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Tóm tắt: 

Bài báo này trình bày nghiên cứu về ảnh hưởng của một số siêu tham số trong mô hình 

LightGBM đến độ chính xác dự báo công suất phát điện mặt trời. Các siêu tham số được xem xét bao 

gồm số lá tối đa của cây quyết định (num_leaves), tốc độ học (learning_rate) và số lượng cây học 

(n_estimators). Mười kịch bản với các tổ hợp siêu tham số khác nhau đã được thực hiện và so sánh 

dựa trên các chỉ số sai số: RMSE, MAPE, NMAPE, cũng như thời gian huấn luyện và dự báo. Kết quả 

cho thấy việc điều chỉnh các tham số này có cải thiện hiệu suất dự báo của mô hình, thể hiện qua 

giảm nhẹ các sai số dự báo ví dụ MAPE giảm từ 90,67% xuống còn 82,94% khi tăng num_leaves từ 

30 lên 60. Tuy nhiên, mức cải thiện không đáng kể, các chỉ số sai số chỉ thay đổi trong biên độ nhỏ 

giữa các kịch bản. Điều này cho thấy mô hình LightGBM khá bền vững với các siêu tham số trong 

phạm vi thử nghiệm, và việc tinh chỉnh vừa phải các giá trị num_leaves, learning_rate, n_estimators 

không đem lại thay đổi đột biến về độ chính xác dự báo.   

Từ khóa:  

LightGBM, dự báo năng lượng mặt trời, siêu tham số, num_leaves, learning_rate, n_estimators, hiệu 

suất mô hình. 

Abstract: 

This paper presents a study on the impact of certain hyperparameters in the LightGBM model 

on solar power generation forecasting accuracy. The considered hyperparameters include the 

maximum number of leaves in decision trees (num_leaves), learning rate (learning_rate), and the 

number of boosting rounds (n_estimators). Ten scenarios with different combinations of these 

hyperparameters were implemented and compared based on error metrics: RMSE, MAPE, and NMAPE, 

as well as training and inference time. The results show that adjusting these parameters could improve 

the forecasting performance of the model, as reflected in a slight reduction in forecasting errors for 

instance, the MAPE decreased from 90.67% to 82.94% when increasing num_leaves from 30 to 60. 

However, the improvements are insignificant, the error metrics only vary within a narrow range across 

scenarios. This indicates that the LightGBM model is relatively robust to changes in hyperparameters 

within the tested range, and moderate tuning of num_leaves, learning_rate, and n_estimators does 

not lead to dramatic changes in forecasting accuracy. 

Keywords:  

mailto:haipm@epu.edu.vn


TẠP CHÍ KHOA HỌC VÀ CÔNG NGHỆ NĂNG LƯỢNG - TRƯỜNG ĐẠI HỌC ĐIỆN LỰC 

(ISSN: 1859 - 4557) 

 

2                                                                                                                                  Số 37  

LightGBM algorithm, photovoltaic power prediction, model hyperparameters, num_leaves, 

learning_rate, n_estimators, predictive performance. 

KÝ HIỆU:  

