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Tom tat:

Bai toan udc lugng trang thai cd muc tiéu la xac dinh trang thai gan giéng nhat ctia hé thdng
dua trén tap cac gia tri do dang co, gilp ngudi van hanh danh gia hé thdng va dua ra nhitng quyét
dinh phu hgp. PE€ giai quyét bai todn, bai bdo trinh bay nghién cltu sdu két hgp gitra hai thudt toan
(t6i vu bay dan, t6i uu bay dan véi qua trinh tach bién) va ba dang ham muc tiéu (binh phugng cuc
ti€u cd trong sB, cuc tiéu tri tuyét dbi, cuc tiéu tri tuyét d6i cd trong s6). Bén canh dé, viéc danh gia
gia tri cac bién trang thai dugc thuc hién trong thuat toan thay vi dua ham phat vao ham muc tiéu
nhu cac nghién clu trudc day. Cac két hgp dugc thuc hién mé phong cho luégi dién IEEE 14 nut va
IEEE 30 n0t véi truGng hgp gia st dit liéu do tir thiét bi do thong thudng hodc tir thiét bi PMU. Cac
k&t qua md phong cho thdy cac thut toan két hop véi ham binh phuong cuc tiéu c6 trong s6 cho két
qua udc lugng tot nhat trong cac trudng hgp nghién clru.

T khoa:

Udc lugng trang thai hé thong dién, thudt toan t6i uu bay dan, tach bién, WLS, LAV, WLAV

Abstract:

The state estimation problem aims to determine the likelihood state of the power system
based on the available measurement values. This helps operators to analyze and evaluate the systems
so they can make appropriate control decisions. This paper examines six combinations of two
algorithms (particle swarm optimization and particle swarm optimization with decoupled variables) and
three objective functions (weighted least squares, least absolute values, and weighted least absolute
values) to solve the power system state estimation. In addition, rather than employing a penalty
function within the objective function as in previous studies, this work use a procedure within the
algorithm to verify whether the state variable values remain within the prescribed boundaries. These
combinations are simulated for 14-bus and 30-bus IEEE power systems, assuming that input data
comes from conventional measuring devices or phasor measurement units. The estimation results
show that using the weighted least square function gives the best estimation results.

Keywords:

Power system state estimation, particle swarm optimization, decoupled variable, WLS, LAV,
WLAV
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1. INTRODUCTION

Nowadays, the power system scale is
expanding according to the growth of the
load and the addition connecting of
renewable energy sources. Therefore, the
modern power system is developing
towards automation and intelligence to
ensure it operates in a safe, reliable, and
efficient mode. This target requires much
support from computer programs with
input data from the Supervisory Control
and Data Acquisition system (SCADA)
and/or Phasor Measurement Units (PMU).
Currently, measuring devices are not often
placed on all buses, so we can not acquire
all the state parameters. Consequently, we
must solve the power system state
estimation (PSSE) problem to obtain
unknow parameters. This problem target is
to determine the likelihood state of the
power system based on the available
measurement values. The input parameters
topology,
transformers, compensation devices, and

include  system lines,
measured values such as bus voltage
magnitudes, phase angles, active powers,
reactive powers, branch currents, etc. The
outputs are estimated values of bus voltage
magnitude and phase angle. These values
will help the operators in system analysis
and evaluation. Then, they can make

appropriate control decisions.

We can describe the PSSE problem using
the Weighted Least (WLS)
objective function, which assumes that the

Squares

measurement errors are known,

independent, and randomly distributed

according to a Gaussian distribution [1].
However, there may be other parameters
that could affect the estimation results,
whether or not they contain errors. In [2],
the author introduced the concept of M-
estimators, which aim to minimize a
function p(r) that quantifies the deviation
between measured and estimated values.
of the
function p(r) have been proposed in [3] and

Alternatively, various forms
[4]. If p(r) is an absolute value function, it
will correspond to the Least Absolute
Value (LAV) model. Articles [5] and [6]
add a weighting factor to the LAV
function, so p(r) corresponds to the
Weighted Least Absolute Value (WLAV)
function. In [4], the authors propose the
function p(r) with a tuning factor a and
show that the proposed function behaves
like LAV when the tuning factor is small
and like WLS when the tuning factor is
high.

