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Tóm tắt: 

Dự báo dòng chảy nước chính xác cho các hồ chứa thủy điện đã trở thành yếu tố cần thiết 

để quản lý hiệu quả tài nguyên nước và tối ưu hóa hiệu suất vận hành nhà máy. Điều này giúp giảm 

thiểu tác động tiêu cực của hạn hán và lũ lụt, đảm bảo sản xuất điện ổn định, đồng thời thúc đẩy sử 

dụng tài nguyên nước hiệu quả. Nghiên cứu này giới thiệu các mô hình mạng nơ-ron nhân tạo tiên 

tiến nhằm khắc phục những hạn chế của các phương pháp thống kê truyền thống trong việc dự báo 

dòng chảy nước ở các hồ chứa thủy điện. Để tối ưu hóa hiệu suất mô hình, các kỹ thuật kiểm định 

chéo (cross-validation) và tìm kiếm lưới (grid search) được sử dụng để xác định các tham số tối ưu 

của mô hình. Dữ liệu sử dụng trong nghiên cứu này là dòng chảy nước tại hồ chứa thủy điện Sre Pok 

4 từ tháng 1 năm 2013 đến tháng 5 năm 2023. Đánh giá hiệu suất mô hình bao gồm các chỉ số chính 

như Sai số Tỷ lệ Trung bình Tuyệt đối (MAPE), Sai số Trung bình Tuyệt đối (MAE) và Hiệu suất Nash-

Sutcliffe (NSE). Kết quả cho thấy mô hình kết hợp CNN-LSTM có thể dự báo dòng chảy nước với MAPE 

đạt 6,52%. 

Từ khóa: dự báo lưu lượng nước, mạng nơ-ron hồi quy, thủy điện, CNN-LSTM. 

Abstract: 

Accurate water flow forecasting for hydropower reservoirs has become essential for effective 

water resource management and optimizing plant performance. It helps to mitigate the negative 

impacts of droughts and floods, ensures stable electricity production, and promotes the efficient use 

of water resource. This study introduces advanced artificial neural network models designed to address 

the limitations of traditional statistical methods for water flow forecasting in hydropower reservoirs. 

To optimize model performance, cross-validation techniques and grid search are employed to identify 

the best model’s parameter. The data used in this study is the water flow in Sre Pok 4 hydropower 

reservoir from January 2013 to May 2023. The model performance evaluation includes key metrics 

such as Mean Absolute Percentage Error (MAPE), Mean Absolute Error (MAE), and Nash-Sutcliffe 

Efficiency (NSE). The results show that the combined CNN-LSTM model can predict the water flow 

with the MAPE of 6.52%. 

Keywords: waterflow forecasting, recurrent neural networks, hydropower, CNN-LSTM. 
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1. INTRODUCTION  

Under Vietnam's Eighth National Power 

Development Plan, the total power 

generation capacity for domestic demand 

is expected to reach 150,489 MW by 2030, 

with hydropower accounting for 19.5% 

(29,346 MW) [1]. Hydropower remains a 

cornerstone of Vietnam's electricity 

supply. The power shortages in northern 

area of Vietnam were observed during the 

early summer months of 2023. This was 

partly attributed to reduced water inflows 

to hydropower reservoirs compared to 

previous years. While hydropower is cost-

effective and flexible, its production 

depends heavily on water flow, rainfall, 

and environmental conditions. To optimize 

electricity generation, accurately 

forecasting water inflow to reservoirs is 

critical. This enables efficient water 

resource management and supports 

informed decision-making for hydropower 

operations, particularly during dry season. 

Hydraulic models for calculating river 

flow typically demand extensive input 

data, such as topography, rainfall, and inlet 

or outlet flow rates. Optimizing these 

models often requires validation against 

numerous real-world measurements, 

which can complicate the selection of 

suitable parameters. When detailed 

topographic and geomorphological data 

are unavailable, machine learning models 

using artificial neural networks offer an 

alternative approach for predicting 

hydrological factors and river flow rate.  

