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Abstract:

DC motors have many critical applications in our daily lives. They can be used in many fields, including
electric vehicles and household appliances. Therefore, the demand for DC motor control, particularly
in terms of speed, has increased over the years. To control DC motors, it is necessary to measure
relevant parameters such as motor speed and armature current using sensors. However, the
installation of sensors will increase the system's cost, and it is challenging for DC motors due to space
and weight limitations. To overcome this problem, it is necessary to design a measurement system
with fewer sensors. A new method for estimating DC motor speed without using speed sensors is
described in this paper, utilizing the Kalman filter for motor speed estimation due to its resistance to
external disturbances and its ability to predict states and parameters. The Kalman filter (KF) requires
tuning for improved estimation, which can be a time-consuming and laborious process. For that reason,
the swarm optimization algorithm is used to optimize the Kalman filter. This paper will present the
application of a swarm optimization algorithm (PSO) in optimizing the Kalman filter to estimate the
speed of a DC motor through simulation in MATLAB and Simulink. The simulation results have shown
the effectiveness of the proposed method.
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Tom tat:

Pong ca dién mot chiéu co nhiéu ing dung quan trong trong cudc song hang ngay clia ching ta. N6
6 thé dugc str dung trong nhiéu linh vuc, bao gdm xe dién va thiét bi gia dung. Do d6, nhu cau diéu
khién déng co dién mdt chiéu, déc biét Ia tdc dd cua ching, da tdng 1&n trong nhitng ndm qua. D&
diéu khién dong cd dién mdt chiéu, can phai do ludng cac thdng s& lién quan nhu téc do dong co va
dong dién phan Ung bang cam bién. Tuy nhién, viéc 18p dat cac cdm bién s€ lam tdng gia thanh cla
hé thdng, va gdp nhiéu khé khan d6i véi cac dong co dién mot chiéu cé gidi han vé khong gian va
trong lugng. D& khdc phuc van dé nay, can thiét k& moét hé théng do ludng véi sb lugng cam bién it
han. Mot phucng phap méi dé€ udc lugng téc d dong ca dién mdt chiéu ma khéng sir dung cam bién
toc do sé dugc mo ta trong bai bao nay, dé la udc lugng téc do dong ca st dung bd loc Kalman, nhg
kha n&ng chdng lai nhiéu bén ngoai va kha ning du doan trang thai va thdng s8. Bd loc Kalman can
dugc diéu chinh dé udc lugng tét hon, va viéc diéu chinh bd loc ¢ thé tn nhiéu thdi gian va cong
strc. Vi ly do dé, thuét todn t8i uu bay dan dudgc st dung dé t8i uu bd loc Kalman. Bai bdo nay sé trinh
bay (hg dung cuia thut toan ti uu by dan trong viéc t8i uu hda bd loc Kalman dé udc tinh tdc d6
cla dong cd dién mot chiéu thong qua md phong trong MATLAB va Simulink. Cac két qua mo phéng
da chi ra tinh hiéu qua cta phuang phap dé xuat.

T khéa : Bo loc Kalman, T6i uu héa bay dan, Béng cd dién mot chiéu
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1. Introduction

Back in 1832, William Sturgeon, a British
scientist, created the first DC motor that
had the ability to power machinery.
Sturgeon’s initial development was further
expanded upon by Thomas Davenport, an
American scientist. Davenport is known
for creating the first working DC motor,
which he patented in 1837. In the
following years, DC motors continued to
be developed and improved. Today, DC
motors are vital in many industries. They
are commonly used in lifting equipment
such as hoists and cranes for construction,
shipping, and material handling, thanks to
their ability to provide precise speed
control and starting torque, which is
critical for raising and lowering heavy
loads. DC motors are also used in milling
machines and in machining industries to
rotate the workpiece or cutting tool, as
their ability to control the speed smoothly
is suitable for precise material removal and
ensures quality machining operations [1].
For transportation, it can be used to drive
electric vehicles [2]. Despite their diverse
applications, all these systems share one
common requirement: accurate control. An
incorrect movement could lead to
significant issues, including damage to the
machinery or even harm to its operators.

