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Tom tat:

Du bdo dong chay nudc chinh xac cho cac ho chira thiy dién da trd thanh yéu té can thiét
dé& quan ly hiéu qué tai nguyén nudc va téi vu hda hiéu suét van hanh nha may. Diéu nay gilp giam
thi€u tac dong tiéu cuc ctia han han va Il lut, ddm bao san xut dién dn dinh, ddng thdi thic ddy sir
dung tai nguyén nudc hiéu qua. Nghién cru nay gidi thiéu cac moé hinh mang ng-ron nhan tao tién
ti€n nham khac phuc nhiing han ché ctia cac phuong phap théng ké truyén thdng trong viéc du bao
dong chay nudc & cac hd chira thiy dién. D& t6i uu hda hiéu sudt md hinh, cac ky thut kiém dinh
chéo (cross-validation) va tim kiém IuGi (grid search) dugc sir dung dé xac dinh cac tham s6 t8i uu
clia mo hinh. DU liéu sir dung trong nghién cfu nay la dong chay nudc tai ho chira thay dién Sre Pok
4 tir thang 1 nam 2013 dén thang 5 ndm 2023. Banh gia hiéu suat mé hinh bao gom cac chi s6 chinh
nhu Sai s6 Ty Ié Trung binh Tuyét ddi (MAPE), Sai s6 Trung binh Tuyét ddi (MAE) va Hiéu suat Nash-
Sutcliffe (NSE). K&t qua cho thdy md hinh k&t hdp CNN-LSTM ¢ thé du bdo dong chay nudc véi MAPE
dat 6,52%.

T khoéa: du bao luu lugng nudc, mang no-ron hoi quy, thiy dién, CNN-LSTM.
Abstract:

Accurate water flow forecasting for hydropower reservoirs has become essential for effective
water resource management and optimizing plant performance. It helps to mitigate the negative
impacts of droughts and floods, ensures stable electricity production, and promotes the efficient use
of water resource. This study introduces advanced artificial neural network models designed to address
the limitations of traditional statistical methods for water flow forecasting in hydropower reservoirs.
To optimize model performance, cross-validation techniques and grid search are employed to identify
the best model’s parameter. The data used in this study is the water flow in Sre Pok 4 hydropower
reservoir from January 2013 to May 2023. The model performance evaluation includes key metrics
such as Mean Absolute Percentage Error (MAPE), Mean Absolute Error (MAE), and Nash-Sutcliffe
Efficiency (NSE). The results show that the combined CNN-LSTM model can predict the water flow
with the MAPE of 6.52%.

Keywords: waterflow forecasting, recurrent neural networks, hydropower, CNN-LSTM.
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1. INTRODUCTION

Under Vietnam's Eighth National Power
Development Plan, the total power
generation capacity for domestic demand
is expected to reach 150,489 MW by 2030,
with hydropower accounting for 19.5%
(29,346 MW) [1]. Hydropower remains a
cornerstone of Vietnam's electricity
supply. The power shortages in northern
area of Vietnam were observed during the
early summer months of 2023. This was
partly attributed to reduced water inflows
to hydropower reservoirs compared to
previous years. While hydropower is cost-
effective and flexible, its production
depends heavily on water flow, rainfall,
and environmental conditions. To optimize
electricity generation, accurately
forecasting water inflow to reservoirs is
critical. This enables efficient water
resource management and supports
informed decision-making for hydropower
operations, particularly during dry season.

Hydraulic models for calculating river
flow typically demand extensive input
data, such as topography, rainfall, and inlet
or outlet flow rates. Optimizing these
models often requires validation against
numerous real-world  measurements,
which can complicate the selection of
suitable parameters. When detailed
topographic and geomorphological data
are unavailable, machine learning models
using artificial neural networks offer an
alternative  approach  for predicting
hydrological factors and river flow rate.

Several studies have utilized the
application of machine learning models for
hydrological forecasting. In [2], the LSTM

model is used to predict water levels at
hydrological stations in Hai Phong. Based
on hourly historical data, water level was
forecasted from 1 to 5 hours at the Quang
Phyc and Cira CAm stations [2]. They also
developed a recurrent neural network
(RNN) based model to forecast the flood
discharge of the Da River in Lai Chau one
day ahead [3] and predict the flow of the
Hong River at the Son Tay station for 1-
day, 2-day, and 3-day ahead [4]. The same
method is used to predict the water levels
downstream of the Thai Binh River, with
forecasting intervals of 6, 12, 18, and 24
hours [5,6]; and in the CAm River in Hai
Phong City, with prediction intervals of 1,
3, and 6 hours [7].