The problem of estimating the state
variable's value with these objective
functions mentioned above can be solved
iteratively by algorithms like Newton.
However, when using the LAV estimator,
the weighting matrix will be zero, so it
must be used other methods, such as
integer programming. In addition, this
problem can also be solved by heuristic
search algorithms, as in some published
papers.

This paper presents the use of Particle
Swarm Optimization (PSO), a heuristic
search algorithm, to address the PSSE
problem. In this algorithm, solutions are
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primarily derived from the information and
orientation of the objective function value.
An advantage of utilizing PSO, in contrast
to traditional like Newton's method, is that
it does not require the calculation of
derivative matrices, making it a more
efficient ~ and  accessible  option.
Additionally, the algorithm is not impacted
by zero matrix issues when the LAV
formula is used. However, selecting an
appropriate objective function is critical
for achieving optimal results with the PSO
this
analysis

algorithm. Consequently, work

conducts a thorough and
evaluation of the PSO algorithm as it
pertains to various types of objective

functions.

The authors in the paper [8-11] performed
state estimation using the PSO algorithm
combined with WLS or WLAV objective
function. In these studies, both WLS and
WLAYV incorporated a penalty function
that assigns an infinitely positive value if
the state variable falls outside the defined
search space. In the paper [12], the PSO
algorithm was also applied to the PSSE
problem, and the authors provided insight
regarding the impact of measurements'
type and location on the estimation results.
In [13], PSO and the genetic algorithm
with decoupled variables are presented.
The objective function used in articles [12]
and [13] 1s also WLS with a penalty
function. By studying the PSO algorithm,
various function combinations can be
instead of

employed. For instance,

implementing a penalty function in the

(ISSN: 1859 - 4557)

objective function, a particle evaluation
can be performed through a position
update process, ensuring that each one is
within the allowed limits.

The analysis above indicates that few
studies have focused on algorithms that
omit the use of a penalty function within
the objective function. Therefore, further
this
necessary, as the results can serve as basis

evaluation from perspective  is
for choosing a more accurate objective
function. Moreover, in all previous studies
[8-10] and [12], the application of the PSO
algorithm did not incorporate decoupled
the
following sections of this paper will focus
on the PSO algorithm without and with the
decoupled variables when combined with
the WLS, LAV, and WLAV objective
functions without the penalty function.

variable techniques. Accordingly,

The evaluation and proposal of the
objective function rely on simulation
results with IEEE 14-bus and IEEE 30-bus
power systems.

2. OBJECTIVE FUNCTIONS FOR
POWER SYSTEM STATE ESTIMATION

The estimation problem of power system
state variables is formulated using input
data, including system connection details,
line parameters, transformers, measured
values, etc.

Suppose there is a set of m measurements
., Xn)
corresponds to the measurement type of z;.

zi, and the function hi(xi, xo,..

Then we have:
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z=h(x) +e (1)
The constraints of the state variable x;:
Ximin <x; < Ximax (2)

where :

* x is the state variable vector which
of bus
magnitude and phase angle ;

includes the value voltage

* ¢ is the error of measurement ;

* hi(x) is reactive power function (or active
power function, or branch current, or
voltage, or phase angle) depending on the
type of z;;

2.1. Weighted Least Squares

To determine the state variables x1, xa, . . .,
Xn corresponding to the set of measured
values z, the weighted least squares
method minimizes the following objective
function [1]:

J(x) = wi(zi — hi(x))?

-1, 3)
:Z()'_izei

i=1
where:

1 . . ..
*Wi =, with o; is the standard deviation

of the i-th measurement, representing the
expected accuracy of the measuring
device.

* m is number of measurement ;
2.2. Least Absolute Value

The Least Absolute Value objective
function is described as finding the
minimum value of the function F(X) as in

equation (4):

FeO =) l-hel @
i=1

2.2. Weighted Least Absolute Value

The Weighted Least Absolute Value
objective function is described as finding
the minimum value of the function F(x) as
in equation (5) [1][5][6]:

m

1
FOO =) —la—h@l 6

i=1

3. THE ALGORITHM

When employing the Particle Swarm
Optimization (PSO) algorithm to estimate
power system state variables, several terms
within the algorithm are defined as
follows:

- A “particle” denotes a specific set of
values that represent the state variables
associated with bus voltage magnitudes
and/or phase angles.

