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Abstract: 

DC motors have many critical applications in our daily lives. They can be used in many fields, including 

electric vehicles and household appliances. Therefore, the demand for DC motor control, particularly 

in terms of speed, has increased over the years. To control DC motors, it is necessary to measure 

relevant parameters such as motor speed and armature current using sensors. However, the 

installation of sensors will increase the system's cost, and it is challenging for DC motors due to space 

and weight limitations. To overcome this problem, it is necessary to design a measurement system 

with fewer sensors. A new method for estimating DC motor speed without using speed sensors is 

described in this paper, utilizing the Kalman filter for motor speed estimation due to its resistance to 

external disturbances and its ability to predict states and parameters. The Kalman filter (KF) requires 

tuning for improved estimation, which can be a time-consuming and laborious process. For that reason, 

the swarm optimization algorithm is used to optimize the Kalman filter. This paper will present the 

application of a swarm optimization algorithm (PSO) in optimizing the Kalman filter to estimate the 

speed of a DC motor through simulation in MATLAB and Simulink. The simulation results have shown 

the effectiveness of the proposed method. 

Keywords : Kalman filter, Particle Swarm Optimization, Direct Current motor 

Tóm tắt: 

Động cơ điện một chiều có nhiều ứng dụng quan trọng trong cuộc sống hàng ngày của chúng ta. Nó 

có thể được sử dụng trong nhiều lĩnh vực, bao gồm xe điện và thiết bị gia dụng. Do đó, nhu cầu điều 

khiển động cơ điện một chiều, đặc biệt là tốc độ của chúng, đã tăng lên trong những năm qua. Để 

điều khiển động cơ điện một chiều, cần phải đo lường các thông số liên quan như tốc độ động cơ và 

dòng điện phần ứng bằng cảm biến. Tuy nhiên, việc lắp đặt các cảm biến sẽ làm tăng giá thành của 

hệ thống, và gặp nhiều khó khăn đối với các động cơ điện một chiều có giới hạn về không gian và 

trọng lượng. Để khắc phục vấn đề này, cần thiết kế một hệ thống đo lường với số lượng cảm biến ít 

hơn. Một phương pháp mới để ước lượng tốc độ động cơ điện một chiều mà không sử dụng cảm biên 

tốc độ sẽ được mô tả trong bài báo này, đó là ước lượng tốc độ động cơ sử dụng bộ lọc Kalman, nhờ 

khả năng chống lại nhiễu bên ngoài và khả năng dự đoán trạng thái và thông số. Bộ lọc Kalman cần 

được điều chỉnh để ước lượng tốt hơn, và việc điều chỉnh bộ lọc có thể tốn nhiều thời gian và công 

sức. Vì lý do đó, thuật toán tối ưu bầy đàn được sử dụng để tối ưu bộ lọc Kalman. Bài báo này sẽ trình 

bày ứng dụng của thuật toán tối ưu bầy đàn trong việc tối ưu hóa bộ lọc Kalman để ước tính tốc độ 

của động cơ điện một chiều thông qua mô phỏng trong MATLAB và Simulink. Các kết quả mô phỏng 

đã chỉ ra tính hiệu quả của phương pháp đề xuất.  

Từ khóa : Bộ lọc Kalman, Tối ưu hóa bầy đàn, Động cơ điện một chiều 
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1. Introduction  

Back in 1832, William Sturgeon, a British 

scientist, created the first DC motor that 

had the ability to power machinery. 

Sturgeon’s initial development was further 

expanded upon by Thomas Davenport, an 

American scientist. Davenport is known 

for creating the first working DC motor, 

which he patented in 1837. In the 

following years, DC motors continued to 

be developed and improved. Today, DC 

motors are vital in many industries. They 

are commonly used in lifting equipment 

such as hoists and cranes for construction, 

shipping, and material handling, thanks to 

their ability to provide precise speed 

control and starting torque, which is 

critical for raising and lowering heavy 

loads. DC motors are also used in milling 

machines and in machining industries to 

rotate the workpiece or cutting tool, as 

their ability to control the speed smoothly 

is suitable for precise material removal and 

ensures quality machining operations [1]. 