Notably, these models require only past
flow rate data, eliminating the need for
topographic or surface cover information.
However, most rely solely on LSTM or
RNN architectures which subject to short-
term forecasting steps only.

In this research, we propose an advance
reccurrent neural network model by
combining the CNN and LSTM
architecture to forecast the water flow in
hydropower reservoir for longer steps. The
combined CNN-LSTM offers several
advantages over using either model alone.
The subject of this study is the Sre Pok 4
hydropower reservoir. This is a
hydroelectric project built on the Sre Pok
River, located in the territories of Dak Lak
and Dak Nong provinces, Vietnam.
Regulating the flow during the dry season
for the downstream in Cambodia and
generating electricity for the national grid
are the main tasks of the Sre Pok 4
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hydropower plant. With a total capacity of
80 MW divided between two units, a total
reservoir volume of 31 millions m3, and a
lake surface area of approximately 375
hectares, the Sre Pok 4 hydropower plant
generates an average of about 336 million
kWh per year for the national grid [8]. The
water flow data is collected from January
1, 2013 to May 30, 2023.

The paper is organized as follow : Section
1 is the literature review. In section 2, the
structure and operating principles of CNN
and LSTM networks is presented along
with the methods for processing input data
and training the model. Section 3 presents
the forecast results, and finally section 4 is
the conclusion.

2. METHODOLOGY
2.1. Convolutional Neural Network (CNN)

Convolutional neural networks (CNNs)
are a class of neural network architecture
that i1s well-suited to processing grid-like
data such as images and audio, and is
capable of feature detection at multiple
levels of abstraction.

CNNs improve performance dealing with
big datasets, with a lower number of
parameters by having feature filters and the
possibility to reuse pre-trained weights. A
CNN model architecture generally consists
of three types of layers, Convolutional
layers, Pooling layers and Fully Connected
layers. The model structure is visualized in
Figure 1.
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Figure 1. CNN network model structure
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2.1.1. Convolutional Layers

The first layers in a convolutional neural
network extract features from input data
and the most important components are
convolutional layers. These layers are
compositing filter maps (or convolutional
kernels), which are matrices that, via the
convolution operation that it executes with
the input data, form new feature maps.
These feature maps are obtained by
weighing components for the input with
each of the filter's corresponding
coefficients and reducing it. The operation
is called convolution.

Filters are applied across various locations
of the input data in convolutional layers,
which helps reduce the number of weights
to train and enhances the model's
generalization capability. As the data
passes through successive convolutional
layers, the network can detect increasingly
complex features in the input data. The
output becomes multidimensional as it
traverses the CNN. To process this data
further using other models like LSTMs, it
is necessary  to convert  the
multidimensional output into a sequential
format before feeding it into the LSTM
model.

Additionally, activation functions such as
ReLU or tanh are commonly applied after
convolutional layers to introduce non-
linearity, enabling CNNs to learn more
complex patterns and features.

2.1.2. Pooling Layers

Pooling layers are typically placed
between convolutional layers and are
another component of the CNN
architecture. Their primary function is to
reduce the spatial dimensions of the data
after convolutional layers while retaining
essential information. This process
decreases computational costs, mitigates
overfitting, and enhances the model's
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generalization.

Common types of pooling layers include
Max Pooling and Average Pooling:

e Max Pooling is the most common type
of pooling layer. In Max Pooling, the
largest value in each small region of
the input data is retained. This helps

retain important features, while
reducing the number of elements to be
processed.

e With Average Pooling, the average
value of the values in the region is
calculated and retained. This reduces
the variation between features.

2.1.3. Fully Connected Layers

The fully connected layer acts as a bridge
between the extracted features and the
desired output. It determines the final
conclusions to be drawn from the
processed data. In the fully connected
layer, each node is connected to all the
nodes in the previous layer. This
connectivity allows the layer to synthesize
information from the entire input data to
produce the desired output, usually
classification or prediction.

2.2. Long Short-Term Memory (LSTM)
Network

The Long Short-Term Memory (LSTM)
Network is a specialized variant of the
Recurrent Neural Network (RNN),
initially proposed in 1997 by Sepp
Hochreiter and Jiirgen Schmidhuber [9].
Since its inception, it has become a critical
tool in the field of machine learning,
further refined and widely adopted by
numerous researchers.

