly near the lowest
N Lz/JzEml _ surface for k land increase quickly
“r _ _near the top surface for'l ORUHRYHU
It is again noted that all effectiveottactive material properties _ change

PODWHULDO SURSHUWLHYV ifdady afohtie Yhicknss Brb&am@tien

Young's modulusk, Poisson’s ratio¢and k 1 and nonlinearly whei z1.

YLIXUH ODULDWLRQ RI WKH GLPHQVLRQOHVYV <RXQJYV P
the thickness of beam

0.5
0.25 +-N-¥-------- :
So-
-0.25 ~
-0.5
1 2 3E/Em4 5 6 1 15 0m )
Verifying the convergence WKHVH WDEOHV ZH FDQ VHEF

Table 3 shows the non - dimensionaN 8 WKH QXPHULFDO UHVXOW
frequencies of FG beam for variousoN 8 LV XVHG IRU WKH IROORZ

numbers of terms in displacemen@ OHDUO\ WKHUH DUH WKH
functions N in different boundary researched parameters between traditional
conditions and L/h ratios when moqe| & 5/6) and proposed one.

b 05mp 100k :  ZKHUHDV  7DROV G| |\HUHQFH wKXV FD

present the non - dimensional bucklin
load at the same conditions in order t FFRXQW IRU DFFXUDWH DQEL

VWXG\ WKH FRQY HUJHQ FRPesiywwhen [ glendesnasy iatioy of
LQYHVWLIJDWHG LQ WZR lrepnwig quita/scalb Ut i @99 nated WatR Q
factor k_is 5/6 as homogenous section anidhe hinged — hinged (H-H) beam has the

is calculated analytically as Eq.(7). Frontowest frequency and critical load while a
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beam with clamped — clamped (C-C) endlight growth in both non - dimensional
FRQGLWLRQ KDV WKH K Lfldqiencws Br@d HOcklifigRdaesRoWiHJUtO

IRU DOO GLITHUHQW NLQtke iRcre&seliR h radbKHUH DUH D

Table 3. Non - dimensional frequencies of FG beam for
various boundary conditions and L/h ratio

Hinged-Hinged

Hinged-Clamped

Clamped - Clamped

° L/h=5 L/h=10 L/h=20 L/h=5 L/h=10 L/h=20 L/h=5 L/h=10 L/h=20
5/6 15949 16.987 17.416 22.366 26.408 28.472 33.201 56.261 105.15
‘ Eq.(7) 15976 17.000 17.421 22466 26.474 28.498 33,561 57.015 106.75
5/6 15.305 15.839 15.988 20.279 21.884 22.368 26.429 29.897 31.048
° Eq.(7) 15.319 15.844 15989 20.329 21901 22.373 26.539 29.939 31.051
5/6 15.304 15.839 15988 20.279 21.884 22368 26.429 29.897 31.048
10 Eq.(7) 15.319 15.844 15989 20.329 21901 22.373 26.539 29.939 31.051

Table 4. Non - dimensional buckling load of FG beam for
various boundary conditions and L/h ratio

Hinged-Hinged

Hinged-Clamped

Clamped - Clamped

Nk L/h=5 L/h=10 L/h=20 L/h=5 L/h=10 L/h=20 L/h=5 L/h=10 L/h=20
i 5/6 4.6042 5.1275 5.3602 7.6949 9.625 10.516 19.677 56.087 195.29
Eq.(7) 4.6199 5.1358 5.3631 7.7502 9.657 10.527 20.110 57.603 201.26
5/6 4.2943 45173 4.5784 6.520 7.291 7.519 10.470 12.740 13.483
° Eq.(7) 4.3030 4.5198 4.5791 6.548 7.301 7.521 10.626 12.785 13.513
5/6 4.2943 45173 4.5784 6.520 7.291 7.519 10.470 12.740 13.483
10 Eq.(7) 4.3030 4.5198 4.5791 6.548 7.301 7.521 10.626 12.785 13.513

9DOLGDWLQJ

program

elastic factors and then compare with

WKH D Fpresend siudyRd vy dbyeHi@ Me results
JLYHQ LQ WKRVH SDSHUV D

7KH WZR IROORZLQJCapPspeghginles pLp
at verifying the accuracy of present
formulation and computer program. The

¢UVW H[DPSOH FDOFXODWHNenddhal bRy Wity Hbr QRQ
- dimensional frequencies for differentyy k yHH GLIIHUHQW EHDPV &