For transportation, it can be used to drive 

electric vehicles [2]. Despite their diverse 

applications, all these systems share one 

common requirement: accurate control. An 

incorrect movement could lead to 

significant issues, including damage to the 

machinery or even harm to its operators. 

In order to achieve that demand, modern 

DC motors not only need proper 

controllers but also require good measured 

control data. Sensors could record data for 

the operation of DC motors; however, 

some systems have special properties so 

that suitable sensors might not be 

available. Furthermore, research for better 

sensors might be costly, and the 

implementation of new sensors in the DC 

motor will increase the weight and volume 

of the whole system. As a result of those 

problems, this paper will depict a new 

solution that uses the Kalman Filter to 

estimate the motor speed without the need 

for speed sensors [3] [4]. In this filter, the 

process noise covariance matrix Q and 

measurement noise covariance R are 

chosen randomly, so they require tuning so 

the Kalman filter can work properly. 

Nevertheless, the manual tuning process 

might be time-consuming and require 

more labor costs. To reduce the time and 

labor cost for optimizing filters, 

optimization algorithms like Particle 

Swarm Optimization, Genetic Algorithm, 

and Ant Colony Optimization are applied 

[5] [6].  

This paper will focus on the application of 

PSO for tuning the Kalman filter in a DC 

motor system. It aims to demonstrate the 

effectiveness of the Kalman filter in 

precisely estimating measurements despite 

the noise affecting the system. 

Additionally, the paper will show how 

PSO enhances the performance of the 

Kalman filter.  

The paper is divided into five main 

sections: Introduction, Development of the 

Kalman Filter for the Motor, Optimization 

of the Kalman Filter with PSO, Simulation 

Results, and Conclusion. The core of the 

paper lies in sections 2 through 4, where 
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the system's development is discussed, and 

the simulation results are presented and 

analyzed. 

2. Develop a Kalman filter for the motor 

The Kalman filter is an algorithm that 

estimates the state of a dynamic system from 

noisy measurements. There are two main 

processes involved in the cycle: prediction 

and update. Firstly, the process begins with 

the initialization of the system’s (e.g., speed, 

position) and the associated uncertainty 

(covariance). This step initializes the filter. 

Secondly, the filter projects the system’s 

state and covariance into the future using the 

system's model. This step calculates the a 

priori estimate based on the previous state 

and control inputs, predicting where the 

system is heading. Thirdly, new 

measurements from sensors like armature 

current or motor speed are combined with 

the predicted state to get a more accurate 

estimate. Finally, the Kalman gain is 

computed and used to update the predicted 

state based on the sensor measurements. The 

state and its covariance are corrected to 

provide an updated, more accurate estimate, 

and the cycle repeats with the next time step, 

continually refining the state estimate as new 

sensor measurements arrive. The loop 

continues with each iteration, improving the 

accuracy of the estimate. 

Corresponding to the two main processes, 

there are two types of equations involved in 

the algorithm: extrapolation equations and 

update equations. On the one hand, for 

extrapolation equations, there are two 

equations, which are the state extrapolation 

equation:  

𝒙𝒏+𝟏,𝒏 = 𝑨 ∗ 𝒙𝒏,𝒏 + 𝑩 ∗ 𝒖𝒏 (1) 

 

Figure 1: Kalman filter's working diagram 

And covariance extrapolation equation: 

𝑷𝒏+𝟏 = 𝑨𝑷𝒏,𝒏𝑨𝑻 + 𝑸 (𝟐)  

With A is the state transition matrix, B is the 

control matrix,  𝒖𝒏 is the control variable, 

and Q is the process noise matrix. To obtain 

those equations, we must investigate a 

simple model of DC motor [7]: 



TẠP CHÍ KHOA HỌC VÀ CÔNG NGHỆ NĂNG LƯỢNG - TRƯỜNG ĐẠI HỌC ĐIỆN LỰC 

(ISSN: 1859 - 4557) 

 

38                                                                                                                                  Số 37  
                                                                                                                           

 

Figure 2: DC motor simple model 

From the illustration of a DC motor in Figure 

2, we can implement equations for state 

extrapolation. Firstly, we have the function 

of the Terminal voltage 𝒖𝒂 as follows:  