LSTM networks are specifically designed
to address the problem of long-term
dependencies, with an inherent ability to
retain information over extended time
periods. An LSTM network consists of
multiple interconnected LSTM cells. The

specific structure of each cell is illustrated
in Figure 2.
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Figure 2. Internal structure of an LSTM cell

The idea behind the LSTM network is to
extend the architecture of the Recurrent
Neural Network (RNN) by introducing an
internal cell state s; and three gates for
information filtering within the cell. These
gates are:

1. Forget Gate (f;): Responsible for
discarding unnecessary
information from the cell.

2. Input Gate (i;): Selects the relevant
information to be added to the cell.

3. Output Gate (o;): Determines
which information from the cell
will be utilized as the network’s
output.

At each time step ¢, the gates sequentially
receive the input value x; and the value
h¢_4, which is the output from the hidden
state at time step ¢-/. During the
propagation process, the cell state s; and
the output h, are calculated as follows:

In the first step, the LSTM cell decides
which information from the previous cell
state s;_; should be discarded. The forget
gate activation f; at time step ¢ is computed
based on the current input x,, the output
h;_; from the LSTM cell at the previous
time step, along with corresponding
weight matrices W and bias b;. The
sigmoid function transforms all values of
f¢ into the range [0, 1], where an output of
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1 indicates retaining all information, and
an output of 0 indicates discarding all
information.
fe= U(Wf,xxt + Wf,hht—l + bf) €]

In the second step, the LSTM cell
determines which information should be
added to the cell state s;. The candidate
memory cell §; represents potential
information that could be added to the cell
state and is computed using a tanh
activation function with a value range of
[-1,1].

§, = tanh(Wyrx, + Wsphe—q + bs)  (2)
Next, the activation value i t of the input
gate is calculated using equation (3) :

e = U(Wi,xxt + Wiphio1 + bi) 3)
In the third step, the new cell state s; is
updated based on the results from the

previous steps through element-wise
matrix multiplication:
4)
In the final step, the output value h; is
further refined. First, a sigmoid function
determines which part of the cell state
should be output:

or = o(Woxxe + Wonhey +b,)  (5)
Then, the cell state is passed through a tanh
function to scale its values within the range
[-1, 1], and 1t is multiplied by the output of
the sigmoid gate to produce the desired
output value :

h: = o; * tanh(s;) (6)
2.3. Input Data Collection and Processing
2.3.1. Input Data Collection

The input data includes 3,802 daily
measurements of the historical water
inflow into the Sre Pok 4 hydropower
reservoir, with units in m?3/s, collected
between January 1, 2013, and May 30,
2023. The dataset was collected online
from the official website of the Mekong
River Commission (MRC) [10] which is

St = fe *Se—1 H i * 5
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freely accessible online.
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Figure 3. Flow Hydrograph of Water Inflow to
the Sre Pok 4 Hydropower Reservoir

2.3.2. Data Preprocessing

The data preprocessing process includes
data cleaning and normalization, among
which data cleaning involves managing
missing data points and outliers. The
collected dataset is complete with all 3,802
data points, and there are not any missing
data cases.

The original dataset shows notable
differences in results for water flow data.
Due to the rainy season in the Sre Pok
basin, which typically runs from May to
September, the data points during this
period show substantial increases.
Meanwhile, there are certain data points
that are extremely low (near zero) in dry
months. For this reason, abnormal values
are not considered outliers and still be
retained to ensure the authenticity of the
study's subject.

The input data is normalized by using the
Yeo-Johnson transformation, a variation of
the Box-Cox transformation from the
Power Transform family [11]. The
normalization method follows Equation
(7):
( {(x+D* -1}
A

(x = 0,1 % 0),
log(x + 1)

(x > 0,1 % 0),

{1-x)2*-1}

B 2-1

(x<0,4%2),
—log(1 —x)
\ (x < 0,4 # 2).

P4, x) = 3 (7
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Where x is the input value and A is the
transformation parameter. The value of A is
automatically  optimized. After the
normalization, the new dataset will have
zero mean and unit variance.

Figure 4 displays the water inflow data into
the Sre Pok 4 reservoir after normalization.
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Figure 4. Graph of water flow after
normalization

2.4. CNN-LSTM Model for Water Flow
Forecasting

The dataset is divided into two separate
subsets at an 80/20 ratio. The first subset,
which is used to train and fine-tune the
model, consists of 3,042 data points
recorded between January 1, 2013, and
April 30, 2021. Meanwhile, The second
subset, consisting of 760 data points
measured from May 1, 2021, to May 30,
2023, is used to evaluate the model's
performance.

