CONSTRUCTION OF A DATASET FOR THE GENE *nrLSU* TO SUPPORT THE IDENTIFICATION OF *CANTHARELLUS* AT LANGBIAN MOUNTAIN, LAM DONG

TRINH VAN HANH, VU TIEN LUYEN

University of Science, VNU-HCM, Viet Nam

PHAN HUU HUNG

Tay Nguyen Institute of Scientific Research, Vietnam Academy of Science and Technology

TRUONG BINH NGUYEN

Da Lat University, Viet Nam

TRAN DUC VINH, LAO DUC THUAN, LE HUYEN AI THUY*

Ho Chi Minh City Open University, Viet Nam - *thuy.lha@ou.edu.vn

(Received: February 06, 2018; Revised: May 07, 2018; Accepted: May 14, 2018)

ABSTRACT

Fungal species of *Cantharellales* order are found worldwide including Europe, Africa, Asia, and North America. This clade includes two smaller, separate, but closely related genera *Cantharellus* and *Craterellus*. *Cantharellus* was firstly identified in the middle of the 17th century. Besides traditional classification based on morphology, molecular phylogeny of the nuclear ribosomal large subunit gene (*nrLSU*) can be an effective tool to provide more information during species identification for this group. In this current report, a dataset of the *nrLSU* gene including 60 sequences of *Cantharellus* species and 1 sequence belonging to *Craterellus* (outgroup), was obtained from Genbank. Phylogenetic analyses by MEGA 6.0 showed a monophyletic relationship between the six well-established clades, namely *Cantharellus* (Clade 1), *Rubrinus* (Clade 2), *Cinnabarinus* (Clade 3), *Parvocantharellus* (Clade 4), *Pseudocantharellus* (Clade 5) and subgenus *Afrocantharellus* (Clade 6) similar to that of morphological classification. Therefore, this dataset is efficient to support the identification of the fungal samples, collected at the Langbian Mountain, Lam Dong.

Keywords: Cantharellus; Large subunit (LSU) of rDNA; The phylogenetic tree.

1. Introduction

Cantharellus Adans.: Fr (Family Cantharellaceae J. Schröt.). as circumscribe in the middle of the 17th century, belong to *Cantharellales* order (*Cantharallaceae*, Cantharelloid clade), collected from Europe, Africa, Asia and North America, in detail, 23 species in North America, 7 species in South America, 7 species in Australia, 9 species in Europe, 3 species in New Zealand, 46 species in Africa, and 19 species in Asia (Tibuhwa et al., 2012; Eyssartier et al., 2009; Buyck et al., 2011; Shao et al., 2014). Morphology of *Cantharellus* was characterized as the overall vase-like or infundibuliform shaped, the superficially resemble agarics (gilled mushrooms), but the surface is smooth, wrinkled, or follicle-shaped (Kumari et al., 2011). These species are mostly ectomycorrhizal fungi, forming a mutually beneficial relationship with the roots and other trees, primarily within the beech family and pine family. *Cantharellus* has been considered having high economic value, such as *Craterellus cornucopioides*, *Cantharellus*

formosus, *Craterellus tubaeformis*, *Cantharellus minor* (Redhead et al., 1997; Arora et al., 2008), with significant levels of proteins, lipids, minerals, vitamins and some neutraceutical compounds. (Pilz et al., 2003; et al., 2011).

The Cantharellus and Craterellus have been recognized as two closely related genus (Persoon, 1979; Fries, 1838), which may be recognized by their lack of division into cap and stipe, and their rudimentary. Recent phylogenetic studies from sequence analyzes suggested to be useful to study fungal taxonomy and diversity. These include the small subunit (SSU), large subunit (LSU) of rRNA, the internal transcribed spacer region (ITS), etc (Kumari et al., 2011; Feibelman et al., 1997; Buyck et al., 2011) Among that, phylogenetic analysis of the nuclear large subunit rRNA (LSU) in Cantharellus has supported to clarify the identity of different species (Redhead et al., 1997; Dunham et al., 2003a; Arora and Dunham, 2008). In order to resolve the internal

or external evolutionary relationship of Cantharellaceae, Feibelman et al (1997) studied the phylogenetic relationships within the Cantharellaceae inferred from sequence analysis of nuclear large subunit rDNA. Sequence analyses demonstrated that *Cantharellus* and *Craterellus* should be treated as distinct genera on the classification of *Cantharellus* clade (Buyck et al., 2011).

The main objective of the current study is to establish a dataset to support the identification of *Cantharellus*. In further study, it will be applied in the identification of the *Cantharellus* clade at Langbian mountain, Lam Dong province in following publications.

