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Tóm tắt: 

Bài toán ước lượng trạng thái có mục tiêu là xác định trạng thái gần giống nhất của hệ thống 

dựa trên tập các giá trị đo đang có, giúp người vận hành đánh giá hệ thống và đưa ra những quyết 

định phù hợp. Để giải quyết bài toán, bài báo trình bày nghiên cứu sáu kết hợp giữa hai thuật toán 

(tối ưu bầy đàn, tối ưu bầy đàn với quá trình tách biến) và ba dạng hàm mục tiêu (bình phương cực 

tiểu có trọng số, cực tiểu trị tuyệt đối, cực tiểu trị tuyệt đối có trọng số). Bên cạnh đó, việc đánh giá 

giá trị các biến trạng thái được thực hiện trong thuật toán thay vì đưa hàm phạt vào hàm mục tiêu 

như các nghiên cứu trước đây. Các kết hợp được thực hiện mô phỏng cho lưới điện IEEE 14 nút và 

IEEE 30 nút với trường hợp giả sử dữ liệu đo từ thiết bị đo thông thường hoặc từ thiết bị PMU. Các 

kết quả mô phỏng cho thấy các thuật toán kết hợp với hàm bình phương cực tiểu có trọng số cho kết 

quả ước lượng tốt nhất trong các trường hợp nghiên cứu. 

Từ khóa:  

Ước lượng trạng thái hệ thống điện, thuật toán tối ưu bầy đàn, tách biến, WLS, LAV, WLAV 

Abstract: 

The state estimation problem aims to determine the likelihood state of the power system 

based on the available measurement values. This helps operators to analyze and evaluate the systems 

so they can make appropriate control decisions. This paper examines six combinations of two 

algorithms (particle swarm optimization and particle swarm optimization with decoupled variables) and 

three objective functions (weighted least squares, least absolute values, and weighted least absolute 

values) to solve the power system state estimation. In addition, rather than employing a penalty 

function within the objective function as in previous studies, this work use a procedure within the 

algorithm to verify whether the state variable values remain within the prescribed boundaries. These 

combinations are simulated for 14-bus and 30-bus IEEE power systems, assuming that input data 

comes from conventional measuring devices or phasor measurement units. The estimation results 

show that using the weighted least square function gives the best estimation results. 

Keywords:  

Power system state estimation, particle swarm optimization, decoupled variable, WLS, LAV, 

WLAV 
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1. INTRODUCTION 

Nowadays, the power system scale is 

expanding according to the growth of the 

load and the addition connecting of 

renewable energy sources. Therefore, the 

modern power system is developing 

towards automation and intelligence to 

ensure it operates in a safe, reliable, and 

efficient mode. This target requires much 

support from computer programs with 

input data from the Supervisory Control 

and Data Acquisition system (SCADA) 

and/or Phasor Measurement Units (PMU). 

Currently, measuring devices are not often 

placed on all buses, so we can not acquire 

all the state parameters. Consequently, we 

must solve the power system state 

estimation (PSSE) problem to obtain 

unknow parameters. This problem target is 

to determine the likelihood state of the 

power system based on the available 

measurement values. The input parameters 

include system topology, lines, 

transformers, compensation devices, and 

measured values such as bus voltage 

magnitudes, phase angles, active powers, 

reactive powers, branch currents, etc. The 

outputs are estimated values of bus voltage 

magnitude and phase angle. These values 

will help the operators in system analysis 

and evaluation. Then, they can make 

appropriate control decisions. 

We can describe the PSSE problem using 

the Weighted Least Squares (WLS) 

objective function, which assumes that the 

measurement errors are known, 

independent, and randomly distributed 

according to a Gaussian distribution [1]. 

However, there may be other parameters 

that could affect the estimation results, 

whether or not they contain errors. In [2], 

the author introduced the concept of M-

estimators, which aim to minimize a 

function ρ(r) that quantifies the deviation 

between measured and estimated values. 