Several studies have utilized the 

application of machine learning models for 

hydrological forecasting. In [2], the LSTM 

model is used to predict water levels at 

hydrological stations in Hải Phòng. Based 

on hourly historical data, water level was 

forecasted from 1 to 5 hours at the Quang 

Phục and Cửa Cấm stations [2]. They also 

developed a recurrent neural network 

(RNN) based model to forecast the flood 

discharge of the Da River in Lai Châu one 

day ahead [3] and predict the flow of the 

Hồng River at the Sơn Tây station for 1-

day, 2-day, and 3-day ahead [4]. The same 

method is used to predict the water levels 

downstream of the Thái Bình River, with 

forecasting intervals of 6, 12, 18, and 24 

hours [5,6]; and in the Cấm River in Hải 

Phòng City, with prediction intervals of 1, 

3, and 6 hours [7]. 

Notably, these models require only past 

flow rate data, eliminating the need for 

topographic or surface cover information. 

However, most rely solely on LSTM or 

RNN architectures which subject to short-

term forecasting steps only.  

In this research, we propose an advance 

reccurrent neural network model by 

combining the CNN and LSTM 

architecture to forecast the water flow in 

hydropower reservoir for longer steps. The 

combined CNN-LSTM offers several 

advantages over using either model alone. 

The subject of this study is the Sre Pok 4 

hydropower reservoir. This is a 

hydroelectric project built on the Sre Pok 

River, located in the territories of Dak Lak 

and Dak Nong provinces, Vietnam. 

Regulating the flow during the dry season 

for the downstream in Cambodia and 

generating electricity for the national grid 

are the main tasks of the Sre Pok 4 
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hydropower plant. With a total capacity of 

80 MW divided between two units, a total 

reservoir volume of 31 millions m³, and a 

lake surface area of approximately 375 

hectares, the Sre Pok 4 hydropower plant 

generates an average of about 336 million 

kWh per year for the national grid [8]. The 

water flow data is collected from January 

1, 2013 to May 30, 2023.  

The paper is organized as follow : Section 

1 is the literature review. In section 2, the 

structure and operating principles of CNN 

and LSTM networks is presented along 

with the methods for processing input data 

and training the model. Section 3 presents 

the forecast results, and finally section 4 is 

the conclusion. 

2. METHODOLOGY 

2.1. Convolutional Neural Network (CNN) 

Convolutional neural networks (CNNs) 

are a class of neural network architecture 

that is well-suited to processing grid-like 

data such as images and audio, and is 

capable of feature detection at multiple 

levels of abstraction. 

CNNs improve performance dealing with 

big datasets, with a lower number of 

parameters by having feature filters and the 

possibility to reuse pre-trained weights. A 

CNN model architecture generally consists 

of three types of layers, Convolutional 

layers, Pooling layers and Fully Connected 

layers. The model structure is visualized in 

Figure 1.  

 

Figure 1. CNN network model structure 

2.1.1. Convolutional Layers 

The first layers in a convolutional neural 

network extract features from input data 

and the most important components are 

convolutional layers. These layers are 

compositing filter maps (or convolutional 

kernels), which are matrices that, via the 

convolution operation that it executes with 

the input data, form new feature maps. 

These feature maps are obtained by 

weighing components for the input with 

each of the filter's corresponding 

coefficients and reducing it. The operation 

is called convolution. 

Filters are applied across various locations 

of the input data in convolutional layers, 

which helps reduce the number of weights 

to train and enhances the model's 

generalization capability. As the data 

passes through successive convolutional 

layers, the network can detect increasingly 

complex features in the input data. The 

output becomes multidimensional as it 

traverses the CNN. To process this data 

further using other models like LSTMs, it 

is necessary to convert the 

multidimensional output into a sequential 

format before feeding it into the LSTM 

model. 

Additionally, activation functions such as 

ReLU or tanh are commonly applied after 

convolutional layers to introduce non-

linearity, enabling CNNs to learn more 

complex patterns and features.  

2.1.2. Pooling Layers 

Pooling layers are typically placed 

between convolutional layers and are 

another component of the CNN 

architecture. Their primary function is to 

reduce the spatial dimensions of the data 

after convolutional layers while retaining 

essential information. This process 

decreases computational costs, mitigates 

overfitting, and enhances the model's 
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generalization. 

Common types of pooling layers include 

Max Pooling and Average Pooling: 

• Max Pooling is the most common type 

of pooling layer. In Max Pooling, the 

largest value in each small region of 

the input data is retained. This helps 

retain important features, while 

reducing the number of elements to be 

processed. 

• With Average Pooling, the average 

value of the values in the region is 

calculated and retained. This reduces 

the variation between features. 