RMSE: sai số trung bình bình phương 

MAPE: sai số phần trăm tuyệt đối trung 

bình 

NMAPE: sai số phần trăm đã chuẩn hóa 

LightGBM: thuật toán học máy Light 

Gradient Boosting Machine 

CatBoost: thuật toán Categorical Boosting 

KNN: thuật toán K-Nearest Neighbors 

SHAP: phương pháp SHapley Additive 

exPlanations 

SVR: Hồi quy vector hỗ trợ 

1. GIỚI THIỆU CHUNG 

Năng lượng mặt trời là nguồn năng lượng 

tái tạo quan trọng, nhưng công suất phát 

điện mặt trời biến động mạnh do phụ thuộc 

thời tiết [1]. Do đó, dự báo công suất điện 

mặt trời chính xác đóng vai trò then chốt 

trong vận hành hệ thống điện thông minh 

và ổn định lưới điện [2]. Trong những năm 

gần đây, các phương pháp học máy 

(machine learning) đã được áp dụng rộng 

rãi cho bài toán dự báo năng lượng mặt trời 

nhờ khả năng mô hình hóa các quan hệ phi 

tuyến giữa các biến đầu vào và sản lượng 

điện. Đặc biệt, các mô hình ensemble như 

rừng ngẫu nhiên (Random Forest) và thuật 

toán gradient boosting đã cho thấy hiệu 

quả cao trong dự báo năng lượng tái tạo 

[3]. LightGBM là một thuật toán gradient 

boosting trên cây quyết định do Microsoft 

phát triển [4], nổi bật nhờ tốc độ huấn 

luyện nhanh và hiệu quả cao so với các thư 

viện boosting trước đó. LightGBM sử 

dụng chiến lược tăng trưởng cây theo lá 

(leaf-wise) thay vì theo độ sâu, giúp giảm 

thời gian huấn luyện nhưng có nguy cơ quá 

khớp (overfitting) nếu không điều chỉnh 

tham số phù hợp. Nhiều nghiên cứu đã áp 

dụng LightGBM trong dự báo phụ tải và 

năng lượng, cho kết quả khả quan [5]. Ví 

dụ Hanif và cộng sự cho thấy LightGBM 

là mô hình mạnh trong đánh giá ảnh hưởng 

các yếu tố môi trường đến bức xạ mặt trời, 

vượt trội hơn mô hình SVR trong thí 

nghiệm của họ [3]. Tại Việt Nam nhóm 

nghiên cứu của Nguyễn Hữu Nam đã so 

sánh hiệu suất của các thuật toán như 

LightGBM, CatBoost, và KNN, đồng thời 

sử dụng SHAP để xác định độ quan trọng 

của các yếu tố đầu vào, cho thấy nhiệt độ 

và độ ẩm có vai trò quyết định trong dự báo 

công suất [5]. Bên cạnh đó, Nguyễn khánh 

toàn cũng chỉ ra rằng việc sử dụng giá trị 

mặc định của các siêu tham số có thể gây 

sai lệch lớn trong dự báo phụ tải, do đó cần 

thiết phải phân tích ảnh hưởng của chúng 

đến hiệu suất mô hình [6]. Tuy nhiên, hiệu 

năng của LightGBM phụ thuộc vào việc 

lựa chọn bộ tham số siêu 

(hyperparameters) thích hợp. Các tham số  

quan trọng nhất trong LightGBM bao gồm: 

số lá cây quyết định (num_leaves), tốc độ 

học (learning_rate) và số lượng cây (vòng 

lặp boosting- n_estimators). Việc tinh 

chỉnh các tham số này có thể ảnh hưởng 

lớn đến độ chính xác của mô hình; sử dụng 
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các giá trị mặc định có thể dẫn đến sai số 

dự báo lớn trong một số trường hợp. Do đó, 

nghiên cứu ảnh hưởng của các siêu tham 

số tới kết quả dự báo là cần thiết nhằm tối 

ưu hóa mô hình [6].  

Trong bài báo này, nhóm tác giả thực hiện 

phân tích định lượng tác động của số lá cây 

quyết định, tốc độ học và số lượng vòng 

lặp boosting đến chất lượng dự báo công 

suất của mô hình LightGBM. Mục tiêu là 

đánh giá mức độ cải thiện hiệu suất khi 

thay đổi các tham số này trong một phạm 

vi nhất định, qua đó xác định liệu việc tinh 

chỉnh có thực sự đem lại hiệu quả đáng kể 

hay không. Tuy đã có một số nghiên cứu 

phân tích ảnh hưởng siêu tham số [5] [6], 

nhưng đa phần tập trung vào mô hình dự 

báo phụ tải hoặc đánh giá từng tham số 

riêng lẻ. Ít nghiên cứu thực hiện đánh giá 

có hệ thống tác động phối hợp của nhóm 

siêu tham số chính lên bài toán dự báo công 

suất phát điện mặt trời tại Việt Nam. Đây 

là điểm mới mà bài báo này hướng đến. 

Nội dung bài báo được cấu trúc như sau: 

Phần 1 giới thiệu về ảnh hưởng của các 

siêu tham số trong mô hình LightGBM 

trong dự báo công suất phát điện mặt trời. 