The Cross-fold Validation algorithm is
employed to identify the optimal set of
parameters for the model. The model is
trained and assessed respectively with
every possible combination of
predetermined parameters. The steps are as
follows:

e Determine the parameters that need to
be fine-tuned and list potential values
for these parameters.

e The training dataset is split into &
distinct subsets for every parameter set.
Of these, k-1 subsets are used to train
the model, and the remaining subset is
used to evaluate the model performance
using the nMAE error. This process is

repeated & times so that all k£ subsets are
evaluated.

e The evaluation error nMAE is the
average mean absolute error of the
normalized data values. With N data
points, , Q'(i) and Q,,s(i)are the
predicted and observed normalized
values at time i, respectively. The
nMAE is calculated as in Equation (8):

N
1
nMAE = Nzllo'(i) — Qs (®)

e The final result is the average of the &
evaluations. The optimal parameter set
is the one corresponding to the smallest
nMAE/k

The CNN-LSTM model is designed to
predict water flow in two scenarios: a one-
day forecast (one-step model) and a ten-
day forecast (ten-step model). The input
data is the water flow during last 60 days.

For the CNN network, the parameters fine-
tuned include the number of convolutional
layers, the number of neurons in each
layer, and the of the kernel size.
Meantime, for the LSTM network, the
fine-tuned parameters include the number
of LSTM hidden layers and the number of
neurons in each layer. The last Dense layer
contains a number of neurons which is
equal to the number of desired outputs, in
this paper, the number of neurons is 1 (for
one-step forecast) and 10 (for ten-step
forecast).

In addition to the aforementioned
parameters, other technical specifications
of the model were experimentally tested
and pre-determined to shorten the training
time. These include: number of subsets k =
3; optimizer: Adam; learning rate: 0.001;
loss function: MAE; Batch_size: 64; and
number of Epochs: 50.
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Table 1. Optimal parameter set for CNN-LSTM

model
Layer | Parameter One-step | Ten-step
forecast forecast
Conv1D unit 90 90
CNN kernel size 3x3 3x3
Activation |Leaky ReLU|Leaky ReLU
function (x=0,2) (x=0,2)
LSTM unit 90 60
LSTM fatd
Activation | p oy 15 ReLU
function
Dense | Dense unit 1 10

This research was proceeded on a personal
computer with an Inter® Core™ i5-
1135G7 @ 2.40 GHz 2.42 GHz processor
and 4.00 GB RAM. Forecasting models
are written on the Google Colab platform
using the Python 3.10 programming
language

2.5. Model Performance Evaluation

Several accuracy metrics are used to
evaluate the model's performance,
including MAE (Mean Absolute Error),
MAPE (Mean Absolute Percentage Error),
and NSE (Nash-Sutcliffe Efficiency). The
formulas for calculating these metrics are
given in Equations (9), (10), and (11),
respectively'

Qobs() 0
MAPE = NZ 0 x 100% (9)
NSE = 1 — e - Qobs(i)lj (10)
L1100 = Qops O]
N
1
MAE = N;w(i) ~ Qs @ (1D

Where N is the number of data points,
Q(i) and Q,ps(i) are the predicted and
observed values at time i, respectively. The
closer the error metrics approach their

(ISSN: 1859 - 4557)

optimal values, the higher the forecasting
accuracy of the model.

Table 2. Table of error values

Metrics | Domain | Optimal value
MAE | [0,+) 0
MAPE | [0, +0) 0
NSE (=00, 1] 1
3. RESULTS

Using the model structure built as
described to re-examine the performance
through forecasting for the test set in both
cases. In addition to the proposed model,
the authors built and trained a number of
other forecasting models, including the
traditional ARIMA model and some deep
learning models such as LSTM, Bi-LSTM
and CNN, to evaluate the performance in
an intuitive and comprehensive way.

The experimental results of one-step
forecasting on the test set of the models are
presented in Table 3 and Figure 5.