2.1.3. Fully Connected Layers 

The fully connected layer acts as a bridge 

between the extracted features and the 

desired output. It determines the final 

conclusions to be drawn from the 

processed data. In the fully connected 

layer, each node is connected to all the 

nodes in the previous layer. This 

connectivity allows the layer to synthesize 

information from the entire input data to 

produce the desired output, usually 

classification or prediction. 

2.2. Long Short-Term Memory (LSTM) 

Network 

The Long Short-Term Memory (LSTM) 

Network is a specialized variant of the 

Recurrent Neural Network (RNN), 

initially proposed in 1997 by Sepp 

Hochreiter and Jürgen Schmidhuber [9]. 

Since its inception, it has become a critical 

tool in the field of machine learning, 

further refined and widely adopted by 

numerous researchers. 

LSTM networks are specifically designed 

to address the problem of long-term 

dependencies, with an inherent ability to 

retain information over extended time 

periods. An LSTM network consists of 

multiple interconnected LSTM cells. The 

specific structure of each cell is illustrated 

in Figure 2. 

 

Figure 2. Internal structure of an LSTM cell 

The idea behind the LSTM network is to 

extend the architecture of the Recurrent 

Neural Network (RNN) by introducing an 

internal cell state 𝑠𝑡 and three gates for 

information filtering within the cell. These 

gates are: 

1. Forget Gate (𝑓𝑡): Responsible for 

discarding unnecessary 

information from the cell. 

2. Input Gate (𝑖𝑡): Selects the relevant 

information to be added to the cell. 

3. Output Gate (𝑜𝑡): Determines 

which information from the cell 

will be utilized as the network’s 

output. 

At each time step t, the gates sequentially 

receive the input value 𝑥𝑡 and the value 

ℎ𝑡−1, which is the output from the hidden 

state at time step t-1. During the 

propagation process, the cell state 𝑠𝑡 and 

the output ℎ𝑡 are calculated as follows: 

 In the first step, the LSTM cell decides 

which information from the previous cell 

state 𝑠𝑡−1  should be discarded. The forget 

gate activation 𝑓𝑡 at time step t is computed 

based on the current input 𝑥𝑡, the output 

ℎ𝑡−1 from the LSTM cell at the previous 

time step, along with corresponding 

weight matrices W and bias 𝑏𝑡. The 

sigmoid function transforms all values of 

𝑓𝑡  into the range [0, 1], where an output of 
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1 indicates retaining all information, and 

an output of 0 indicates discarding all 

information.  

𝑓𝑡 = 𝜎(𝑊𝑓,𝑥𝑥𝑡 +𝑊𝑓,ℎℎ𝑡−1 + 𝑏𝑓) (1) 

In the second step, the LSTM cell 

determines which information should be 

added to the cell state 𝑠𝑡. The candidate 

memory cell 𝑠̃𝑡 represents potential 

information that could be added to the cell 

state and is computed using a tanh 

activation function with a value range of   

[-1, 1]. 

𝑠̃𝑡 = tanh(𝑊𝑠̃,𝑥𝑥𝑡 +𝑊𝑠̃,ℎℎ𝑡−1 + 𝑏𝑠̃) (2) 

Next, the activation value i_t of the input 

gate is calculated using equation (3) : 

𝑖𝑡 = 𝜎(𝑊𝑖,𝑥𝑥𝑡 +𝑊𝑖,ℎℎ𝑡−1 + 𝑏𝑖) (3) 

In the third step, the new cell state 𝑠𝑡 is 

updated based on the results from the 

previous steps through element-wise 

matrix multiplication: 

𝑠𝑡 = 𝑓𝑡 ∗ 𝑠𝑡−1 + 𝑖𝑡 ∗ 𝑠̃𝑡 (4) 

In the final step, the output value ℎ𝑡 is 

further refined. First, a sigmoid function 

determines which part of the cell state 

should be output: 

𝑜𝑡 = 𝜎(𝑊𝑜,𝑥𝑥𝑡 +𝑊𝑜,ℎℎ𝑡−1 + 𝑏𝑜) (5) 

Then, the cell state is passed through a tanh 

function to scale its values within the range 

[-1, 1], and it is multiplied by the output of 

the sigmoid gate to produce the desired 

output value : 

ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝑠𝑡) (6) 

2.3. Input Data Collection and Processing 

2.3.1. Input Data Collection 

The input data includes 3,802 daily 

measurements of the historical water 

inflow into the Sre Pok 4 hydropower 

reservoir, with units in m³/s, collected 

between January 1, 2013, and May 30, 

2023. The dataset was collected online 

from the official website of the Mekong 

River Commission (MRC) [10] which is 

freely accessible online. 