𝒖𝒂(𝒌) = 𝑹𝒂 + 𝑳𝒂 ∗
𝒅𝒊𝒂
𝒅𝒕

+ 𝑷𝑺𝑰𝑬 ∗ 𝝎𝒎(𝒌) 

𝑢𝑎(𝑘) ≈ 𝑅𝑎 + 𝐿𝑎 ∗
𝑖𝑎(𝑘 + 1) − 𝑖𝑎(𝑘)

𝑇𝑠
+ 𝑃𝑆𝐼𝐸

∗ 𝜔𝑚(𝑘)  (3) 

From that equation, we can infer the function 

for the armature current 𝒊𝒂:  

𝒊𝒂(𝒌 + 𝟏) = (𝟏 −
𝑹𝒂 ∗ 𝑻𝒔

𝑳𝒂
) ∗ 𝒊𝒂(𝒌) +

−𝑷𝑺𝑰𝑬∗𝑻𝒔

𝑳𝒂

∗ 𝝎𝒎(𝒌) +
𝑻𝒔

𝑳𝒂
∗ 𝒖𝒂(𝒌) (𝟒) 

Secondly, the mechanical dynamics of the 

motor, which describe the torque and speed 

relationship, are given in discrete form by:  

𝑱
𝝎𝒎(𝒌+𝟏)−𝝎𝒎(𝒌)

𝑻𝒔
= 𝑷𝑺𝑰𝑴 ∗ 𝒊𝒂(𝒌) − 𝑩 ∗ 𝝎𝒎 (5) 

J is the moment of inertia of the motor's 

rotor, 
𝒅𝝎𝒎

𝒅𝒕
 is the angular acceleration,  

𝑷𝑺𝑰𝑴 is the torque constant, 𝒊𝒂(𝒌) is the 

armature current, B is the viscous friction 

coefficient, and 𝝎𝒎 is the angular velocity 

of the rotor. For simplicity, we could omit 

the friction, then, after some 

transformation, we have the equation for 

angular velocity 𝝎𝒎:  

𝝎𝒎(𝒌 + 𝟏) =
𝑻𝒔 ∗ 𝑷𝑺𝑰𝑴

𝑱
∗ 𝒊𝒂(𝒌) + 𝝎𝒎(𝒌) (𝟔) 

Finally, the third equation of the state 

transition matrix A can be derived from the 

delay in the applied voltage:   

𝑢𝑎(𝑘 + 1) = 𝑢𝑎(𝑘) +
𝑇𝑠

𝑇delay
(𝑢input(𝑘) − 𝑢𝑎(𝑘)) 

𝑢𝑎(𝑘 + 1) = (1 −
𝑇𝑠

𝑇delay
)𝑢𝑎(𝑘) +

𝑇𝑠

𝑇delay
𝑢input(𝑘)  (7) 

Based on equations (1), (2), and (3), we can 

get the state transition matrix A and the 

control input matrix B as below: 

𝐴 =

[
 
 
 
 
 
 1 −

𝑅𝑎𝑇𝑠

𝐿𝑎

−
𝛹𝐸𝑇𝑠

𝐿𝑎

𝑇𝑠

𝐿𝑎

𝑇𝑠𝛹𝑀

𝐽
1 0

0 0 1 −
𝑇𝑠

𝑇delay]
 
 
 
 
 
 

 

𝑩 = [

𝑻𝒔

𝑻delay

𝟎
𝟎

]  

On the other hand, the update equations 

consist of two equations, which are the state 

update equation: 

𝒙𝒏,𝒏 = 𝒙𝒏,𝒏−𝟏 + 𝑲𝒏(𝒛𝒏 − 𝑯𝒙𝒏,𝒏−𝟏)  (8) 

And the covariance update equation:  

𝑷𝒏,𝒏 = (𝑰 − 𝑲𝒏𝑯)𝑷𝒏,𝒏−𝟏(𝑰 − 𝑲𝒏𝑯)𝑻

+ 𝑲𝒏𝑹𝒏𝑲𝒏
𝑻  (𝟗) 

With: 𝑲𝒏 is Kalman Gain, H is the 

Observation matrix, Rn is the Measurement 

noise covariance matrix, and 𝒛𝒏 is the 

measurement matrix. In this system, to 

estimate the DC motor speed, only the 
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armature current is directly measured, so the 

observation matrix H is as follows:  