Phần 2 mô tả phương pháp nghiên cứu, bao 

gồm mô hình LightGBM, các tham số siêu 

và bộ chỉ số đánh giá. Phần 3 trình bày thiết 

kế thực nghiệm và kết quả thu được từ 10 

kịch bản tham số khác nhau, kèm theo 

phân tích chi tiết. Phần 4 đưa ra kết luận về 

ảnh hưởng của các tham số siêu đối với mô 

hình LightGBM trong bài toán dự báo 

công suất điện mặt trời. 

2. PHƯƠNG PHÁP NGHIÊN CỨU 

2.1. Mô hình LightGBM và các siêu 

tham số chính 

LightGBM là mô hình học máy thuộc 

nhóm gradient boosting, kết hợp nhiều cây 

quyết định để cải thiện dần độ chính xác dự 

báo [4]. Mỗi cây mới được xây dựng trên 

phần sai số còn lại của mô hình hiện tại, 

với trọng số học được điều chỉnh bởi tốc 

độ học. Nhờ chiến lược xây dựng cây theo 

lá, LightGBM đạt tốc độ huấn luyện và dự 

báo nhanh, đặc biệt trên các tập dữ liệu lớn, 

đồng thời duy trì được độ chính xác cao. 

Trong mô hình LightGBM, có ba tham số 

siêu quan trọng ảnh hưởng trực tiếp đến 

cấu trúc mô hình và khả năng học của thuật 

toán: 

• num_leaves: Trong LightGBM, một 

trong những siêu tham số quan trọng nhất 

là num_leaves, đại diện cho số lượng lá tối 

đa mà mỗi cây quyết định trong mô hình 

có thể đạt được. Tham số này ảnh hưởng 

trực tiếp đến độ phức tạp của cây: số lá 

càng lớn, cây càng có khả năng biểu diễn 

các mối quan hệ phi tuyến phức tạp hơn 

trong dữ liệu. Tuy nhiên, nếu num_leaves 

được đặt quá cao so với quy mô và tính đa 

dạng của tập dữ liệu, mô hình có thể ghi 

nhớ quá chi tiết đặc điểm của dữ liệu huấn 

luyện, dẫn đến hiện tượng quá khớp và 

giảm hiệu quả tổng quát hóa trên dữ liệu 

mới [6]. Do đó, lựa chọn giá trị 

num_leaves phù hợp là yếu tố then chốt 

giúp cân bằng giữa độ chính xác và độ đơn 

giản của mô hình. Trong thực tiễn, người 

dùng thường xác định num_leaves dựa trên 

kinh nghiệm, thử nghiệm lặp lại hoặc sử 

dụng kỹ thuật tối ưu hóa siêu tham số để 

tìm được giá trị tốt nhất trong phạm vi cho 

phép. 
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• learning_rate: Tốc độ học (hệ số bước 

của thuật toán boosting). Learning rate 

quyết định mức độ điều chỉnh mô hình ở 

mỗi vòng boosting: learning rate nhỏ giúp 

mô hình học dần dần và có thể đạt độ chính 

xác cao hơn, nhưng cần số vòng lặp (cây) 

nhiều hơn; ngược lại learning rate lớn giúp 

hội tụ nhanh nhưng dễ bỏ qua các mẫu 

phức tạp, có thể dẫn đến sai số lớn hơn. 

Thông thường có quan hệ bù trừ: giảm 

learning rate đồng thời phải tăng số lượng 

cây để duy trì khả năng học [7]. 

• n_estimators: Số lượng cây quyết định 

(số vòng lặp boosting) trong mô hình. 

Tham số này quy định mô hình gồm bao 

nhiêu cây được huấn luyện nối tiếp. Số cây 

quá ít có thể khiến mô hình chưa học đủ 

(underfitting), trong khi quá nhiều cây có 

thể gây quá khớp nếu learning rate không 

được giảm đủ thấp. Thông thường, người 

ta kết hợp điều chỉnh n_estimators và 

learning_rate đồng thời để đạt độ chính xác 

cao trong thời gian huấn luyện hợp lý.  

Ngoài ra, LightGBM còn nhiều tham số 

siêu khác (ví dụ: min_data_in_leaf, 

max_depth, feature_fraction…) cũng ảnh 

hưởng đến quá trình huấn luyện. Tuy nhiên 

trong phạm vi nghiên cứu này, để đảm bảo 

tính tập trung và giới hạn phạm vi thử 

nghiệm, bài báo chỉ tập trung vào ba siêu 

tham số được đánh giá là có ảnh hưởng lớn 

nhất đến hiệu năng mô hình. Các tham số 

phụ được cố định ở giá trị mặc định. Việc 

mở rộng phân tích các tham số này sẽ là 

định hướng trong các nghiên cứu tiếp theo. 