- The “particle position” refers to the
specific values of the state variables
contained within a single particle.

- “Particle velocity” signifies the amount
added to the current state variable values to
generate new ones. This adjustment
expands the search space and enhances the
likelihood of finding the global optimal
solution.

- A “swarm” represents the collective
group of multiple particles.

3.1. Particle Swarm Optimization

Particle Swarm Optimization is an
algorithm that seeks the optimal solution
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S6 37



TAP CHi KHOA HOC VA CONG NGHE NANG LUONG - TRUONG DAI HOC DIEN LUC

by leveraging information from a swarm of
particles. In the context of a power grid
with N nodes, each particle represents both
the voltage magnitude and phase angle of
the buses, resulting in a total of (2N-1)
state variables. The algorithm starts by
randomly initializing a specified number
of particles. Each particle has the
capability to remember the best position it
has achieved thus far, as well as the best
position found by the entire swarm. The
particle's movement is then influenced by
its velocity, which is calculated using a
specific formula (referred to as formula (6)
in reference [14]). Subsequently, the

particle's new position is updated
according to formula (7).
Vid = %.(Via + c1.11.(pib — Xid)
+ ¢2.12.(Peb — Xid)) ©)
Xid = Xid t Vid (7)

where:

*x=0,729; c1 =c2 =2,05;

* 11 and r; are random values in the range
(0,1);

* pev is the global best, referred to the
overall best solution found by the swarm;
* pib 1s the personal best position of i-th
particle;

The state variable within the search space
has defined limits, specifically a minimum
value (Xmin) and a maximum value (Xmax).
After updating an individual's position, it
is important to ensure that the state
variable stays within these boundaries. To
achieve this, the algorithm checks the
value of the state variable and makes
necessary adjustments if needed. If the

(ISSN: 1859 - 4557) I

revised value, xiq, falls below x;™" or
exceeds xi"™, the algorithm will set xiq to
pin. The process of estimating the state
variable value using PSO algorithm is
illustrated in the block diagram shown in

Reading input data: system topology, lines, transformers,
compensation devices, and measured values, etc.

Figure 1.

Choosing objective function: WLS or LAV or WLAV

Generate initial swarm with state variables U and 8;

Generate initial velocity

l

—>| Find objective function value for every particle

Find persenal best of particle py,
Find global best of swarm py,

]

Caleulate velocity as formula (6)
Update particle position as formula (7)

Boundary checking
of state variable
Kimin < Xy < xjmax

3
Set %y = Py

| Update new position of particle |

onvergence condition
of the problem

Give the result

Figure 1. Diagram of the PSO algorithm

3.2. Separate V-8 estimation using
Particle Swarm Optimization (SPSO)

In this section, we address the problem of
estimating the state variable values using
the SPSO (Separate U-0 estimation
process) algorithm based on the Particle
Swarm Optimization technique. The
of the SPSO
algorithm is its methodical approach to
estimating state variables separately. In

distinguishing feature
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one N-bus power grid, two particle types
are involved: 6, which consists of (N-1)
voltage phase angle values, and U, which
consists of N voltage magnitude values.
The estimation of voltage magnitudes and
phase angles is performed separately and
iteratively. When estimating the voltage
phase angle values, the voltage magnitude
values are held constant based on the best
individuals identified in the previous
result. Conversely, the same principle
applies  when  estimating  voltage
magnitude values. The overall process of
the SPSO algorithm is depicted in the
block diagram shown in Figure 2.

Convergence for both PSO and SPSO is
considered achieved when ecither the
maximum number of iterations is reached
or the objective function value remains
constant over m consecutive iterations.

4. SIMULATION

The simulation data, including branch
data, bus data, and measurement values are
obtained from [15], [16], and [17]. Two
algorithms simulate the IEEE 14-bus and
IEEE 30-bus systems under two distinct
case studies, excluding bad data impacts.

- Case 1: assuming measurement data from
conventional measuring devices, including
the measure values of bus injection powers
and one voltage magnitude. The total
number of input measurements used for
IEEE 14-bus and 30-bus grids is 29 and 31,
respectively.

- Case 2: In this
measurement data

case study, the

1s assumed to be

collected from Phasor Measurement Units
placed in the system.

Reading input data: system topelogy, lines, transformers,
compensation devices, and measured values, etc.