𝑯 = [𝟏 𝟎 𝟎] 

The Kalman gain is calculated by this 

equation: 

𝑲𝒏 = 𝑷𝒏,𝒏−𝟏𝑯
𝑻(𝑯𝑷𝒏,𝒏−𝟏𝑯

𝑻 + 𝑹𝒏)
−𝟏  (𝟏𝟎) 

3. Optimize the Kalman filter with PSO 

The Particle Swarm Optimization (PSO) is 

a computational optimization technique 

inspired by the social behavior of animals, 

such as birds flocking or fish schooling [9]. 

It was developed by James Kennedy and 

Russell Eberhart in 1995. The algorithm's 

main idea is to produce a swarm of 

particles that move around in the problem 

space, or the area that best meets their 

demands as determined by a fitness 

function, in search of their objective. PSO 

starts with the initialization of a swarm of 

particles with random positions and 

velocities in the search space. Each particle 

represents a potential solution, and they are 

evaluated using a fitness function. 

Particles track their best-known position 

(personal best), and the best value of 

personal best among particles in the swarm 

is tracked in the global best. The 

population of particles can change based 

on the swarm's size (𝑁). Larger swarms 

will, on the one hand, cover more ground 

in the search area, improve their ability to 

explore, and lower their chance of 

becoming stuck in a local optimum. 

However, because there are more particles 

to assess, the convergence might be 

delayed as a result. On the other hand, a 

lower swarm size leads to a faster 

convergence but may not sufficiently 

traverse the search space and may raise the 

possibility of premature convergence to 

local optima. The new velocity and 

position of each particle are updated by 

two equations, respectively: 

𝒗𝒊(𝒕 + 𝟏) = 𝒘 ⋅ 𝒗𝒊(𝒕) + 𝒄𝟏 ∗ 𝒓𝟏 ∗ (𝒑𝒃𝒆𝒔𝒕𝒊 − 𝒙𝒊

(𝒕)) + 𝒄𝟐 ∗ 𝒓𝟐 ∗ (𝒈𝒃𝒆𝒔𝒕 − 𝒙𝒊(𝒕)) (𝟏𝟏)  

𝒙𝒊(𝒕 + 𝟏) = 𝒙𝒊(𝒕) + 𝒗𝒊(𝒕 + 𝟏)  (𝟏𝟐) 

With 𝑤 is the inertia weight which controls 

the effects of a prior velocity on its current 

velocity, 𝑟1 and 𝑟2 are random coefficients 

drawn from a uniform distribution of range 

[0,1], c1 and 𝑐2 are the cognitive coefficient 

and the social coefficient, respectively. 

The inertia weight w shows how the prior 

velocity can affect the current velocity; the 

higher the inertia weight, the deeper the 

exploration. For the cognitive and social 

coefficients c1 and c2, a high cognitive 

coefficient can lead to a more localized 

search, while a high social coefficient will 

lead to a broader exploration of the search 

space. It is crucial to balance these two 

parameters as it could affect the efficiency 

of the optimization process, for instance, a 

too large cognitive coefficient c1 might 

lead to premature convergence, where 

particles become stuck in local optima 

because they do not sufficiently explore 

the global search space. The algorithm 

may end before finding the global 

optimum, resulting in a suboptimal 

solution.   
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In this paper, the PSO algorithm will be 

used to tune the process noise covariance 

matrix Q and the R measurement noise 

covariance matrix of the Kalman filter. If 

they are not well-tuned, the filter may 

either over-rely on noisy measurements or 

trust an inaccurate prediction model too 

much. Although Q and 𝑅 are crucial to the 

Kalman filter functioning, it is very 

challenging to identify them because they 

represent noises with uncertain associated 

qualities. 