2. Materials and Methods 2.1. Taxa and sequence collection

Sequence of *nrLSU* were collected from Genbank (NCBI) and previous published data. The data set was constructed according to Fig. 1. The *nrLSU* is noted with strain, accession number, name of taxon and locality.

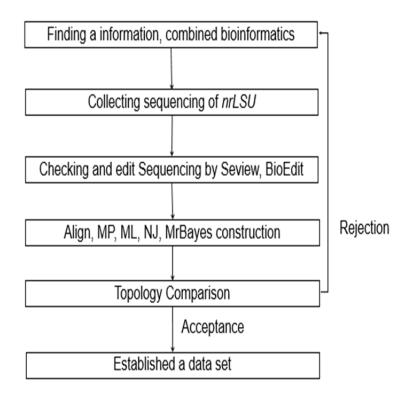


Figure 1. The protocol for construction of *nrLSU* data set

2.2. Phylogenetic analysis

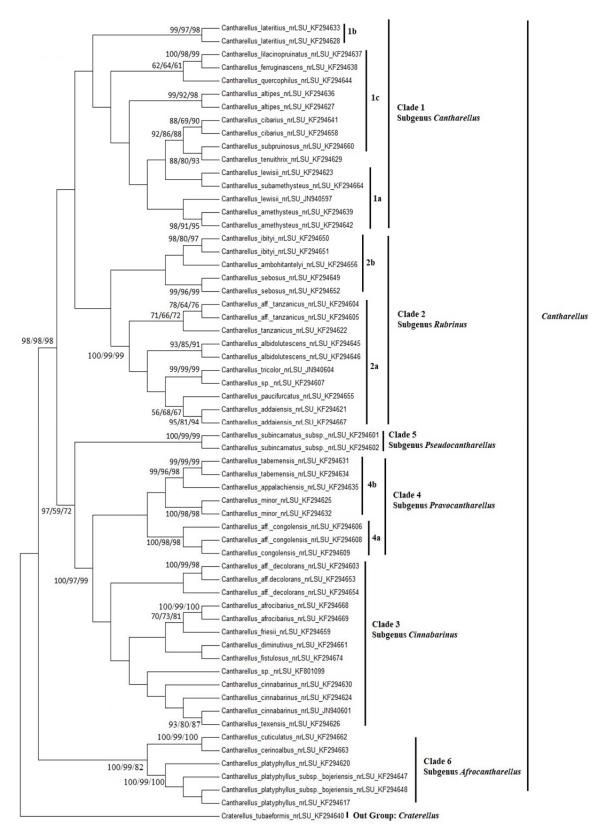
The phylogenetic tree was constructed, based on the neighbor-joining (NJ) and maximum parsimony (MP) maximum likelihood (ML) methods, by using Molecular Evolutionary Genetics Analysis (MEGA) version 6.0. Additionally, the best evolution model was predicted by using jModelTest.

3. Results and Discussion

3.1. The systematic dataset

The final *nrLSU* rDNA sequence data set, including 60 sequences of *Cantharellus* and 1

sequence belonged to *Craterellus* (served as outgroup), were collected from Genbank (NCBI) (listed in Table 1). In detail, the *nrLSU* rDNA was collected from different countries; included 7 sequences in Tanzania, 21 sequences in Madagascar, 2 sequences in Zambia, 17 sequences in USA, 6 sequences in Slovakia, 3 sequencing in France, notably, only 4 sequences in Malaysia; within average length of 1424 nucleotides. The best substitution for phylogenetic analysis was predicted by using j Model Test.


Table 1

No.	Accession	Taxon	Strain	Locality
1	KF294621	Cantharellus addaiensis Henn. 1898	BB 98.057	Tanzania
2	KF294667	Cantharellus addaiensis	BB 98.033	Tanzania
3	KF294606	Cantharellus aff. congolensis	BB 06.176	Madagascar
4	KF294608	Cantharellus aff. congolensis	BB 06.197	Madagascar
5	KF294603	Cantharellus aff. decolorans	BB 06.146	Madagascar
6	KF294653	Cantharellus aff. decolorans	BB 08.234	Madagascar
7	KF294654	Cantharellus aff. decolorans	BB 08.278	Madagascar
8	KF294604	Cantharellus aff. tanzanicus	BB 06.148	Madagascar
9	KF294605	Cantharellus aff. tanzanicus	BB 06.149	Madagascar
10	KF294668	Cantharellus afrocibarius	BB 96.235	Zambia
11	KF294669	Cantharellus afrocibarius	BB 96.236	Zambia
12	KF294645	Cantharellus albidolutescens	BB 08.057	Madagascar
13	KF294646	Cantharellus albidolutescens	BB 08.070	Madagascar
14	KF294627	Cantharellus altipes	BB 07.019	USA
15	KF294636	Cantharellus altipes	BB 07.162	USA
16	KF294656	Cantharellus ambohitantelyi	BB 08.336	Madagascar
17	KF294639	Cantharellus amethysteus	BB 07.284	Slovakia
18	KF294642	Cantharellus amethysteus	BB 07.309	Slovakia
19	KF294635	Cantharellus appalachiensis	BB 07.123	USA
20	KF294663	Cantharellus cerinoalbus	AV 06.501	Malaysia
21	KF294641	Cantharellus cibarius	BB 07.300	Slovakia
22	KF294658	Cantharellus cibarius	GE 07.025	France
23	JN940601	Cantharellus cinnabarinus	BB 07.120	USA
24	KF294624	Cantharellus cinnabarinus	BB 07.001	USA