In order to achieve that demand, modern
only need proper
controllers but also require good measured
control data. Sensors could record data for

DC motors not

the operation of DC motors; however,
some systems have special properties so

that suitable might not be
available. Furthermore, research for better
might be costly, and the

implementation of new sensors in the DC

sensors
sensors

motor will increase the weight and volume
of the whole system. As a result of those
problems, this paper will depict a new
solution that uses the Kalman Filter to
estimate the motor speed without the need
for speed sensors [3] [4]. In this filter, the
process noise covariance matrix Q and
measurement noise covariance R are
chosen randomly, so they require tuning so
the Kalman filter can work properly.
Nevertheless, the manual tuning process
might be time-consuming and require
more labor costs. To reduce the time and
labor cost for optimizing filters,
like Particle
Swarm Optimization, Genetic Algorithm,

and Ant Colony Optimization are applied
[5][6].

This paper will focus on the application of
PSO for tuning the Kalman filter in a DC

motor system. It aims to demonstrate the
effectiveness of the Kalman filter in

optimization algorithms

precisely estimating measurements despite
the noise affecting the system.
Additionally, the paper will show how
PSO enhances the performance of the
Kalman filter.

The paper is divided into five main
sections: Introduction, Development of the
Kalman Filter for the Motor, Optimization
of the Kalman Filter with PSO, Simulation
Results, and Conclusion. The core of the
paper lies in sections 2 through 4, where
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the system's development is discussed, and
the simulation results are presented and
analyzed.

2. Develop a Kalman filter for the motor

The Kalman filter is an algorithm that
estimates the state of a dynamic system from
noisy measurements. There are two main
processes involved in the cycle: prediction
and update. Firstly, the process begins with
the initialization of the system’s (e.g., speed,
position) and the associated uncertainty
(covariance). This step initializes the filter.
Secondly, the filter projects the system’s
state and covariance into the future using the
system's model. This step calculates the a
priori estimate based on the previous state
and control inputs, predicting where the
Thirdly,
measurements from sensors like armature

system is  heading. new
current or motor speed are combined with
the predicted state to get a more accurate
estimate. Finally, the Kalman gain is
computed and used to update the predicted
state based on the sensor measurements. The
state and its covariance are corrected to
provide an updated, more accurate estimate,
and the cycle repeats with the next time step,
continually refining the state estimate as new
sensor measurements arrive. The loop
continues with each iteration, improving the
accuracy of the estimate.

Corresponding to the two main processes,
there are two types of equations involved in
the algorithm: extrapolation equations and
update equations. On the one hand, for
extrapolation equations, there are two

equations, which are the state extrapolation
equation:

Xn+in = A Xpn T B xu, (1)

Initial Estimate for state and
Covariance

Time update
(Prediction)
Projection of state and covariance

Measument from
Sensor

Measurement update
(Correction stage)
Kalman gainis used to correct
state and covariance

Figure 1: Kalman filter's working diagram

And covariance extrapolation equation:
Ppy1 = APn,nAT +Q(2)

With A is the state transition matrix, B is the
control matrix, u, is the control variable,
and Q is the process noise matrix. To obtain
those equations, we must investigate a
simple model of DC motor [7]:
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Ra LB

Figure 2: DC motor simple model

From the illustration of a DC motor in Figure

2, we can implement equations for state

extrapolation. Firstly, we have the function

of the Terminal voltage u, as follows:
la

d
ug(K) = Rq + Lo * 7+ PSIg * 0 (K)

i,(k+1)—i,(k
%(k)zRﬁng
S

* wm (k) (3)

+ PSI;

From that equation, we can infer the function
for the armature current i:

Ra * TS _PSIE*TS

L,

i(k+1) = (1— )*ia(k)+

a

) + 75+ u(R) (4)

Secondly, the mechanical dynamics of the
motor, which describe the torque and speed
relationship, are given in discrete form by:

om(k+1)-wm (k)
T

] = PSIy *iy(k) — B * w,, (5)

J 1s the moment of inertia of the motor's

dw . .
rotor, —= is the angular acceleration,

PSI,; is the torque constant, i, (k) is the
armature current, B is the viscous friction
coefficient, and w,, is the angular velocity
of the rotor. For simplicity, we could omit
then,
transformation, we have the equation for

the  friction, after  some

angular velocity w,,:

Ts+ PSIy
wn(k+1)=——

*iq(K) + wy (k) (6)
Finally, the third equation of the state
transition matrix A can be derived from the
delay in the applied voltage:

Ts
ua(k + 1) = ua(k) + m (uinput(k) - ua(k))
elay

T, T,
u (k +1) = <1 - >ua(k) + _Suinput(k) ™
Tdelay Tdelay
Based on equations (1), (2), and (3), we can
get the state transition matrix A and the
control input matrix B as below:

L RaTs VT T,
Lq Lq Lq
TslpM
A= 0
J
T.
0 0 1—=—
Tdelay_
T
Tea
B=|" y‘
0

On the other hand, the update equations
consist of two equations, which are the state
update equation:

Xnn = Xpn-1 T K, (z, — Hxn,n—l) 3
And the covariance update equation:

Pn,n = (I - KnH)Pn,n—l(I - KnH)T
+ KuRuKy'" (9)

With: K, i1s Kalman Gain, H is the
Observation matrix, R, is the Measurement
noise covariance matrix, and z, is the
measurement matrix. In this system, to
estimate the DC motor speed, only the

38

S6 37



TAP CHi KHOA HOC VA CONG NGHE NANG LUONG - TRUGNG DAI HOC DIEN LUC

(ISSN: 1859 - 4557)
armature current is directly measured, so the
observation matrix H is as follows:

H=[100]

The Kalman gain is calculated by this
equation:

K, = Pn,n—lHT(HPn,n—lHT + Rn)_l (10)
3. Optimize the Kalman filter with PSO

The Particle Swarm Optimization (PSO) is
a computational optimization technique
inspired by the social behavior of animals,
such as birds flocking or fish schooling [9].
It was developed by James Kennedy and
Russell Eberhart in 1995. The algorithm's
main idea is to produce a swarm of
particles that move around in the problem
space, or the area that best meets their
demands as determined by a fitness
function, in search of their objective. PSO
starts with the initialization of a swarm of
particles with random positions and
velocities in the search space. Each particle
represents a potential solution, and they are
evaluated using a fitness function.
Particles track their best-known position
(personal best), and the best value of
personal best among particles in the swarm
is tracked in the global best. The
population of particles can change based
on the swarm's size (N). Larger swarms
will, on the one hand, cover more ground
in the search area, improve their ability to
explore, and lower their chance of
becoming stuck in a local optimum.
However, because there are more particles
to assess, the convergence might be

delayed as a result. On the other hand, a
lower swarm size leads to a faster
convergence but may not sufficiently
traverse the search space and may raise the
possibility of premature convergence to
local optima. The new velocity and
position of each particle are updated by
two equations, respectively:

vi(t+ 1) =w-v(t) +cgx1y* (pbeSti —Xi
(t)) +Cy xTy * (gbest - xi(t)) (11)

With w is the inertia weight which controls
the effects of a prior velocity on its current
velocity, 1 and 2 are random coefficients
drawn from a uniform distribution of range
[0,1], c1 and ¢ are the cognitive coefficient
and the social coefficient, respectively.
The inertia weight w shows how the prior
velocity can affect the current velocity; the
higher the inertia weight, the deeper the
exploration. For the cognitive and social
coefficients c¢1 and cz, a high cognitive
coefficient can lead to a more localized
search, while a high social coefficient will
lead to a broader exploration of the search
space. It is crucial to balance these two
parameters as it could affect the efficiency
of the optimization process, for instance, a
too large cognitive coefficient c; might
lead to premature convergence, where
particles become stuck in local optima
because they do not sufficiently explore
the global search space. The algorithm
may end before finding the global
optimum, resulting in a suboptimal
solution.
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In this paper, the PSO algorithm will be
used to tune the process noise covariance
matrix Q and the R measurement noise
covariance matrix of the Kalman filter. If
they are not well-tuned, the filter may
represent noises with uncertain associated
qualities.

Initialization of PSO
parameters, random
initialization of particle
position and velocity

Evaluate the Fitness Function for each particle
for local and global best solution

'

Update the velocity of each particle

Time iteration
r=1+1

1 7y

Update the position of each particle

Is the stopping
riteria satistied?