 

Figure 3. Flow Hydrograph of Water Inflow to 

the Sre Pok 4 Hydropower Reservoir 

2.3.2. Data Preprocessing 

The data preprocessing process includes 

data cleaning and normalization, among 

which data cleaning involves managing 

missing data points and outliers. The 

collected dataset is complete with all 3,802 

data points, and there are not any missing 

data cases. 

The original dataset shows notable 

differences in results for water flow data. 

Due to the rainy season in the Sre Pok 

basin, which typically runs from May to 

September, the data points during this 

period show substantial increases. 

Meanwhile, there are certain data points 

that are extremely low (near zero) in dry 

months. For this reason, abnormal values 

are not considered outliers and still be 

retained to ensure the authenticity of the 

study's subject.  

The input data is normalized by using the 

Yeo-Johnson transformation, a variation of 

the Box-Cox transformation from the 

Power Transform family [11]. The 

normalization method follows Equation 

(7): 

𝜓(𝜆, 𝑥) =

{
 
 
 
 
 

 
 
 
 
 
{(𝑥 + 1)𝜆 − 1}

𝜆
                    

 (𝑥 ≥ 0, 𝜆 ≠ 0),

log(𝑥 + 1)                                  
(𝑥 ≥ 0, 𝜆 ≠ 0),

−
{(1 − 𝑥)2−𝜆 − 1}

2 − 𝜆
  

(𝑥 < 0, 𝜆 ≠ 2),

− log(1 − 𝑥)                              

(𝑥 < 0, 𝜆 ≠ 2).

(7) 
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Where x is the input value and 𝜆 is the 

transformation parameter. The value of λ is 

automatically optimized. After the 

normalization, the new dataset will have 

zero mean and unit variance. 

Figure 4 displays the water inflow data into 

the Sre Pok 4 reservoir after normalization. 

 

Figure 4. Graph of water flow after 

normalization 

2.4. CNN-LSTM Model for Water Flow 

Forecasting 

The dataset is divided into two separate 

subsets at an 80/20 ratio. The first subset, 

which is used to train and fine-tune the 

model, consists of 3,042 data points 

recorded between January 1, 2013, and 

April 30, 2021. Meanwhile, The second 

subset, consisting of 760 data points 

measured from May 1, 2021, to May 30, 

2023, is used to evaluate the model's 

performance. 

The Cross-fold Validation algorithm is 

employed to identify the optimal set of 

parameters for the model. The model is 

trained and assessed respectively with 

every possible combination of 

predetermined parameters. The steps are as 

follows: 

• Determine the parameters that need to 

be fine-tuned and list potential values 

for these parameters. 

• The training dataset is split into k 

distinct subsets for every parameter set. 

Of these, k-1  subsets are used to train 

the model, and the remaining subset is 

used to evaluate the model performance 

using the nMAE error. This process is 

repeated k times so that all k subsets are 

evaluated. 

• The evaluation error nMAE is the 

average mean absolute error of the 

normalized data values. With N data 

points, , 𝑄′(𝑖)  and 𝑄𝑜𝑏𝑠
′ (𝑖)are the 

predicted and observed normalized 

values at time i, respectively. The 

nMAE  is calculated as in Equation (8): 

𝑛𝑀𝐴𝐸 =
1

𝑁
∑|𝑄′(𝑖) − 𝑄𝑜𝑏𝑠

′ (𝑖)|

𝑁

𝑖=1

 (8) 

• The final result is the average of the k 

evaluations. The optimal parameter set 

is the one corresponding to the smallest 

nMAE/k 

The CNN-LSTM model is designed to 

predict water flow in two scenarios: a one-

day forecast (one-step model) and a ten-

day forecast (ten-step model). The input 

data is the water flow during last 60 days. 

For the CNN network, the parameters fine-

tuned include the number of convolutional 

layers, the number of neurons in each 

layer, and the of the kernel_size. 