The data of *nrLSU* gene was used for construction of phylogenetics trees

No.	Accession	Taxon	Strain	Locality
25	KF294630	Cantharellus cinnabarinus	BB 07.053	USA
26	KF294609	Cantharellus congolensis	BB 98.039	Tanzania
27	KF294661	Cantharellus diminutivus	DS 06.033	Malaysia
28	KF294638	Cantharellus ferruginascens	BB 07.283	Slovakia
29	KF294674	Cantharellus fistulosus	DT 43	Tanzania
30	KF294650	Cantharellus ibityi	BB 08.196	Madagascar
31	KF294651	Cantharellus ibityi	BB 08.203	Madagascar
32	KF294628	Cantharellus lateritius	BB 07.025	USA
33	KF294633	Cantharellus lateritius	BB 07.058	USA
34	JN940597	Cantharellus lewisii	BB 07.003	USA
35	KF294623	Cantharellus lewisii	BB 02.197	USA
36	KF294637	Cantharellus lilacinopruinatus	BB 07.221	Slovakia
37	KF294625	Cantharellus minor Peck 1872	BB 07.002	USA
38	KF294632	Cantharellus minor	BB 07.057	USA
39	KF294655	Cantharellus paucifurcatus	BB 08.320	Madagascar
40	KF294647	Cantharellus platyphyllus subsp. Bojeriensis	BB 08.158	Madagascar
41	KF294648	Cantharellus platyphyllus subsp. Bojeriensis	BB 08.160	Madagascar
42	KF294617	Cantharellus platyphyllus	BB 98.012	Tanzania
43	KF294620	Cantharellus platyphyllus	BB 98.126	Tanzania
44	KF294644	Cantharellus quercophilus	BB 07.097	USA
45	KF294649	Cantharellus sebosus	BB 08.162	Madagascar
46	KF294652	Cantharellus sebosus	BB 08.234	Madagascar
47	JN940604	Cantharellus tricolor	BB 06.180	Madagascar
48	KF294607	Cantharellus sp	BB 06.179	Madagascar
49	KF294664	Cantharellus subamethysteus	DS 06.218	Malaysia
50	KF294601	Cantharellus subincarnatus subsp	BB 06.080	Madagascar
51	KF294602	Cantharellus subincarnatus subsp	BB 06.096	Madagascar
52	KF294660	Cantharellus subpruinosus	GE 07.080	France
53	KF294631	Cantharellus tabernensis	BB 07.056	USA
54	KF294634	Cantharellus tabernensis	BB 07.119	USA
55	KF294622	Cantharellus tanzanicus	BB 98.040	Tanzania
56	KF294629	Cantharellus tenuithrix	BB 07.035	USA
57	KF294626	Cantharellus texensis	BB 07.018	USA
58	KF294659	Cantharellus friesii	GE 07.077	France
59	KF294662	Cantharellus cuticulatus	DS 06.283	Malaysia
60	KF294640	Craterellus tubaeformis	BB 07.293	Slovakia

3.2. Phylogenetic analysis

Figure 2. A phylogenetic tree was constructed via maximum parsimony method. The Maximum Parsimony tree is shown with bootstrapping value of NJ/MP/ML.

The evolution model that was most fit with the observed data set was Kimura 2-parameter, with following parameters: parameters = 121, BIC = 7891.413, lnL = -3301.880, (+I) = n/a, (+G) = 0,24, R = 2.10, f(A) = 0,250, f(T) = 0,250, f(G) = 0,250, f(C)= 0,250, r(AT) = 0,040, r(AC) = 0,040, r(AG)= 0,169, r(TA) = 0,040, r(TC) = 0,169, r(TG)= 0,040, r(CA) = 0,040, r(CT) = 0,169, r(CG)= 0,040, r(GA) = 0,169, r(GT) = 0,040, r(GC)= 0,040.