 

Figure 3: PSO algorithm flowchart 

There have been methods to find these 

factors in the past, but they are frequently 

quite time-consuming and difficult. So, 

optimization methods like the genetic 

algorithm and PSO have been incorporated 

into the Kalman filter to save the time 

needed to estimate these parameters and to 

prevent needless mistakes. Firstly, the 

Kalman Filter section initializes state-

space matrices to model the motor 

dynamics. It uses sensor inputs such as 

armature current and voltage to predict 

motor speed while accounting for process 

and measurement noise. The original 

Kalman Filter computes estimated speed 

using a recursive approach, continuously 

updating the state variables based on new 

sensor measurements. 

Secondly, the PSO algorithm begins by 

initializing a swarm of particles, each 

representing a candidate solution for the 

filter parameters. These particles adjust 

their positions and velocities iteratively, 

and they are guided by their own best 

solutions (pbest) and the global best 

solution (gbest) while minimizing the 

estimation error. The objective function 

evaluates each particle’s performance 

based on the Kalman Filter’s speed 

estimation accuracy.  

Finally, the script compares the original 

and PSO-optimized Kalman Filter results 

against the physical motor speed, which is 

estimated indirectly using the relationship 

between current and speed, derived from 

the motor's mathematical model, and plots 

the errors. Once the PSO converges, the 

optimized noise covariance matrices (Q1 

and R1) are applied to the Kalman Filter, 

resulting in improved accuracy in speed 

estimation.  

4. Simulation results  

The DC motor is modelled in Simulink as 

shown in Figure 4. Both system noises and 

measurement noise are simulated by 
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random number blocks whose outputs are 

normally (Gaussian) distributed random 

signals to ensure a simulation result that is 

close to reality. It can be seen from Figure 

4 that armature current and input voltage 

values are transferred back to the 

MATLAB code for calculation. For the 

PSO algorithm, the number of particles in 

the swarm is set at 100.  

The cognitive and social coefficients are 

both set at 2, which provides a good 

balance between exploration and 

exploitation of the algorithm. After many 

trials and errors, the optimal inertial weight 

range is chosen to be between 0.4 and 0.9. 

The lower and upper bounds of the search 

space for each dimension are also defined 

in the MATLAB code. 

The simulation returns results as follows. 

After the optimization process, we have 

the value of the optimized process noise 

covariance matrix Q as below:  

𝑄1 = [
0.000075 0 0

0 0.011862 0
0 0 0.655810

] 

The error between the actual motor speed 

and the estimated speed from the Kalman 

filter (both the original and optimized 

versions) is tracked through 3 values: 

Variance, which measures the error 

between the actual motor speed (omega) 

and the estimated speed; 

 

 
Figure 4: Simulation of DC motor in Simulink 

 

Figure 5: Theoretical Speed, Estimated Speed, Physical Speed, Optimal Speed of DC motor 

Average, which is the mean value of the 

error between the actual motor speed 

(omega) and the estimated speed; Mean 

square error (MSE) between the estimated 

motor speed and the actual motor speed. 

Related comparisons are shown in Table 1 

and Figure 5.  
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Table 1: Comparison between non-optimized 

and optimized Kalman filter 

 Original KF KF + PSO 

Variance 0.4195 0.1798 

Average 0.8570 0.5435 

MSE 1.1540 0.4752 

 

Figure 6: Error comparison between non-
optimized and optimized Kalman filter 

From both Table 1 and Figure 5, it is clear 

that the PSO has improved the efficiency 

of the Kalman filter noticeably, as the data 

recorded from the optimized filter is 

significantly smaller. Finally, a 

comparison of theoretical speed, physical 

speed (actual speed), non-optimized speed, 

and actual speed of the DC motor is shown 

in Figures 6 and 7. The optimal speed is 

closer to the physical speed than the non-

optimized one. The effectiveness of the 

PSO algorithm is proven. 

Figure 7: Zoom in figure 5 

5. Conclusion 

It can be inferred from this paper that 

accurate speed estimation plays a crucial 

role in the operation of a DC motor. By using 

the PSO algorithm to optimize the Q and R 

covariance matrices of the implemented 

Kalman filter, its effectiveness has increased 

significantly. This paper has successfully 

depicted the effectiveness of the PSO 

algorithm in the new method that does not 

require the sensor to estimate the speed of 

DC through simulation in MATLAB and 

Simulink. In the future, I plan to do further 

research to further improve the results 

obtained, as well as find ways to apply the 

results to devices other than DC motors. 
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