2.2. Thiết kế thực nghiệm và bộ dữ liệu 

Để phân tích ảnh hưởng của các siêu tham 

số, chúng tôi sử dụng bộ dữ liệu thực tế từ 

một nhà máy điện mặt trời tại tỉnh Thanh 

Hóa với công suất lắp đặt 30 MW. Dữ liệu 

huấn luyện được thu thập trong khoảng 

thời gian từ ngày 01/01/2024 đến 

30/12/2024, bao gồm công suất phát điện 

thực tế theo thời gian cùng các thông tin 

thời tiết như bức xạ mặt trời, nhiệt độ 

không khí và tháng trong năm. Bộ dữ liệu 

này được chia thành hai phần: tập huấn 

luyện (80%) dùng để xây dựng mô hình và 

tập kiểm tra (20%) dùng để đánh giá hiệu 

suất mô hình sau huấn luyện. Ngoài ra, mô 

hình còn được áp dụng để dự báo trên một 

tập dữ liệu được tách biệt khỏi tập huấn 

luyện và tập kiểm tra nhằm đảm bảo tính 

khách quan, tập dữ liệu dự báo bao gồm 24 

ngày được chọn ngẫu nhiên (mỗi tháng lấy 

2 ngày liên tiếp) trong năm 2024, mục đích 

của việc này là nhằm đánh giá khả năng 

tổng quát hóa của mô hình LightGBM trên 

dữ liệu chưa được huấn luyện. 

Mô hình LightGBM được huấn luyện trên 

tập huấn luyện với một tổ hợp tham số siêu 

nhất định. Sau đó, ta ghi nhận các chỉ số 

sai số trên tập kiểm tra và trên giai đoạn dự 

báo tương lai. Trong nghiên cứu này, 

chúng tôi xác định 10 kịch bản siêu tham 

số khác nhau như sau:  

• Kịch bản 1 (S1) đóng vai trò mốc tham 

chiếu, sử dụng các giá trị tương đối cơ bản: 

num_leaves= 30, learning_rate= 0,05; 

n_estimators=100. Từ đó, các kịch bản tiếp 

theo thay đổi lần lượt từng tham số hoặc 

kết hợp để quan sát xu hướng kết quả. 

• S2, S3 tăng dần num_leaves (60 và 90) 

so với S1 (giữ nguyên learning_rate= 0,05; 

n_estimators=100). 

• S4 tăng nhẹ n_estimators lên 150 (và 

num_leaves=120 trung bình). 
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• S5, S6, S7 tiếp tục tăng num_leaves 

(150, 180, 210) và cố định n_estimators= 

200 (cao hơn S1) nhằm đánh giá ảnh 

hưởng khi mô hình phức tạp dần. 

• S8 thử giảm mạnh learning_rate xuống 

0,01 đồng thời tăng nhiều n_estimators 

(500) và num_leaves (240) để xem khả 

năng cải thiện khi mô hình học chậm hơn 

nhưng lâu hơn. 

• S9 thử tăng learning_rate lên 0,1 (cao 

hơn mặc định) và giảm số cây (100) với 

num_leaves khá cao (270) để kiểm tra 

trường hợp học nhanh. 

• S10 sử dụng learning_rate=0,07, 

num_leaves=300, n_estimators=300 như 

một cấu hình kết hợp tương đối lớn của cả 

ba tham số.  

Mười kịch bản này được thiết kế nhằm bao 

quát các tổ hợp đại diện cho từng xu 

hướng: tăng độ phức tạp dần, học nhanh, 

học chậm, và kết hợp nhiều yếu tố. Số 

lượng kịch bản được chọn dựa trên giới 

hạn tính toán thực tế và mức độ đại diện 

cần thiết để đánh giá xu hướng. 

Tất cả các mô hình đều được huấn luyện 

trên cùng một tập dữ liệu và được đánh giá 

trên cùng tập dự báo để đảm bảo tính công 

bằng khi so sánh. 

