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ABSTRACT 

Synchronization is a ubiquitous feature in many natural systems and nonlinear science. This paper studies the 

synchronization in complete network consisting of n  nodes. Each node is connected to all other nodes by linear 

coupling and represented by a reaction-diffusion system of FitzHugh-Nagumo type which can be obtained by 

simplifying the famous Hodgkin-Huxley model. From this complete network, the author seeks a sufficient condition 

on the coupling strength to achieve synchronization. The result shows that the more easily the nodes synchronize, 

the bigger the degrees of the networks. Based on this consequence, the author will test the theoretical result 

numerically to see if there is a compromise. 
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1. Introduction 

The FitzHugh-Nagumo model was 

introduced as a dimensional reduction of the 

well-known Hodgkin-Huxley model (see, e.g. 

Ermentrout, 2009; Hodgkin, 1952; Izhikevich, 

2007; Keener, 2009; Murray, 2010; Nagumo, 

1962). It is more analytically tractable and  

maintains some biophysical meaning. The 

model is constituted a common form of two 

equations in the two variables u and v . The 

first variable is the fast one called excitatory 

which represents the transmembrane voltage. 

The second is the slow recovery variable 

which describes the time dependence of 

several physical quantities, such as electrical 

conductivity of ion currents across the 

membrane. The FitzHugh-Nagumo equations 

(FHN), using the notation in Ambrosio  

& Aziz-Alaoui (2012); Ambrosio (2009); 

Ambrosio & Aziz-Alaoui (2013), are given 

by, 

( )
du

f u v
dt

dv
au bv c

dt




 

   


 

 

where ,a b and c are constants ( a  and b

are strictly positive), 0 1  and 3( ) 3f u u u   . 

Based on this model, we study the 

following partial differential equations (PDE), 

 

( )t u

t

du
u f u v d u

dt

dv
v au bv c

dt

 


    

    


         (1)  

where 

( , ), ( , ), ( , ) , uu u x t v v x t x t d   is a 

positive constant, u is the Laplace operator 

of u , n  is a regular bounded open set 

and with Neumann zero flux boundary 

conditions. This system allows the emergence 

of a variety of patterns and relevant 

phenomena in physiology (see, e.g. Ambrosio 

& Aziz-Alaoui (2012); Ambrosio & Aziz-

Alaoui (2013). It is a system of two nonlinear 

partial differential equations of incomplete 

parabolic type which describes the action 

potential and the recovery variable in the 

whole set of neurons. Note that the first 

equation is similar to the so-called cable 

equation, which describes the distribution of 

the potential along the axon of a single neuron 
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(see, e.g. Ermentrout (2009); Izhikevich 

(2005)). For example, in figure 1, we have 

two solutions of system (1) corresponding  

to different values of t on space 

   0;100 0;100 .    Figure (a) represents, 

for 0t  , the isovalues 1 2( , ,0)u x x of one 

solution of system (1). Figure (b) represents, 

for 190t  , the isovalues 1 2( , ,190)u x x  of one 

solution of system (1). Such a solution is 

called spiral one obtained by a particular 

choice of initial conditions.     

 

 

Figure 1. (a) represents, for t=0, the isovalues 1 2( , ,0)u x x  of one solution of system (1).  

(b) represents, for t=190, the isovalues 1 2( , ,190)u x x of one solution of system (1). Such a 

solution is called spiral one obtained by a particular choice of initial conditions. 

 

After having the model of a neuron, we 

consider a network of n coupled systems (1) 

based on FHN type as follows: 

( ) ( , )
, 1,..., , ,i iit i i u u i i

it i i

u f u v d u h u v
i j n i j

v au bv c

     
 

  

 (2)  

where ( , ), 1,2,...,i iu v i n  is defined by (1). 

The function h is the coupling function 

that determines the type of connection 

between neurons i and j. Connections between 

neurons are essentially of two types: chemical 

which is much more abundant, and electrical. 

If the connections are made by electrical 

synapse, the coupling is linear and given by 

the function: 

1

( , ) ( ), 1,2,..., .
n

i i syn ij i j

j

h u v g c u u i n


    (3) 

The parameter 
syng  represents the coupling 

strength. The coefficients 
ijc  are the elements of 

the connectivity matrix ( )n ij n nC c  , defined by: 

1
, 1,2,..., , .

0

ij

ij

c if i and j arecoupled
i j n i j

c if i and j arecoupled


 

  

A neural network describes a population of 

physically interconnected nerve cells. 