GLPHQVLRQOHVV D[LDO QBRDEGNgeRAfRs dk QNR&ithTY

V

Buckling and free vibration analysis
Fig.5 shows the variation of non

VHFRQG H[DPSOH GHWHUPE G

the fundamental buckling loads of FG

FRQ

JURP

: : arious L/h ratios (L/h 5,10,2C) for
the results presented in studies of Cheng ( 10,20)

et al (1988) andvokoyamat (1996). The 2 100E/E, 1

FOWTR

WKLV

taty 9o qll Ghgwndary
OV WKHUH LV D V

beam under various boundary condition§ the valueswhenk ULVH TURP
with those of Rahimi (2012). Thesdhen this trend continues happening with
comparisons are provided in both Table ¥ HODWLYH DPSOLWXGH 3V F
$V VHHQ |1URP bgarp ayewhs eoespiest Rygkling

DQG 7DEOH

¢ J >

WR
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loads and H-H beams have the smallestgimensional critical loads rise as/h

RQHV 30XV WKH HITHFWyBWERY H$ PPHDNVRCGIRIU DOO .

and L/h ratios on H-H beams is by farc.c peam has the biggest rate.
VPDOOHU WKDQ & & EHDPV $GGLWLRQDOO\ QRQ

7TDEOH 7TKH ¢UVW WKUHH QRQ GLPHQVLRQDO IUHTXIH
'LQNOHUYV PRGXOXYo. IRU

Hinged - Hinged Hinged - Clamped
Modes , ([DFW ([DFW
No L J solution Yokoyamat Present solution Yokoyamat Present
(Cheng (1996) study  (Cheng (1996) study
1988 1988
0 8.21 8.22 8.215 10.63 10.63 10.627
1st 0 0.6 347 3.47 3.467 7.32 7.33 7.324
063 06 821 8.22 8.216 10.46 10.49 10.482
0 24.23 24.31 24,229 25.62 25.71 25.617
2nd 0 0.6 19.22 19.31 19.222 20.93 21.03 20.932
06g 0.6 2059 20.67 20.591 22.20 22.30 22.208
a 0 0.6 35.08 35.48 35.176  35.7 36.16 35.853
063 06 3586 36.25 35.952 36.50 36.90 36.609

Table 6. Fundamental buckling load for FG beam under various boundary conditions
(L=0.4m, h=0.04m, b=0.08m)

Fundamental buckling

load 10kN k=0 k=2 k=4 k=8 k=10
Clamped - Clamped BHODWLYH HUURU PD]

G.H. Rahimi (2012) 3.96 2.80 2.66 2.53 2.49

Present study 3.918 2.751 2.624 2.513 2.471
Clamped - Hinged BHODWLYH HUURU PD]

G.H. Rahimi (2012) 2.12 1.50 1.43 1.37 1.34

Present study 2.088 1.476 1.409 1.349 1.326
Hinged - Hinged 5HODWLYH HUURU PDJ[

G.H. Rahimi (2012) 1.07 0.75 0.72 0.69 0.68

Present study 1.07 0.765 0.727 0.685 0.675

The relative errors of non -turn leads to the dramatic increase in this
dimensional buckling loads betweenYDOXH VWDQGLQJ DW WKH ¥

traditional modelk, 5/6 and proposed K 4 after that it levels off for all beams.

model are displayed in Fig.6. Although the QWHUHVWLQJO\ & & EHDPV
IDFW WKDW UHODWLYH HUWWWRU LYKTOIHVH tVEB DBV WIKF
LQFUHDVH LQ WKH SRZHddes. ODZ H[SRQHQW LQ
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Figure 4. Variation of dimensionless Figure 5. Relative error (0.1%) of
EXFNOLQJ ORDGV ZLWK N Idirignsionless®uckliirgUoiddith k for
boundary conditions for a=100, L/h=5 and different boundary
conditions
40 ———/h=5 14 -+
----L/h=10 et
= 3° . 12 - —a—C-C
E - "‘1 | —a+— C-H
2 S S —e—H-H
%025 - = " n
Z 8 ||.I \'\
gzo e [ "
= 26 [/ ™ “w,
515 = |; . "
] (] s .
g 10 7 E : |||III. A Wy \H‘\l-‘-\"& .l‘ l‘ "'I—..
Z 5 5 - |I,'I_-". e b L _
l'l.-" oy vy iy
0 - T T ! ! 0 ‘|IJ T
° > ¥ o 20 0 5 10 k15 20