2.3. Các chỉ số đánh giá 

Hiệu suất mô hình được đánh giá bằng các 

chỉ số sai số phổ biến trong dự báo thời 

gian thực: RMSE,  MAPE và NMAPE. Cụ 

thể: 

• RMSE (Root Mean Square Error) là sai 

số trung bình bình phương nhấn mạnh các 

sai số lớn do lấy bình phương trước khi 

trung bình. Công thức tính RMSE như sau 

[8]: 

RMSE = √
1

n
∑(yi − ŷi)2

n

i=1

 (1) 

Trong đó: ŷi là công suất dự báo (kW), yi 

là công suất thực tế (kW), n là số lượng 

điểm dữ liệu. 

• MAPE (Mean Absolute Percentage 

Error): sai số tuyệt đối trung bình phần 

trăm thể hiện sai số trung bình tương đối 

so với giá trị thực (%).  Công thức tính 

MAPE như sau [9]:  

MAPE =
1

n
∑ |

yi − ŷi

yi
|

𝑛

𝑖=1

× 100 (2) 

Trong đó: MAPE là sai số tuyệt đối phần 

trăm trung bình %, ŷi giá trị dự báo của 

công suất phát dự báo thứ i (kW), yi là giá 

trị công suất trong thực tế thứ i (kW), n là 

số lượng điểm dữ liệu. 

MAPE cho biết dự báo sai lệch bao nhiêu 

phần trăm so với thực tế, nhưng có nhược 

điểm là không xác định khi và dễ bị ảnh 

hưởng lớn khi rất nhỏ. 

• NMAPE (Normalized MAPE – MAPE 

được chuẩn hóa): để khắc phục hạn chế của 

MAPE tại điểm dữ liệu gần 0, ta chuẩn hóa 

sai số tuyệt đối so với một giá trị đặc trưng 

(thường là công suất định mức hoặc giá trị 

lớn nhất của công suất thực tế). Trong bài 

báo, NMAPE được tính bằng cách chia cho 

công suất định mức của hệ thống rồi nhân 

100%. Công thức tính NMAPE như sau 

[10]:  
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NMAPE =
1

n
∑ |

yi − ŷi

Pđm
|

𝑛

𝑖=1

× 100 (3) 

NMAPE là sai số tuyệt đối phần trăm trung 

bình đã được chuẩn hóa , ŷi giá trị dự báo 

của công suất phát dự báo thứ i (kW), 

Pđ𝑚 là giá trị công suất định mức lắp đặt 

của nhà máy (kW), n là số lượng điểm dữ 

liệu. 

Chỉ số NMAPE cho biết sai số trung bình 

chiếm bao nhiêu phần trăm công suất định 

mức, giúp đánh giá trực quan mức độ sai 

số độc lập với quy mô hệ thống. 

Các chỉ số trên được tính cho giai đoạn dự 

báo của từng kịch bản mô hình. Ngoài ra, 

thời gian thực thi được đo gồm thời gian 

huấn luyện mô hình và thời gian dự báo 

cho mỗi kịch bản, nhằm xem xét khía cạnh 

chi phí tính toán. 

3. KẾT QUẢ VÀ THẢO LUẬN 

3.1 Kết quả 

Sau khi huấn luyện và đánh giá 10 kịch bản 

mô hình LightGBM với các tham số siêu 

khác nhau, chúng tôi thu được kết quả tổng 

hợp như trong Bảng 1. Bảng này liệt kê các 

siêu tham số (num_leaves, learning_rate, 

n_estimators) của từng kịch bản (S1 đến 

S10), kèm theo thời gian huấn luyện, thời 

gian dự báo và các chỉ số RMSE, MAPE, 

NMAPE tương ứng dự báo. 

Bảng 1. Kết quả dự báo của mô hình LightGBM với 10 kịch bản tham số siêu khác nhau.  