Communication between cells is mainly due 

to electrochemical processes. In this article, 

we focus on analyzing the behavior of a  

set of neurons connected with a given 

topology by electrical signals. Thus, we 

consider a complex system based on a 

network of interactions between neurons in 

which each network node is modeled by a 

PDE of FHN type. The article contains  

the following sections: (1) introduction;  

(2) definition of synchronization, especially 

identical synchronization. Here, we seek 

sufficient conditions for certain type  

of synchronization in our network; (3) 

investigation of minimal value of coupling 

strength for synchronization in complete 

network to occur and numerical experiments 

that give an insight into the influence of 

neurons on minimal coupling strength needed 

to obtain synchronization in network. Our 

numerical simulations show that when the 

number of nodes in graph grows, the network 

becomes easier to synchronize; and (4) 

conclusion. 
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2. Identical synchronization of a 

complete network of n systems of reaction-

diffusion on FitzHugh-Nagumo type  

Synchronization is a ubiquitous feature in 

many natural systems and nonlinear science. 

The word "synchronization" is of Greek 

origin, with syn as “common” and chronos as 

“time”, which means having the same 

behavior at the same time. Therefore, the 

synchronization of two dynamical systems 

usually means that one system copies the 

movement of the other. When the behavior  

of many systems are synchronized, these 

systems are called synchronous. Studies  

by Aziz-Alaoui (2006) and Corson (2009) 

suggested that a phenomenon of 

synchronization may appear in a network of 

many weakly coupled oscillators. A broad 

variety of applications have emerged to 

increase the power of lasers, synchronize the 

output of electric circuits, control oscillations 

in chemical reactions or encode electronic 

messages for secure communications. Here 

are some synchronization regimes (Aziz-

Alaoui, M. A., 2006): 

 Identical (or complete) synchronization, 

which is defined as the coincidence of states 

of interacting systems. 

 Generalized synchronization, which 

extends the identical synchronization 

phenomenon and implies the presence of 

some functional relation between two coupled 

systems; if this relationship is the identity, we 

recover the identical synchronization. 

 Phase synchronization, which means 

driving of phases of chaotic oscillators, 

whereas their amplitudes remain uncorrelated. 

 Lag synchronization, which appears as 

a coincidence of shifted-in-time states of two 

systems. 

In this article, we are interested in the 

identical synchronization (Ambrosio & Aziz-

Alaoui, 2013) in complete network which 

means that each node connects to all other 

nodes of the network. For example, Figure 2 

showed the complete graphs from 2 to 10 

nodes and complete graphs of 40 nodes. In 

this study, each node represents a neuron 

modeled by a system of reaction-diffusion 

equations on FHN type and each edge 

represents a synaptic connection modeled by a 

coupling function. 

Definition 1: Let ( , ), 1,2,...,i i iS u v i n   

and 1 2( , ,..., )nS S S S  be a network. We say 

that S  is identical synchronization if, 

 2 2

1

1 1( ) ( )
1

lim 0.
n

i i i iL Lt
i

u u v v


  


     

 

Figure 2. Complete graphs from 2 to 10 nodes and complete graphs of 40 nodes. In our study, 

each node represents a neuron modeled by a system of reaction-diffusion equations on FHN type 

and each edge represents a synaptic connection modeled by a coupling function. 
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We consider a system of n "neurons" (1) 

bi-directionally coupled by the electrical 

synapses, based on FHN, as follows: 

1,

( ) ( )
1,2,..., ,i

n

it i i u i n i j

j j i

it i i

u f u v d u g u u
i n

v au bv c


 


     


   

   (4)                                 

where ng  is the coupling strength 

between iu  and 
ju . 

Theorem 1: Suppose that: 

, , 1,2,..., ,
i jn u u

M
g and d d i j n

n
    

where 
( )3

1

, 1

( )
sup ,

!

k
k

u B x k

f u
M x

k



  

  B is a 

compact interval including u and ( ) ( )kf u  is 

the kth derivative of f with respect tou . Then 

the network (4) synchronizes in the sense of 

definition 1. 

Proof: Let  

2 2

1 1

2

1
( ) ( ) ( ) .

2

n

i i

i

t a u u dx v v dx
  

  
      

   
  

   By deriving the function ( )t , we have the 

following, 

 

 

 

1

1 1 1 1

2

1 1 1 1 1

2 1, 2

1 1 1

1 1

( )
( )( ) ( )( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) (

i
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i it t i it t

i

n n n

i i i u i n i k u n l

i k k i l

i i i

i i n i
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a u u u u v v v v dx

dt

a u u f u v d u g u u f u v d u g u u

v v a u u b v v dx

a u u f u f u ng u u
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If n

M
g

n
 , we have 

( )
( ) ( ) (0) ,td t
t t e

dt

 
      

where min 2 ,2 .nng M
b



 
  

 
 Thus, 

we have the synchronization if the coupling 

strength verifies n

M
g

n
 . 

If f is a cubic, we deduce the following 

corollary. 

Corollary 1: Suppose that f is a cubic 

function, 3 2

3 2 1 0( ) ,f u m u m u m u m    where  

3 2 1 0, , ,m m m m  are constants with 3 0m   

and if, 

2

2
1

3

1
,

3
n

m
g m

n m

 
  

 
 

the network  1 1 2 2( , ), ( , ),..., ( , )n nS u v u v u v  

synchronizes in the sense of definition 1. 