The differences of non - dimensionalinear. This upward trend also happens as
buckling loads of H-C beams with thethe length to thickness ratio rises to 20 and
different values ok in case of foun./h then it level off for all the values of.

ratios (L/h 10,20,30,4) and D 10,10C Fig.7 gives the information about

are presented in Fig.6 The most strikindimensionless buckling loadswith L/h

IHDWXUH RI WKLV ¢JXU tdtiok Yor W oD W 1\2|5GhBdd gdhdfat

LQFUHDVH LQ WKH SRZHERXQOCBUH[FRQIGEQWLR@V & &

turn leads to the dramatic increase inno8Y PHQWLRQHG EHIRUH WKH
GLPHQVLRQDOV EXFNO\aud 0O RNRHGtNe indr¥aSdif the (afueé

when k di. It can be also observedof k for all given boundary condition.

that there is a rise in non — dimensiong QW HUHVWLQJO\ & & EHDPV

buckling load J as the values ocgoup JURZWK UDWHV ZKLOH + + E

and the growth rate is equal for all givesmallest ones. It also demonstrates that

L/h UDWLRV %\ WKLV , PHEQ /h\\e&KW KHH | | B YU idrhdnk

Winkler foundation on critical load isstable for every such a beam.

Figure 6. Variation of dimensionless Figure 7. Variation of dimensionless
buckling loads of H-C beam with k for buckling loads with L/h ratios for
YDULRXV / K UDWLRYV DQ G100, various k and different
— . boundary conditions
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Natural frequencies and critical loads of functionally graded single span
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Figure 8. Variation of dimensionless Figure 9. Variation of dimensionless
fundamental frequencies of H-H beam fundamental frequencies with
ZLWK GLPHQVLRQOHVV D[LBQPHRD/GAR Q®WHWDYV D[LDO ORDG
L/h=20 and various k L/h=20, k=1 and various boundary
conditions
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Fig.8 represents the dimensionlessnd shear correction factor as well as
fundamental frequencies H-H beam withVinkler foundation factor together with
GLPHQVLRQOHVV iD [teim® of0stamdeyness ratio on buckling load and
p 10L/h 20 and k 1,2,5,10 Z K H U ratvisal frequency of FG beams. It is found
these ralationships  under differenthat shear correction factor of FG beam is

boundary conditions in the caseQRW H[DFWO\ DV KR P_R JHQ
D 100L /h 2ck 1 are highlighted in ¢&n effect on responses of beam especially

Fig.10. The frequencies result in differen%'((:3 gefr\?\/ \IiViItQh smaLIJI le\?rll_derJraEi)oa. InJ WK
values of k(Fig.9) and each type of Q Q Q

XS WR OHDGV WKH VLJQLg¢

boundary copQ|t|0n (Fig.9) decllnes tq:)oth dimensionless fundamental frequency
zero at its critical load before going up

DIWHU WKDW ORDG &0 HOMDm WA il 1k 10"

the value of andJwith the increase 6LPLODUO\ WKHUH LV DOV

in the value ofk for all given boundary gimensjonal fundamental frequency and

FRQGLWLRQ $JDLQ & & EriddiRodRY Winikidd f&:Rﬂgtibh'Mé%r

dimensionless fundamental frequenciesnd material distribution factor go up.

and dimensionless buckling loads. :KHUHDV WKH GUDPDWLF LQA
Conclusion happened in the casedl IRU DOO EHDI

Free vibration and stability analysi WKH IRUPHUTV HITHFW LV OLC

. : ,Sny far highest values of natural frequency

of functionally graded beams on Winkler Sp QG EXFNOLQJ ORDG EHORQ

elastic foundation with general boundary,owed by C-H beam and H-H beam

conditions have been investigated; Q WKH RUGHU 1RW RQO\ W

Comparisons between the results obtainggsg the most sensitive one that means that

by in this study with available results inthe changes of its frequency and buckling

the literature show a good agreemenfad are strongest whether other research

The analysis has also been performgshrameters increase or decrease compared

to investigate the effects of boundaryWR WZR UHVW EHDPV $V HJ[

FRQGLWLRQV DJ[LDO O R DnauraPfieqiercy drapro Gero\amritichl ioxdw L R
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