Kịch 

bản 

Số lá tối đa 

(num-leaves) 

Tốc độ 

học 

(learning-

Rate 

Số lượng cây 

học 

(n_estimators) 

Thời gian 

huấn 

luyện (s) 

Thời gian 

dự báo (s) 

RMSE 

(kW) 

MAPE  

(%) 

NMAPE  

(%) 

S1 30 0,05 100 0,23 0,011 3830,47 90,67 9,57 

S2 60 0,05 100 0,46 0,006 3869,26 82,94 9,61 

S3 90 0,05 100 0,57 0,007 3900,765 85,48 9,68 

S4 120 0,05 150 0,98 0,014 3975,42 85,04 9,83 

S5 150 0,05 200 1,53 0,041 4020,084 85,17 9,91 

S6 180 0,05 200 1,38 0,023 4054,824 87,62 9,99 

S7 210 0,05 200 1,56 0,024 4071,2 85,68 10,01 

S8 240 0,01 500 4,65 0,051 4018,344 86,46 9,90 

S9 270 0,1 100 1,01 0,02 4105,243 87,03 10,10 

S10 300 0,07 300 3,14 0,05 4230,925 84,82 10,36 

Kết quả thực nghiệm tại bảng 1 cho thấy 

mối quan hệ rõ rệt giữa số lá tối đa 

(num_leaves) và các sai số dự báo như 

RMSE, MAPE và NMAPE. Khi 

num_leaves tăng từ 30 đến khoảng 150, sai 

số có xu hướng giảm, đặc biệt là MAPE 

giảm từ 90,67% (S1) xuống còn 82,94% 

(S2), cho thấy mô hình được cải thiện đáng 

kể khi tăng độ phức tạp ở mức vừa phải. 

Tuy nhiên, từ mức num_leaves lớn hơn 

180, cả RMSE và MAPE bắt đầu dao động 

và tăng nhẹ trở lại, trong khi NMAPE giữ 



TẠP CHÍ KHOA HỌC VÀ CÔNG NGHỆ NĂNG LƯỢNG - TRƯỜNG ĐẠI HỌC ĐIỆN LỰC 

(ISSN: 1859 - 4557) 

 

Số 37                                                                                                                                  7 

mức dao động nhỏ từ 9,57% đến 10,36%. 

Điều này cho thấy rằng mô hình bắt đầu có 

dấu hiệu quá khớp, và việc tăng số lá quá 

cao không còn đem lại hiệu quả mà còn 

làm sai số tăng lên. Trong khi đó, việc điều 

chỉnh learning_rate cho thấy hiệu quả 

không rõ rệt: giảm quá thấp (0,01) khiến 

thời gian huấn luyện tăng đáng kể mà sai 

số không được cải thiện tương ứng, trong 

khi tăng quá cao (0,1) có thể khiến sai số 

lớn do học quá nhanh. Tương tự, tăng số 

lượng cây học (n_estimators) từ 100 lên 

300 không mang lại cải thiện đáng kể về 

độ chính xác, nhưng làm tăng chi phí tính 

toán. Vì vậy, có thể kết luận rằng việc tăng 

num_leaves giúp cải thiện hiệu suất dự báo 

trong một giới hạn nhất định, nhưng sau 

một ngưỡng (~150–180 lá), hiệu quả bắt 

đầu bão hòa hoặc suy giảm. Do đó, nên lựa 

chọn tổ hợp tham số vừa phải, đặc biệt là 

giới hạn num_leaves, để đảm bảo sự cân 

bằng giữa độ chính xác và chi phí huấn 

luyện của mô hình. 

Để trực quan hóa xu hướng biến đổi của 

các sai số theo số lá tối đa, Hình 1 trình bày 

ba biểu đồ mô tả mối quan hệ giữa số lá 

của mô hình LightGBM với các chỉ số sai 

số RMSE, MAPE và NMAPE: 

 

Hình 1a 

 

 

Hình 1b 

 

Hình 1c 

 

Hình 1d 

Hình 1: Các sai số RMSE, MAPE và NMAPE của 

mô hình LightGBM 

Ba biểu đồ trong hình 1 thể hiện rõ xu 

hướng biến động của các chỉ số sai số theo 

sự thay đổi của số lá (num_leaves) trong 

mô hình LightGBM. Biểu đồ RMSE cho 

thấy sai số tăng dần khi số lá tăng từ 30 đến 

300. Mặc dù RMSE ban đầu khá thấp tại 

num_leaves = 30 (≈3830 kW), giá trị này 

liên tục tăng và đạt đỉnh tại num_leaves = 

300 (≈4230 kW). Điều này cho thấy khi 
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mô hình trở nên quá phức tạp, sai số tổng 

thể tăng do hiện tượng quá khớp. Biểu đồ 

MAPE có xu hướng biến động không đều. 