3. Numerical simulations 

In the following, we present the 

numerical results obtained by integrating the 

system (4) where 33, ( ) 3n f u u u    , and 

with the following parameter values: 

1, 0.001, 0, 0.1, 0.05.ua b c d      The 

integration of system was realized by using 

C++, on         0; 0;200 0;100 0;100 .T      

Figure 3 illustrates the phenomenon of 

synchronization. The simulations show that the 

system synchronizes from the value 3 0.025g 
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. In the figures (a), (b), (f), (g), (k), (l), (p), (q), 

we represented the phase portraits 

 1 1 2 2 1 2( , , ), ( , , )u x x t u x x t  and  2 1 2 3 1 2( , , ), ( , , )u x x t u x x t  

for  0;t T  and for all 1 2( , )x x  . We 

observe (figure (p) and (q)) that for 
3 0.025g  ,

1 1 2 2 1 2( , , ) ( , , )u x x t u x x t  and 
2 1 2 3 1 2( , , ) ( , , )u x x t u x x t  

for all  0;t T  and for all 1 2( , )x x  . In the 

figures (c), (d), (e), (h), (i), (j), (m), (n), (o), (r), 

(s), (t), we represented the isovalues of

1 2( , ,190), 1,2,3iu x x i  . The results show that 

for 3 0.025g  , the obtained patterns  are 

"identical". 

 

 

Figure 3. Synchronization of a complete network of three linearly coupled "neurons" with
3( ) 3 , 1, 0.001, 0, 0.1, 0.05.uf u u u a b c d         The synchronization occurs for 3 0.025g  . Before  

synchronization, for 3 0.005g  : the figure (a) represents the temporal dynamic  of 2u with respect to 

1u , for all 1 2( , )x x  ; the figure (b) represents the temporal dynamic  of 3u  with respect to 2u ; the 

figure (c) represents the isovalues of 1 1 2( , ,190)u x x ; similarly the figures (d) and (e) represent the 

isovalues of 2 1 2( , ,190)u x x  and 3 1 2( , ,190)u x x ; the similar simulations are reproduced  for 3 0.01g   

(figures (f), (g), (h), (i), (j)), 3 0.023g   (figures (k), (l), (m), (n), (o)) and 3 0.005g   (figures (p), (q), 

(r), (s), (t)).  For the value 3 0.005g  , we observe the synchronization of three “neurons". 

 

We are interested in the minimal values 

of coupling strength ng  to observe a 

phenomenon of synchronization between n 

subsystems modeling the function of a 

neuron. Thus, in the case of three linearly 

coupled neurons, we note that for the coupling 

strength over or equal to 3 0.005g  , these 

neurons have a synchronous behavior (Figure 

3). By doing similarly for the complete 

networks of linearly identical coupled 

neurons, we obtain the values of coupling 

strength reported in Table 1. 
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Table 1. 

This table gives the minimal coupling strength necessary to observe a phenomenon of 

synchronization of n linearly coupled neurons, with the parameters: 3( ) 3 , 1, 0.001, 0,f u u u a b c     

0.1, 0.05.ud    
 

n  3 4 5 6 7 8 9 10 11 

ng  0.025 0.015 0.012 0.009 0.008 0.007 0.006 0.005 0.0045 

n  12 13 14 15 16 17 18 19 20 

ng  0.004 0.0038 0.0035 0.0032 0.003 0.0028 0.0026 0.0024 0.0023 

 

Following these numerical experiments, 

we see that the coupling strength required for 

observing the synchronization of n neurons 

depends on the number of neurons. Indeed, 

the points in Figure 4 represent the coupling 

strength of synchronization according to the 

number of neurons in  complete network, and 

the red curve represents the representative 

one, 
0.051

0.00041,
1

ng
n

 


 

where n is the number of neurons in 

network. Thus, the coupling strength 

necessary to obtain the synchronization of n 

neurons follows this law. 

 

 
Figure 4. Figure 4 showed the evolution of the coupling strength  ng  for which the 

synchronization of n neurons takes place according to the number n linearly coupled neurons in 

complete network.  Thus, this evolution follows the law  0.051
0.00041.

1
ng

n
 


 

 

4. Conclusion 

This study investigated a phenomenon of 

synchronization in complete network of n 

coupled systems of reaction-diffusion on 

Fitzhugh-Nagumo type. From theorem 1, we 

got 
n

M
g

n
  which shows that the bigger the 

value of n , the smaller the ng . Numerically, 

we found that the synchronization is stable 

when we exceeds certain threshold of 

coupling strength and depends on the number 

of "neurons" in graphs. The bigger the 

number of "neurons" is, the easier the 

phenomenon of synchronization will be 

obtained. Then, a compromise between the 

theoretical and numerical results can be 

reached. In addition, it is necessary to 

conduct further studies on the identical 

synchronization in complete network coupled 

by chemical synapse 
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