Alternatively, various forms of the 

function ρ(r) have been proposed in [3] and 

[4]. If p(r) is an absolute value function, it 

will correspond to the Least Absolute 

Value (LAV) model. Articles [5] and [6] 

add a weighting factor to the LAV 

function, so p(r) corresponds to the 

Weighted Least Absolute Value (WLAV) 

function. In [4], the authors propose the 

function p(r) with a tuning factor α and 

show that the proposed function behaves 

like LAV when the tuning factor is small 

and like WLS when the tuning factor is 

high. 

The problem of estimating the state 

variable's value with these objective 

functions mentioned above can be solved 

iteratively by algorithms like Newton. 

However, when using the LAV estimator, 

the weighting matrix will be zero, so it 

must be used other methods, such as 

integer programming. In addition, this 

problem can also be solved by heuristic 

search algorithms, as in some published 

papers. 

This paper presents the use of Particle 

Swarm Optimization (PSO), a heuristic 

search algorithm, to address the PSSE 

problem. In this algorithm, solutions are 
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primarily derived from the information and 

orientation of the objective function value. 

An advantage of utilizing PSO, in contrast 

to traditional like Newton's method, is that 

it does not require the calculation of 

derivative matrices, making it a more 

efficient and accessible option. 

Additionally, the algorithm is not impacted 

by zero matrix issues when the LAV 

formula is used. However, selecting an 

appropriate objective function is critical 

for achieving optimal results with the PSO 

algorithm. Consequently, this work 

conducts a thorough analysis and 

evaluation of the PSO algorithm as it 

pertains to various types of objective 

functions. 

The authors in the paper [8-11] performed 

state estimation using the PSO algorithm 

combined with WLS or WLAV objective 

function. In these studies, both WLS and 

WLAV incorporated a penalty function 

that assigns an infinitely positive value if 

the state variable falls outside the defined 

search space. In the paper [12], the PSO 

algorithm was also applied to the PSSE 

problem, and the authors provided insight 

regarding the impact of measurements' 

type and location on the estimation results. 

In [13], PSO and the genetic algorithm 

with decoupled variables are presented. 

The objective function used in articles [12] 

and [13] is also WLS with a penalty 

function. By studying the PSO algorithm, 

various function combinations can be 

employed. For instance, instead of 

implementing a penalty function in the 

objective function, a particle evaluation 

can be performed through a position 

update process, ensuring that each one is 

within the allowed limits. 

The analysis above indicates that few 

studies have focused on algorithms that 

omit the use of a penalty function within 

the objective function. Therefore, further 

evaluation from this perspective is 

necessary, as the results can serve as basis 

for choosing a more accurate objective 

function. Moreover, in all previous studies 

[8-10] and [12], the application of the PSO 

algorithm did not incorporate decoupled 

variable techniques. Accordingly, the 

following sections of this paper will focus 

on the PSO algorithm without and with the 

decoupled variables when combined with 

the WLS, LAV, and WLAV objective 

functions without the penalty function. 

The evaluation and proposal of the 

objective function rely on simulation 

results with IEEE 14-bus and IEEE 30-bus 

power systems. 

2. OBJECTIVE FUNCTIONS FOR 

POWER SYSTEM STATE ESTIMATION 

The estimation problem of power system 

state variables is formulated using input 

data, including system connection details, 

line parameters, transformers, measured 

values, etc. 

Suppose there is a set of m measurements 

zi, and the function hi(x1, x2,…, xn) 

corresponds to the measurement type of zi. 

Then we have: 
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z = h(x) + e (1) 

The constraints of the state variable xi: 

xi
min ≤ xi  ≤ xi

max (2) 

where : 

• x is the state variable vector which 

includes the value of bus voltage 

magnitude and phase angle ; 

• e is the error of measurement ; 

• hi(x) is reactive power function (or active 

power function, or branch current, or 

voltage, or phase angle) depending on the 

type of zi; 

2.1. Weighted Least Squares 

To determine the state variables x1, x2, . . ., 

xn corresponding to the set of measured 

values z, the weighted least squares 

method minimizes the following objective 

function [1]: 

J(x) = wi
2(zi − hi(x))2 

= ∑
1

σi
2

m

i=1

ei
2 

(3) 

where: 

• wi =
1

σi
, with σi is the standard deviation 

of the i-th measurement, representing the 

expected accuracy of the measuring 

device. 