!

Choosing objective function: WLS or LAV or WLAV

Generate initial swarm with state variables 1/ and 8;

Generate initial velocity

l

Implementting PO

with state varizble 8

Give the results of &

Implementting PO
with state variable U

Give the results of U
onvergence checking
of Uand 8

True

Figure 2. Diagram of the SPSO algorithm

The data
magnitude, the bus voltage phase angle,

includes the bus voltage
the branch current, and the branch current
phase angle. The locations for PMU
placement are determined as suggested in
reference [18]. For the IEEE 14-bus
system, the PMUs are installed at buses 2,
6, 7, and 9. In the IEEE 30-bus system, the
PMUs are placed at buses 2, 4, 6, 9, 10, 12,
15, 18, 25, and 27. The total number of
input measurements utilized for these

systems is 38 and 104, respectively.
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In both cases, this paper examines six
combinations of the PSO and SPSO
algorithms with the WLS, LAV, and
WLAYV functions: PSO-WLS, PSO-LAYV,
PSO-WLAV, SPSO-WLS, SPSO-LAYV,
and SPSO-WLAV. To evaluate the
estimation accuracy of the state variables,
the estimated values are compared with
their corresponding
Specifically, the

magnitude and phase angle are compared

reference values.
estimated  voltage
with their respective reference values Uper
and Or.r. Accordingly, the percentage error
of each state variable is determined as

follows:
%e; = Xes;;fxre“ 100 (8)
Where:

* %e; is the percentage error in the
estimation of state variable i;

* Xesti 1S the estimated value of state variable i;
* Xefi 1S the reference value of state variable 1;

The algorithm presented in section 3 is
tested in each system with the following
parameters:

» Maximum iteration: 60000 PSO; 100 for
outer loop and 3000 for inner loop of
SPSO;

* Population size: 40 for IEEE 14-bus, 100
for 30-bus;

For case 1, the results are presented in
Figures 3 and 5 for the IEEE 14-bus, and
in Figures 7 and 9 for the IEEE 30-bus. The
estimated results for case 2 are shown in
Figures 4, 6, 8, and 10. The maximum error

(ISSN: 1859 - 4557)

value of the estimated U-0 results is listed
in Table 1.

4.1. Simulation of case study 1

The results of estimating the bus voltage
magnitude for the IEEE 14-bus grid
indicate that the simulations yield values
that are close to the reference value, Uker.
The combinations of SPSO-LAV and
PSO-WLAV show two large deviations,
but 1,8%. When
estimating the voltage phase angle, the
combination of SPSO-LAV and PSO-
LAV exhibits significant discrepancies

errors just below

from the reference value, O, with the
reaching 15,12% and
18,97%. the SPSO-WLS
combination  provides the  closest
estimation to O, followed by PSO-WLS,
with of 0,93% 1,42%,
respectively.

In the simulation of the IEEE 30-bus grid,
the estimation results differ notably. For

largest errors

In contrast,

errors and

voltage magnitude, the two combinations
with the best estimation values are SPSO-
WLS and PSO-WLS, while the PSO-LAV
and PSO-WLAV combinations yield the
poorest results. Regarding voltage phase
angle results, both combinations with the
WLAYV and LAV function result in high
errors, reaching up to 48%.

4.2. Simulation of case study 2

A comparison of the results shown in
Figures 4, 6, 8, and 10 with those in
Figures 3, 5, 7, and 9 indicates that data
from Phasor Measurement Units provides
more accurate estimations than data from
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conventional measuring devices.
Specifically, for the IEEE 14-bus grid, in
comparison to case 1, the error in the 0
estimation using the LAV function is
reduced from 18,97% to less than 10.4%.
Similarly, the 6 estimation error for the
IEEE 30-bus grid is below 10%. In the 14-
bus system, five combinations yield good

For 30-bus, only two combinations
(SPSO-WLS and PSO-WLS) achieve 0
results with errors under 1%, while the
other four combinations have 0 estimation
7% 8%.
estimated  voltage

errors ranging from to
Additionally, the
magnitude values for both grids in this case

study have an error of less than 4%.

estimation results, excluding SPSO-LAV.