Meantime, for the LSTM network, the 

fine-tuned parameters include the number 

of LSTM hidden layers and the number of 

neurons in each layer. The last Dense layer 

contains a number of neurons which is 

equal to the number of desired outputs, in 

this paper, the number of neurons is 1 (for 

one-step forecast) and 10 (for ten-step 

forecast). 

In addition to the aforementioned 

parameters, other technical specifications 

of the model were experimentally tested 

and pre-determined to shorten the training 

time. These include: number of subsets k = 

3; optimizer: Adam; learning rate: 0.001; 

loss function: MAE; Batch_size: 64; and 

number of Epochs: 50. 
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Table 1. Optimal parameter set for CNN-LSTM 

model 

Layer Parameter 
One-step 

forecast 

Ten-step 

forecast 

CNN 

Conv1D unit 90 90 

kernel_size 3x3 3x3 

Activation 

function 

Leaky ReLU 

(𝛼 = 0,2) 

Leaky ReLU 

(𝛼 = 0,2) 

LSTM 

LSTM unit 90 60 

Activation 

function 
ReLU ReLU 

Dense Dense unit 1 10 

This research was proceeded on a personal 

computer with an Inter® Core™ i5-

1135G7 @ 2.40 GHz 2.42 GHz processor 

and 4.00 GB RAM. Forecasting models 

are written on the Google Colab platform   

using the Python 3.10 programming 

language 

2.5. Model Performance Evaluation 

Several accuracy metrics are used to 

evaluate the model's performance, 

including MAE (Mean Absolute Error), 

MAPE (Mean Absolute Percentage Error), 

and NSE (Nash-Sutcliffe Efficiency). The 

formulas for calculating these metrics are 

given in Equations (9), (10), and (11), 

respectively: 

𝑀𝐴𝑃𝐸 =
1

𝑁
∑|

𝑄(𝑖) − 𝑄𝑜𝑏𝑠(𝑖)

𝑄𝑜𝑏𝑠(𝑖)
| × 100%

𝑁

𝑖=1

(9) 

𝑁𝑆𝐸 = 1 −
∑ |𝑄(𝑖) − 𝑄𝑜𝑏𝑠(𝑖)|

2𝑁
𝑖=1

∑ |𝑄(𝑖) − 𝑄𝑜𝑏𝑠(𝑖)̅̅ ̅̅ ̅̅ ̅̅ ̅|
2𝑁

𝑖=1

(10) 

𝑀𝐴𝐸 =
1

𝑁
∑|𝑄(𝑖) − 𝑄𝑜𝑏𝑠(𝑖)|

𝑁

𝑖=1

(11) 

Where  𝑁 is the number of data points, 

𝑄(𝑖) and 𝑄𝑜𝑏𝑠(𝑖) are the predicted and 

observed values at time i, respectively. The 

closer the error metrics approach their 

optimal values, the higher the forecasting 

accuracy of the model. 

Table 2. Table of error values 

Metrics Domain Optimal value 

MAE [0, +∞) 0 

MAPE [0, +∞) 0 

NSE (−∞, 1] 1 

3. RESULTS 

Using the model structure built as 

described to re-examine the performance 

through forecasting for the test set in both 

cases. In addition to the proposed model, 

the authors built and trained a number of 

other forecasting models, including the 

traditional ARIMA model and some deep 

learning models such as LSTM, Bi-LSTM 

and CNN, to evaluate the performance in 

an intuitive and comprehensive way. 

The experimental results of one-step 

forecasting on the test set of the models are 

presented in Table 3 and Figure 5. 

Table 3. Forecast Error Results on the Test Set 

for One-Step Forecasting Models 

Model 
CNN-

LSTM 
LSTM 

Bi-

LSTM 
CNN ARIMA 

MAPE 

(%) 
6,5225 6,6493 7,1481 7,9081 8,4439 

MAE 

(m3/s) 
13,636 13,9946 15,029 15,460 16,5488 

NSE (%) 98,19 98,12 97,86 97,83 97,63 

 

Figure 5. One-Step Forecasting Results on the 

Test Set Using the CNN-LSTM Model 

For the ten-step forecasting model, the 

experimental results on the test set are 

presented in Table 4 and Figure 6. 
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Table 4. Forecast Error Results on the Test Set 
for Ten-Step Forecasting Models 