Sau khi giảm mạnh từ 90,67% (30 lá) 

xuống 82,94% (60 lá), MAPE dao động 

quanh mức 84–87% cho các kịch bản còn 

lại. Điều này phản ánh rằng mức cải thiện 

chính diễn ra ở giai đoạn đầu, và việc tăng 

thêm độ phức tạp mô hình sau đó không 

mang lại lợi ích rõ ràng. Biểu đồ NMAPE 

thể hiện độ ổn định cao hơn. Chỉ số này dao 

động nhẹ từ 9,57% đến 10,36%, và cũng 

đạt giá trị thấp nhất tại num_leaves = 30, 

sau đó tăng dần, đặc biệt từ num_leaves ≥ 

180. Mặc dù biên dao động nhỏ, xu hướng 

chung là sai số chuẩn hóa tăng theo độ 

phức tạp mô hình. Tổng hợp ba biểu đồ cho 

thấy rằng mô hình đạt hiệu suất tối ưu trong 

khoảng số lá từ 60 đến 150. Việc tăng số lá 

vượt mức này không chỉ không cải thiện 

đáng kể sai số, mà còn làm tăng rủi ro quá 

khớp (overfitting) và chi phí tính toán. Các 

biểu đồ này giúp củng cố nhận định rằng 

việc tăng số lá ban đầu giúp cải thiện hiệu 

suất dự báo, tuy nhiên hiệu quả này không 

tiếp tục tăng tuyến tính mà có dấu hiệu bão 

hòa, thậm chí tăng sai số nhẹ khi mô hình 

trở nên quá phức tạp. 

3.2 THẢO LUẬN 

Kết quả thực nghiệm cho thấy mô hình 

LightGBM có tính ổn định cao khi các siêu 

tham số thay đổi trong phạm vi hợp lý. 

Việc tăng số lá tối đa (num_leaves) từ giá 

trị nhỏ đến trung bình giúp cải thiện đáng 

kể độ chính xác dự báo, đặc biệt ở kịch bản 

S2 (num_leaves = 60), sai số MAPE giảm 

mạnh xuống 82,94% so với mức 90,67% ở 

kịch bản S1 (num_leaves = 30). Tuy nhiên, 

khi num_leaves lớn hơn 180, các chỉ số 

MAPE và RMSE không tiếp tục giảm mà 

có xu hướng dao động hoặc tăng nhẹ. Ví 

dụ, RMSE đạt 4230,92 kW ở kịch bản S10 

(num_leaves = 300), là giá trị cao nhất 

trong các thử nghiệm, trong khi thời gian 

huấn luyện cũng kéo dài đến hơn 3 giây, 

gấp hơn 10 lần so với mô hình đơn giản 

ban đầu. Điều này cho thấy cho thấy khả 

năng mô hình bắt đầu quá khớp tại các mức 

độ phức tạp cao. Khi num_leaves tăng từ 

60 đến 180, MAPE tăng nhẹ từ 82,94% lên 

87,62%, cho thấy mô hình bắt đầu giảm 

hiệu quả do quá khớp. Tuy nhiên, từ 

num_leaves = 210 đến 300, MAPE dao 

động không rõ xu hướng, vì chỉ số này 

nhạy với các điểm dữ liệu có giá trị thực 

gần 0 (ví dụ lúc bình minh hoặc hoàng 

hôn). Tại những thời điểm đó, sai số dự báo 

nhỏ cũng gây tỷ lệ phần trăm cao, làm cho 

MAPE dao động bất ổn giữa các kịch bản. 

Trong khi đó NMAPE lại chỉ tăng nhẹ và 

khá ổn định (9,61% tại num_leaves = 60 

đến 10,36% tại 300), vì được chuẩn hóa 

theo công suất định mức nên ít bị ảnh 

hưởng bởi các giá trị nhỏ. Tuy nhiên, từ 

num_leaves = 180 trở đi, NMAPE gần như 

không cải thiện, cho thấy mô hình đã đạt 

đến ngưỡng bão hòa, việc tăng phức tạp 

không mang lại hiệu quả đáng kể. RMSE 

liên tục tăng từ num_leaves = 60 đến 300 

(từ 3869 kW đến 4230 kW), RMSE là sai 

số trung bình có trọng số bình phương do 

đó nó nhạy với các điểm sai số lớn. Khi 

num_leaves tăng, mô hình phức tạp hơn có 

thể gây ra các dự báo sai lệch lớn ở một vài 

thời điểm,  điều này làm RMSE tăng rõ rệt. 