Table 1. The highest estimation error

) L. Case 1 Case 2
Grid Combination
% errorU | %error® | %errorU | % error 0
PSO-WLS 0,50 1,42 0,37 0,81
PSO-LAV 1,49 15,12 1,21 2,82
PSO-WLAV 1,73 3,23 1,38 2,02
TEEE 14-bus SPSO-WLS 0,65 0,93 0,04 0,11
SPSO-LAV 1,63 18,97 2,97 10,33
SPSO-WLAV 0,54 7,03 3,31 3,93
PSO-WLS 0,54 4,06 1,30 0,83
PSO-LAV 6,02 48,12 3,97 8,04
PSO-WLAV 5,16 37,83 3,44 6,69
TEEE 30-bus SPSO-WLS 0,78 1,13 0,09 0,60
SPSO-LAV 4,89 39,66 1,91 7,30
SPSO-WLAV 3,82 40,71 1,95 7,20
o »
7\
S Ay, y S
g Lo A W s
gml N\ =y
o U e T

Uref U (SPSO-WLS) U (SPSO-WLAV) U (SPSOLAV) —# -U (PSO-WLS) U (PSO-WLAV) —e - U (PSO-LAV)

Figure 3. The estimated voltage magnitude in IEEE 14-bus — Case 1
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112
11
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1 2 3 4 5 [ 7 g 9 10 11 12 13 14
Bus number
=t TUref % U (SPSO-WLS) U (SPSO-WLAWV) U (SPSO-LAV) = U (PSO-WLS) == U (PSO-WLAV) =e= U (PSO-LAV)
Figure 4. The estimated voltage magnitude in IEEE 14-bus — Case 2
0
-0.05
01
0.15
02
-0.25
03
-0.35
Bus number
—e—gref o=@ (SPSO-WLS) 8 (SPSO-WLAV) 8 (SPSO-LAV) =: §(PSO-WLS) == 8 (PSO-WLAV) =#-8(PSO-LAV)
Figure 5. The estimated voltage phase angle in IEEE 14-bus — Case 1
0
-0.05
0.1
-0.15
0.2
025
-0.3
-0.3%
Bus number
—o—fref —*—8 (SPSO-WLS) B (SPSO-WLAV) 8 (SPSO-LAV) ——8 (PSO-WLS) —* 8 (PSO-WLAV) —=- 8 (PSO-LAV)

Figure 6. The estimated voltage phase angle in IEEE 14-bus — Case 2
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——Uref -+ U(PSO-WLS) U (PSO-WLAV) U(PSOLAV) —=- U(SPSO-WLS) —= U(SPSO-WLAV) —= U(SPSO-LAV)

Figure 7. The estimated voltage magnitude in IEEE 30-bus — Case 1

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
Bus number
“o-Utef -+ U(SPSO-WLS) U (SPSO-WLAV) U(SPSO-LAV) -#-U(PSO-WLS) -—=-U(PSO-WLAV) —*- U (PSO-LAV)

Figure 8. The estimated voltage magnitude in IEEE 30-bus — Case 2

4 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Bus number

— 6ref —- 6 (PSO-WLS) 8 (PSO-WLAY) 8(PSO-LAV) % 0(SPSO-WLS) —*—6 (SPSO-WLAV) -6 (SPSO-LAV)

Figure 9. The estimated voltage phase angle in IEEE 30-bus — Case 1
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}\. 2 3 4 5 6 7 g 9 0 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 129 3C

B ”
B il ~iny 7 3
.

Bus number

8 (PSO-WLAV) & 6(PSO-LAV)

Figure 10. The estimated voltage phase angle in IEEE 30-bus — Case 2

5. CONCLUSION

The paper presents a study on estimating the
value of state variables in power systems
using the swarm optimization algorithm,
both with the
separation process. This study utilizes three
functions (Weighted Least
Squares, Least Absolute Values, and
Weighted Least Absolute Values), with
data derived from conventional

and without variable

objective

input
measuring devices or Phasor Measurement
Units. The which
encompass 24 cases of six combinations

simulation results,

across two IEEE benchmark grids, indicate

that the use of PSO or SPSO algorithms with
the WLS function yields the best and most
stable estimation for both power grids in all
scenarios. Based on the results and analysis
the paper, the
recommends choosing the WLS objective

presented in study
function when applying the PSO or SPSO
algorithms to address the estimation of state
variable values in power systems.
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