Model 
CNN-

LSTM 
LSTM 

Bi-

LSTM 
CNN 

MAPE (%) 6,8349 6,8934 7,8573 8,1601 

MAE (m3/s) 14,1186 13,9062 14,7340 16,2897 

NSE (%) 98,13 98,08 97,99 97,62 

 

Figure 6. Ten-Step Forecasting Results on the 

Test Set Using the CNN-LSTM Model 

It can be seen that in both cases, the 
performance of the proposed model is 
superior to the remaining models. 
Although the accuracy of the 10-step 
forecast tends to decrease compared to the 
1-step forecast, the MAPE error remains 
below 10%, and the NSE index is high 
above 98%. The plot of the forecasted 
value and the actual value also shows a 
significant similarity. 

 

 
Figure 7. Comparison of Validation Results for 

One-Step and Ten-Step Forecasting Models  

In Figure 7, the scatter plots illustrate a 

positive correlation between the two 

variables in both cases. The data points, 

represented by blue dots, indicate the 

forecasted values, which are closely 

aligned with and evenly distributed around 

the actual values, depicted by the red 

dashed line. This indicates that the 

forecasting model achieves high accuracy 

with minimal errors. 

For days with high inflow to the reservoir, 

the forecasting errors of the proposed 

model are detailed in Table 5. Overall, the 

forecasting results for these high-inflow 

days are quite promising, with MAPE 

errors remaining below 10% in all cases.  

Table 5. Forecast results for some days with 

high water inflow of two models 

Time 

Actual 

Value 

(m3/s) 

One-Step Forecast Ten-Step Forecast 

Forecast 

Value 

(m3/s) 

Percentage 

Error (%) 

Forecast 

Value 

(m3/s) 

Percentage 

Error (%) 

21/05/

2022 
940,91 905,0349 3,8128 866,3959 7,9194 

22/05/

2022 
887,02 880,5666 0,7275 845,5861 4,6711 

26/06/

2022 
1004,22 983,1254 2,1006 929,3820 7,4524 

27/06/

2022 
947,33 925,3405 2,3212 877,5455 7,3664 

28/06/

2022 
812,00 747,2673 7,9720 742,4725 8,5625 

03/10/

2022 
793,26 729,9469 7,9814 720,6601 9,1521 

04/10/

2022 
772,56 829,9488 7,4284 816,8373 5,7312 

15/10/

2022 
955,53 886,2628 7,2491 864,5480 9,5216 

16/10/

2022 
912,13 946,4650 3,7643 894,3998 1,9438 

The analysis of the results indicates that 

the error in the case of 10-step forecasting 

is generally larger than that of 1-step 

forecasting. This phenomenon can be 

attributed to the nature of the multi-step 

forecasting task where multiple sequential 
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predictions have much more complexity 

than a single value prediction. 

The CNN-LSTM architectures combined 

have an ability to be a powerful tool to 

capture both short- and long-range 

dependencies. The experimental 

evaluation presented on the figures above 

depicts the implementation model, which 

can be easily trained with the required 

parameters given and expounds the 

performance of the model, in comparison 

to the conventional and deep learning 

models. In addition, the selection of the 

target and forecasting model should be 

based on the individual problems needed. 

 

4. CONCLUSIONS 

Forecasting water inflow to hydropower 

reservoirs is a critical problem with 

significant practical implications. 

Research has demonstrated that advanced 

machine learning models can provide 

accurate and reliable forecasts. These 

advancements not only enhance the 

prediction of flood and drought risks but 

also play a vital role in optimizing 

hydropower plant operations. In this study, 

the authors applied the deep learning 

CNN-LSTM model to forecast water 

inflow into the Sre Pok 4 hydropower 

reservoir. The input data consisted of 

historical water flow, with the goal of 

forecasting 1 day and 10 days ahead. The 

model was optimized using cross-

validation techniques and evaluated for 

performance with a test set. The validation 

results indicate that the model achieves 

high accuracy, and the forecast quality is 

sufficiently reliable. The proposed model 

meets the necessary conditions and 

requirements for effective forecasting. 

In future work, we will focus on improving 

the accuracy of the forecasting model by 

incorporating relevant weather datasets 

and combining various deep learning 

models. Additionally, we aim to expand 

the application of the CNN-LSTM model 

to a wider range of hydropower reservoirs, 

with the goal of improving water resource 

management on a larger and more diverse 

scale.  
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