Việc điều chỉnh learning_rate và 

n_estimators đơn lẻ cũng không cho thấy 

hiệu quả vượt trội nếu không đi kèm với 

cấu hình num_leaves phù hợp. Chẳng hạn, 

S8 sử dụng learning rate thấp (0,01) và số 

cây cao (500), có thời gian huấn luyện cao 

nhất (4,65 giây), nhưng sai số MAPE vẫn 
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ở mức 86,46%, không tốt hơn so với S2 

hoặc S5. Điều này cho thấy chỉ khi các siêu 

tham số phối hợp hợp lý, mô hình mới phát 

huy hiệu quả tối ưu. 

Từ góc độ ứng dụng thực tiễn, kết quả này 

rất có ý nghĩa. Trong điều kiện tài nguyên 

tính toán hạn chế và yêu cầu vận hành thời 

gian thực, việc lựa chọn cấu hình 

LightGBM đơn giản với num_leaves từ 

60–150, learning_rate từ 0,05 đến 0,07 và 

số cây từ 100–200 đã cho kết quả tương đối 

tốt. Như vậy, người dùng không cần tối ưu 

quá sâu từng siêu tham số mà vẫn có thể 

đạt được hiệu suất dự báo chấp nhận được, 

giảm thiểu chi phí tính toán và thời gian 

huấn luyện. 

4. KẾT LUẬN 

Bài báo đã tiến hành đánh giá ảnh hưởng 

của các siêu tham số chính trong mô hình 

LightGBM, bao gồm số lá tối đa 

(num_leaves), tốc độ học (learning_rate) 

và số lượng cây học (n_estimators) đến 

hiệu suất dự báo công suất phát điện mặt 

trời. Thông qua 10 kịch bản thử nghiệm 

với các tổ hợp tham số khác nhau, kết quả 

cho thấy rằng việc tinh chỉnh siêu tham số 

có thể góp phần cải thiện độ chính xác dự 

báo, đặc biệt khi tăng num_leaves từ giá trị 

nhỏ lên khoảng 150. Tuy nhiên, khi tiếp tục 

tăng độ phức tạp mô hình vượt quá ngưỡng 

này, sai số không tiếp tục giảm mà còn có 

xu hướng tăng nhẹ, cho thấy dấu hiệu quá 

khớp. Cụ thể, mô hình LightGBM đạt sai 

số MAPE thấp nhất 82,94% khi 

num_leaves = 60, learning_rate = 0,05 và 

n_estimators = 100. Tuy nhiên, sai số 

không giảm thêm khi mô hình phức tạp 

hơn. Điều này xác nhận rằng LightGBM có 

thể đạt hiệu suất tốt với cấu hình vừa phải 

mà không cần tối ưu hóa sâu. 

Các chỉ số như RMSE, MAPE, NMAPE 

chỉ dao động trong biên độ hẹp giữa các 

kịch bản, thể hiện tính ổn định của mô hình 

LightGBM trong phạm vi tham số thử 

nghiệm. Đồng thời, việc giảm hoặc tăng 

tốc độ học và số lượng cây học không 

mang lại cải thiện đáng kể nếu không được 

điều chỉnh đồng thời một cách phù hợp. 

Từ kết quả nghiên cứu, có thể kết luận rằng 

LightGBM là một mô hình có độ ổn định 

cao, không quá nhạy cảm với thay đổi vừa 

phải của các siêu tham số. Do đó, trong 

thực tế ứng dụng, việc lựa chọn các giá trị 

siêu tham số vừa phải và hợp lý (ví dụ: 

num_leaves trong khoảng 60–150) có thể 

đem lại hiệu quả dự báo tốt mà không cần 

tiêu tốn nhiều thời gian để tinh chỉnh sâu. 

Hướng nghiên cứu tiếp theo có thể mở 

rộng sang việc tối ưu hóa tham số tự động 

hoặc kết hợp thêm các đặc trưng đầu vào 

mới để nâng cao hơn nữa hiệu suất mô 

hình. 
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