These parameters were applied to MEGA 6.0 to construct phylogenetic trees. As the results, the topology of neighbor-joining (NJ), maximum parsimony (MP), and maximum likelihood (ML) trees were similar to each

other and to the trees from Buyck et al. (2014). 58 referent sequences from *Cantharellus* clade with 16 sequences for Subgenus *Cantharellus* (Clade 1), 15 for Subgenus *Rubrinus* (Clade 2), 12 for Subgenus Cinnabarinus (Clade 3), 8 for Subgenus *Parvocantharellus* (Clade 4), 2 for Subgenus *Pseudocantharellus* (Clade 5), 5 for Subgenus *Afrocantharellus* (Clade 6).

4. Conclusion

In general, we have successfully applied the bioinformatics for construct a dataset basing on *nrLSU* gene to support the identification of *Cantharellus*. This dataset is efficient to support the identification of the fungal samples, collected at the Langbian Mountain, Lam Dong in the future

Acknowledgments

We wish to express our thanks to the research project sponsored by Tay Nguyen Institute of Scientific Research.

References

- Arora, D., Dunham, S. M. (2008). A new, commercially valuable chanterelle species, Cantharellus californicus sp. nov., associated with live Oak in California, USA. *Econ Bot*, 62, 376-391.
- Buyck, B., Kauff, F., Eyssartier, G., Couloux, A., Hofstetter, V. (2013). Molecular evidence for novel *Cantharellus* (*Cantharellales*, Basidiomycota) from tropical African miombo woodland and a key to all tropical African chanterelles. *Fungal Diversity*, 58, 281-298.
- Buyck, B., Hofstetter, V. (2011). The contribution of tef-1 sequences to species delimitation in the Cantharellus cibarius complex in the southeastern USA. *Fungal Divers, 49*, 35-46.
- Buyck, B., Kauff, F., Eyssartier, G., Couloux, A., Hofstetter, V. (2014). A multilocus phylogeny for worldwide *Cantharellus (Cantharellales, Agaricomycetidae). Fungal Diversity, 64, 101.*
- Dahlman, Mattias; Danell, Eric; Spatafora, Joseph W. (2000). Molecular systematics of *Craterellus*: cladistic analysis of nuclear LSU rDNA sequence data. *Mycological Research*, 104(4), 388-394.
- Dunham, O'Dell T. E., Molina R. (2003). Analysis of nrDNA sequences and microsatellite allele frequencies reveals a cryptic chanterelle species *Cantharellus cascadensis* sp. nov. from the American Pacific Northwest. *Mycological Research*, 107(107), 1163-1177.
- Eyssartier, G., Stubbe, D., Walleyn, R., Verbeken, A. (2009). New records of Cantharellus speceis (Basidiomycota, Cantharellaceae) from Malaysian depterocarp rainforest. *Fungal Divers*, *36*, 57-67.
- Feibelman, T. P., Doudrick, R. L., Cibula, W. G. And Bennett, J. W. (1997). Phylogenetic relationships within the Cantharellaceae inferred from sequence analysis of the nuclear large subunit rDNA. *Mycological Research*, 101(12), 1423-1430.
- Fries, E. M. (1838). Epicrisis systematis mycologici, seu synopsis Hymenomycetum", Annals of natural history, 1838.
- Kumari, D., Upadhyay, R.C., Reddy, M.S. (2011). *Cantharellus pseudoformosus*, a new species associated with Cedrus deodara from India. *Mycoscience*, 52, 147-151.

Kumari, D. (2011). Studies on the diversity and nutritional value of Cantharellaceae of Western Himalayas, India.

- Persoon, C.H. (1797). Commentatio de fungis clavaeformibus sistens specierum hus usque notarum descriptiones cum differentiis specificis, nec non auctorum synonymis, Apud Petr. Philipp. Wolf.
- Pilz, D., Norvell L., Danell E., Molina R. (2003). Ecology and management of commercially harvested chanterelle mushrooms, Gen. *Tech. Rep*, 83.
- Redhead, S.A., Norvell, L., Danell, E. (1997). Cantharellus formosus and the Pacific golden chanterelle harvest in western North America, *Mycotaxon*, 65, 285-322.
- Shao, C. S., Buyck, B., Hofstetter, V., Tian, X. F., Geng, Y. H., Yu F. Q & Liu, G. P. (2014). Source Cantharellus hygrophorus, a New Species in Subgenus Afrocantharellus from Tropical Southwestern China. *Cryptogamie*, *Mycologie*, 35(3), 283-291.
- Tibuhwa, D. D., Saviæ S., Tibell, L., Kivaisi, A. K. (2012). *Afrocantharellus* gen. stat. nov. is part of a rich diversity of African Cantharellaceae. *IMA Fungus*, *3*(1), 25-38.