• m is number of measurement ; 

2.2. Least Absolute Value  

The Least Absolute Value objective 

function is described as finding the 

minimum value of the function F(x) as in 

equation (4): 

F(x) = ∑ |zi − hi(x)|

m

i=1

 (4) 

2.2. Weighted Least Absolute Value 

The Weighted Least Absolute Value 

objective function is described as finding 

the minimum value of the function F(x) as 

in equation (5) [1][5][6]: 

F(x) = ∑
1

σi
|zi − hi(x)|

m

i=1

 (5) 

3. THE ALGORITHM   

When employing the Particle Swarm 

Optimization (PSO) algorithm to estimate 

power system state variables, several terms 

within the algorithm are defined as 

follows: 

- A “particle” denotes a specific set of 

values that represent the state variables 

associated with bus voltage magnitudes 

and/or phase angles. 

- The “particle position” refers to the 

specific values of the state variables 

contained within a single particle.  

- “Particle velocity” signifies the amount 

added to the current state variable values to 

generate new ones. This adjustment 

expands the search space and enhances the 

likelihood of finding the global optimal 

solution.  

- A “swarm” represents the collective 

group of multiple particles. 

3.1. Particle Swarm Optimization 

Particle Swarm Optimization is an 

algorithm that seeks the optimal solution 
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by leveraging information from a swarm of 

particles. In the context of a power grid 

with N nodes, each particle represents both 

the voltage magnitude and phase angle of 

the buses, resulting in a total of (2N-1) 

state variables. The algorithm starts by 

randomly initializing a specified number 

of particles. Each particle has the 

capability to remember the best position it 

has achieved thus far, as well as the best 

position found by the entire swarm. The 

particle's movement is then influenced by 

its velocity, which is calculated using a 

specific formula (referred to as formula (6) 

in reference [14]). Subsequently, the 

particle's new position is updated 

according to formula (7). 

vid = χ.(vid + c1.r1.(pib – xid) 

               + c2.r2.(pgb – xid)) 
(6) 

       xid = xid + vid (7) 

where: 

• χ = 0,729; c1 = c2 = 2,05; 

• r1 and r2 are random values in the range 

(0,1); 

• pgb is the global best, referred to the 

overall best solution found by the swarm; 

• pib is the personal best position of i-th 

particle; 

The state variable within the search space 

has defined limits, specifically a minimum 

value (xmin) and a maximum value (xmax). 

After updating an individual's position, it 

is important to ensure that the state 

variable stays within these boundaries. To 

achieve this, the algorithm checks the 

value of the state variable and makes 

necessary adjustments if needed. If the 

revised value, xid, falls below xi
min or 

exceeds xi
max, the algorithm will set xid to 

pib. The process of estimating the state 

variable value using PSO algorithm is 

illustrated in the block diagram shown in 

Figure 1. 

 

Figure 1. Diagram of the PSO algorithm 

 

3.2. Separate V-θ estimation using 

Particle Swarm Optimization (SPSO) 

In this section, we address the problem of 

estimating the state variable values using 

the SPSO (Separate U-θ estimation 

process) algorithm based on the Particle 

Swarm Optimization technique. The 

distinguishing feature of the SPSO 

algorithm is its methodical approach to 

estimating state variables separately. In 
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one N-bus power grid, two particle types 

are involved: θ, which consists of (N-1) 

voltage phase angle values, and U, which 

consists of N voltage magnitude values. 