Table 3. Forecast Error Results on the Test Set
for One-Step Forecasting Models

CNN- Bi-
Model LSTM LSTM LSTM CNN ARIMA
M(f;[))E 6,5225  6,6493  7,1481 17,9081 8,4439
o
M3AE 13,636 13,9946 15,029 15,460 16,5488
(m’/s)
NSE (%) 98,19 98,12 97,86 97,83 97,63

1000 {

202104 202107 202110 202201 202204 202207 2022-10 2023-01 202304 202307

Figure 5. One-Step Forecasting Results on the
Test Set Using the CNN-LSTM Model
For the ten-step forecasting model, the
experimental results on the test set are
presented in Table 4 and Figure 6.
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Table 4. Forecast Error Results on the Test Set
for Ten-Step Forecasting Models

Model LCSNTTVI LSTM Lg;'M CNN
MAPE (%) 6,8349  6,8934 7,8573  8,1601
MAE (m%/s) 14,1186 13,9062 14,7340 16,2897
NSE (%) 98,13 98,08 9799 97,62

1000 |

2021-04  2021-07 202110  2022-01 202204 2022-07 2022-10  2023-01 2023-04  2023-07

Figure 6. Ten-Step Forecasting Results on the

Test Set Using the CNN-LSTM Model
It can be seen that in both cases, the
performance of the proposed model is
superior to the remaining models.
Although the accuracy of the 10-step
forecast tends to decrease compared to the
1-step forecast, the MAPE error remains
below 10%, and the NSE index is high
above 98%. The plot of the forecasted
value and the actual value also shows a
significant similarity.
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10 Step Forecasting Model

1000 4

800
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01+

0 200

600 800 1000

~3/s)

460
Actual value (m
Figure 7. Comparison of Validation Results for

One-Step and Ten-Step Forecasting Models

In Figure 7, the scatter plots illustrate a
positive correlation between the two
variables in both cases. The data points,
represented by blue dots, indicate the
forecasted values, which are closely
aligned with and evenly distributed around
the actual values, depicted by the red
dashed line. This indicates that the
forecasting model achieves high accuracy
with minimal errors.

For days with high inflow to the reservoir,
the forecasting errors of the proposed
model are detailed in Table 5. Overall, the
forecasting results for these high-inflow
days are quite promising, with MAPE
errors remaining below 10% in all cases.

Table 5. Forecast results for some days with
high water inflow of two models

One-Step Forecast Ten-Step Forecast

Actual
Time Vague F(\)]r elcast Percentage F ;)]r elcast Percentage
(m/s) vawe o or (%) AU Error (%)
(m¥/s) (m?/s)
2105 04091 9050349 38128 8663959  7.9194
2022
209 887,02 880,5666 07275 8455861 46711
2022
00 100422 9831254 21006 92903820 74524
00 04733 9253405 23212 8775455 7,364
2022
2809/ 812,00 7472673 79720 7424725 85625
O3y 79306 7299469 79814 7206601 9,151
022
O 77256 8209488 74284 8168373 57312
022
00 95553 8862628 72491 8645480 95216
2022
000 012,13 9464650 37643 8943998 19438

The analysis of the results indicates that
the error in the case of 10-step forecasting
is generally larger than that of 1-step
forecasting. This phenomenon can be
attributed to the nature of the multi-step
forecasting task where multiple sequential
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predictions have much more complexity
than a single value prediction.

The CNN-LSTM architectures combined
have an ability to be a powerful tool to
capture both short- and long-range
dependencies. The experimental
evaluation presented on the figures above
depicts the implementation model, which
can be easily trained with the required
parameters given and expounds the
performance of the model, in comparison
to the conventional and deep learning
models. In addition, the selection of the
target and forecasting model should be
based on the individual problems needed.

4. CONCLUSIONS

Forecasting water inflow to hydropower
reservoirs is a critical problem with
significant practical implications.
Research has demonstrated that advanced
machine learning models can provide
accurate and reliable forecasts. These
advancements not only enhance the
prediction of flood and drought risks but
also play a vital role in optimizing
hydropower plant operations. In this study,
the authors applied the deep learning
CNN-LSTM model to forecast water

(ISSN: 1859 - 4557)

inflow into the Sre Pok 4 hydropower
reservoir. The input data consisted of
historical water flow, with the goal of
forecasting 1 day and 10 days ahead. The
model was optimized using cross-
validation techniques and evaluated for
performance with a test set. The validation
results indicate that the model achieves
high accuracy, and the forecast quality is
sufficiently reliable. The proposed model
meets the necessary conditions and
requirements for effective forecasting.

In future work, we will focus on improving
the accuracy of the forecasting model by
incorporating relevant weather datasets
and combining various deep learning
models. Additionally, we aim to expand
the application of the CNN-LSTM model
to a wider range of hydropower reservoirs,
with the goal of improving water resource
management on a larger and more diverse
scale.
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