Stop

Figure 3: PSO algorithm flowchart

There have been methods to find these
factors in the past, but they are frequently
quite time-consuming and difficult. So,
optimization methods like the genetic
algorithm and PSO have been incorporated
into the Kalman filter to save the time
needed to estimate these parameters and to
prevent needless mistakes. Firstly, the
Kalman Filter section initializes state-
space matrices to model the motor
dynamics. It uses sensor inputs such as
armature current and voltage to predict
motor speed while accounting for process

either over-rely on noisy measurements or
trust an inaccurate prediction model too
much. Although Q and R are crucial to the
Kalman filter functioning, it is very
challenging to identify them because they
and measurement noise. The original
Kalman Filter computes estimated speed
using a recursive approach, continuously
updating the state variables based on new
sensor measurements.

Secondly, the PSO algorithm begins by
initializing a swarm of particles, each
representing a candidate solution for the
filter parameters. These particles adjust
their positions and velocities iteratively,
and they are guided by their own best
solutions (pbest) and the global best
solution (gbest) while minimizing the
estimation error. The objective function
evaluates each particle’s performance
based on the Kalman Filter’s speed
estimation accuracy.

Finally, the script compares the original
and PSO-optimized Kalman Filter results
against the physical motor speed, which is
estimated indirectly using the relationship
between current and speed, derived from
the motor's mathematical model, and plots
the errors. Once the PSO converges, the
optimized noise covariance matrices (Qi
and R1) are applied to the Kalman Filter,
resulting in improved accuracy in speed
estimation.

4. Simulation results

The DC motor is modelled in Simulink as
shown in Figure 4. Both system noises and
measurement noise are simulated by
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random number blocks whose outputs are
normally (Gaussian) distributed random
signals to ensure a simulation result that is
close to reality. It can be seen from Figure
4 that armature current and input voltage
values are transferred back to the
MATLAB code for calculation. For the
PSO algorithm, the number of particles in
the swarm is set at 100.

The cognitive and social coefficients are
both set at 2, which provides a good
balance  between  exploration and
exploitation of the algorithm. After many
trials and errors, the optimal inertial weight
range is chosen to be between 0.4 and 0.9.
The lower and upper bounds of the search

idoen Numibar
systom noise)

space for each dimension are also defined
in the MATLAB code.

The simulation returns results as follows.
After the optimization process, we have
the value of the optimized process noise
covariance matrix Q as below:

0.000075 0 0
Q1= 0 0.011862 0
0 0 0.655810

The error between the actual motor speed
and the estimated speed from the Kalman
filter (both the original and optimized
versions) is tracked through 3 wvalues:
Variance, which measures the error

between the actual motor speed (omega)
and the estimated speed;

Figure 4: Simulation of DC motor in Simulink

0.5 1

Physical speed
Original KF
KF + PSO

‘""Thearelical speed'
i }
1.5 2 2.5 3

Sample number (@ 10kHz) w104

Figure 5: Theoretical Speed, Estimated Speed, Physical Speed, Optimal Speed of DC motor

Average, which is the mean value of the
error between the actual motor speed
(omega) and the estimated speed; Mean
square error (MSE) between the estimated

motor speed and the actual motor speed.
Related comparisons are shown in Table 1
and Figure 5.
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Table 1: Comparison between non-optimized
and optimized Kalman filter

Original KF KF +PSO
Variance 0.4195 0.1798
Average 0.8570 0.5435
MSE 1.1540 0.4752

Graph of the error
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Figure 6: Error comparison between non-
optimized and optimized Kalman filter

From both Table 1 and Figure 5, it is clear
that the PSO has improved the efficiency
of the Kalman filter noticeably, as the data
recorded from the optimized filter is
significantly ~ smaller.  Finally, a
comparison of theoretical speed, physical
speed (actual speed), non-optimized speed,
and actual speed of the DC motor is shown
in Figures 6 and 7. The optimal speed is
closer to the physical speed than the non-
optimized one. The effectiveness of the
PSO algorithm is proven.
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Figure 7: Zoom in figure 5

5. Conclusion

It can be inferred from this paper that
accurate speed estimation plays a crucial
role in the operation of a DC motor. By using
the PSO algorithm to optimize the Q and R
covariance matrices of the implemented
Kalman filter, its effectiveness has increased
significantly. This paper has successfully

depicted the effectiveness of the PSO
algorithm in the new method that does not
require the sensor to estimate the speed of
DC through simulation in MATLAB and
Simulink. In the future, I plan to do further
research to further improve the results
obtained, as well as find ways to apply the
results to devices other than DC motors.
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