The estimation of voltage magnitudes and 

phase angles is performed separately and 

iteratively. When estimating the voltage 

phase angle values, the voltage magnitude 

values are held constant based on the best 

individuals identified in the previous 

result. Conversely, the same principle 

applies when estimating voltage 

magnitude values. The overall process of 

the SPSO algorithm is depicted in the 

block diagram shown in Figure 2. 

Convergence for both PSO and SPSO is 

considered achieved when either the 

maximum number of iterations is reached 

or the objective function value remains 

constant over m consecutive iterations. 

4. SIMULATION    

The simulation data, including branch 

data, bus data, and measurement values are 

obtained from [15], [16], and [17]. Two 

algorithms simulate the IEEE 14-bus and 

IEEE 30-bus systems under two distinct 

case studies, excluding bad data impacts. 

- Case 1: assuming measurement data from 

conventional measuring devices, including 

the measure values of bus injection powers 

and one voltage magnitude. The total 

number of input measurements used for 

IEEE 14-bus and 30-bus grids is 29 and 31, 

respectively. 

- Case 2: In this case study, the 

measurement data is assumed to be 

collected from Phasor Measurement Units 

placed in the system. 

 

Figure 2. Diagram of the SPSO algorithm 

The data includes the bus voltage 

magnitude, the bus voltage phase angle, 

the branch current, and the branch current 

phase angle. The locations for PMU 

placement are determined as suggested in 

reference [18]. For the IEEE 14-bus 

system, the PMUs are installed at buses 2, 

6, 7, and 9. In the IEEE 30-bus system, the 

PMUs are placed at buses 2, 4, 6, 9, 10, 12, 

15, 18, 25, and 27. The total number of 

input measurements utilized for these 

systems is 38 and 104, respectively.  
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In both cases, this paper examines six 

combinations of the PSO and SPSO 

algorithms with the WLS, LAV, and 

WLAV functions: PSO-WLS, PSO-LAV, 

PSO-WLAV, SPSO-WLS, SPSO-LAV, 

and SPSO-WLAV. To evaluate the 

estimation accuracy of the state variables, 

the estimated values are compared with 

their corresponding reference values. 

Specifically, the estimated voltage 

magnitude and phase angle are compared 

with their respective reference values Uref 

and θref. Accordingly, the percentage error 

of each state variable is determined as 

follows: 

       %ei =
xest i−xref i

xref i 
. 100 (8) 

Where: 

• %ei is the percentage error in the 

estimation of state variable i; 

• xest i is the estimated value of state variable i; 

• xref i  is the reference value of state variable i; 

The algorithm presented in section 3 is 

tested in each system with the following 

parameters: 

• Maximum iteration: 60000 PSO; 100 for 

outer loop and 3000 for inner loop of 

SPSO; 

• Population size: 40 for IEEE 14-bus, 100 

for 30-bus; 

For case 1, the results are presented in 

Figures 3 and 5 for the IEEE 14-bus, and 

in Figures 7 and 9 for the IEEE 30-bus. The 

estimated results for case 2 are shown in 

Figures 4, 6, 8, and 10. The maximum error 

value of the estimated U-θ results is listed 

in Table 1. 

4.1. Simulation of case study 1 

The results of estimating the bus voltage 

magnitude for the IEEE 14-bus grid 

indicate that the simulations yield values 

that are close to the reference value, Uref. 

The combinations of SPSO-LAV and 

PSO-WLAV show two large deviations, 

but errors just below 1,8%. When 

estimating the voltage phase angle, the 

combination of SPSO-LAV and PSO-

LAV exhibits significant discrepancies 

from the reference value, θref, with the 

largest errors reaching 15,12% and 

18,97%. In contrast, the SPSO-WLS 

combination provides the closest 

estimation to θref, followed by PSO-WLS, 

with errors of 0,93% and 1,42%, 

respectively.  

In the simulation of the IEEE 30-bus grid, 

the estimation results differ notably. For 

voltage magnitude, the two combinations 

with the best estimation values are SPSO-

WLS and PSO-WLS, while the PSO-LAV 

and PSO-WLAV combinations yield the 

poorest results. Regarding voltage phase 

angle results, both combinations with the 

WLAV and LAV function result in high 

errors, reaching up to 48%. 

4.2. Simulation of case study 2 

A comparison of the results shown in 

Figures 4, 6, 8, and 10 with those in 

Figures 3, 5, 7, and 9 indicates that data 

from Phasor Measurement Units provides 

more accurate estimations than data from 
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conventional measuring devices. 

Specifically, for the IEEE 14-bus grid, in 

comparison to case 1, the error in the θ 

estimation using the LAV function is 

reduced from 18,97% to less than 10.4%. 

Similarly, the θ estimation error for the 

IEEE 30-bus grid is below 10%. In the 14-

bus system, five combinations yield good 

estimation results, excluding SPSO-LAV. 

For 30-bus, only two combinations 

(SPSO-WLS and PSO-WLS) achieve θ 

results with errors under 1%, while the 

other four combinations have θ estimation 

errors ranging from 7% to 8%. 

Additionally, the estimated voltage 

magnitude values for both grids in this case 

study have an error of less than 4%.

Table 1. The highest estimation error 

Grid Combination 
Case 1 Case 2 

% error U % error θ % error U % error θ 

IEEE 14-bus 

PSO-WLS 0,50 1,42 0,37 0,81 

PSO-LAV 1,49 15,12 1,21 2,82 

PSO-WLAV 1,73 3,23 1,38 2,02 

SPSO-WLS 0,65 0,93 0,04 0,11 

SPSO-LAV 1,63 18,97 2,97 10,33 

SPSO-WLAV 0,54 7,03 3,31 3,93 

IEEE 30-bus 

PSO-WLS 0,54 4,06 1,30 0,83 

PSO-LAV 6,02 48,12 3,97 8,04 

PSO-WLAV 5,16 37,83 3,44 6,69 

SPSO-WLS 0,78 1,13 0,09 0,60 

SPSO-LAV 4,89 39,66 1,91 7,30 

SPSO-WLAV 3,82 40,71 1,95 7,20 

 

 

Figure 3. The estimated voltage magnitude in IEEE 14-bus – Case 1 
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Figure 4. The estimated voltage magnitude in IEEE 14-bus – Case 2 

 

 

Figure 5. The estimated voltage phase angle in IEEE 14-bus – Case 1 

 

 

Figure 6. The estimated voltage phase angle in IEEE 14-bus – Case 2 

 



TẠP CHÍ KHOA HỌC VÀ CÔNG NGHỆ NĂNG LƯỢNG - TRƯỜNG ĐẠI HỌC ĐIỆN LỰC 

(ISSN: 1859 - 4557) 

 

106                                                                                                                                Số 37  

 

Figure 7. The estimated voltage magnitude in IEEE 30-bus – Case 1 

 

 

Figure 8. The estimated voltage magnitude in IEEE 30-bus – Case 2 

 

 

Figure 9. The estimated voltage phase angle in IEEE 30-bus – Case 1 
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Figure 10. The estimated voltage phase angle in IEEE 30-bus – Case 2

5. CONCLUSION 

The paper presents a study on estimating the 

value of state variables in power systems 

using the swarm optimization algorithm, 

both with and without the variable 

separation process. This study utilizes three 

objective functions (Weighted Least 

Squares, Least Absolute Values, and 

Weighted Least Absolute Values), with 

input data derived from conventional 

measuring devices or Phasor Measurement 

Units. The simulation results, which 

encompass 24 cases of six combinations 

across two IEEE benchmark grids, indicate 

that the use of PSO or  SPSO algorithms with 

the WLS function yields the best and most 

stable estimation for both power grids in all 

scenarios. Based on the results and analysis 

presented in the paper, the study 

recommends choosing the WLS objective 

function when applying the PSO or SPSO 

algorithms to address the estimation of state 

variable values in power systems. 
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