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1 INTRODUCTION

The Abelian Sandpile Model is a model which displays self-organized criticality. It

was first introduced by Bak, Tang and Wiesenfeld in 1987 as the simplest model to

display such behavior [5]. The model was originally defined on a finite grid, but can

be extended more generally to finite graphs as well. In the model, grains of sand are

placed on the vertices of a finite graph. A vertex is said to be stable if the number

of grains of sand at the vertex is strictly less than the degree of the vertex. If a

vertex becomes unstable - that is, if the number of grains of sand is greater than or

equal to the degree - the vertex will topple, sending one grain of sand along each of

its adjacent edges. After a toppling of the vertex vi, the number of grains in this

cell decreases by its degree, while the number of those neighbors increases by the

number of edges they are adjacent. To ensure a sandpile stabilizes in a finite number

of steps, we distinguish a vertex s to be the ’sink.’ The sink may collect any number

of grains of sand and is never considered unstable. If the graph is connected it is easy

to see that from any initial configuration the system reaches a stable configuration

in which the number of grains in each vertex is less than its degree.

A stable configuration is recurrent if it is accessible from any other sandpile via a

sequence of sand additions and topplings.

Dhar shows also that some configurations, the so-called recurrent configurations,
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play an important role and possess some interesting mathematical properties: they

form a finite abelian group (called the sandpile group) whose order is equal to the

number of spanning trees of the graph. The sandpile automaton was also studied

by many authors, and it is referred as the chip-firing game or critical group on a

graph [6, 7, 8]. The sandpile group of the graph G is denoted SP (G). The sandpile

group can be determined by the Laplacian matrix of G. The collection of recurrent

sandpiles under stable addition form a group called the sandpile group.

The sandpile group of a connected graph which has no edge connecting the same

vertex is closely connected with the graph Laplacian as follows: Let G = (V,E) be a

finite graph with n vertices. Then its Laplacian matrix L(G) = D(G)−A(G), where

D(G) = diag(d1, d2, ..., dn) is the degree matrix and A(G) is the adjacency matrix of

G.

In this paper, the main tools will be the Smith normal form for an integer matrix,

which can be achieved by row and column operations that are invertible over the ring

Z of integers. Given a square integer matrix A, its Smith normal form is the unique

diagonal matrix S(A) = diag(S11, S22, ..., Snn) whose entries are nonnegative and

Sii divides Si+1,i+1. Note that, for each i, the product S11S22 . . . Sii is the greatest

common divisor of all i × i minor determinants of A, this fact will also be used

to determine the Smith normal form of an integer matrix. Two matrices A,B ∈
Zmn are unimodular equivalent [10] (written A ∼ B) if there exist matrices P ∈
GL(m,Z), Q ∈ GL(n,Z) such that B = PAQ. Equivalently, B is obtainable from A

by a sequence of row and column operations mentioned above. It can be seen easily

that A ∼ B implies cokerA ∼= cokerB, and if A = diag(a1, a2, . . . , an) then

cokerA ∼= Za1 ⊕ Za2 ⊕ . . .⊕ Zan

where Za = Z/aZ. (Of course, Z1 is the trivial group and Z0 = Z.)

Definition 1. Let G = (V,E) be a graph with vertex set V = {v1, v2, . . . , vn}. The

adjacency matrix of G is the n× n matrix A = (aij)n×n where

aij =

1 if {vi, vj} ∈ E

0 otherwise

Definition 2. Let G = (V,E) be a graph with vertex set V = {v1, v2, . . . , vn}. The

Laplacian matrix L = L(G) of G is the n× n matrix defined by L = D − A, where

D = diag(deg(vi) : i = 1, 2, ..., n) is the diagonnal matrix of vertex degrees, and A is

the adjacency matrix of G.
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The degree of the vertex vi, denoted deg(vi), is the number of edges that are connected

to the vertex vi.

Definition 3. Let G = (V,E) be a graph with vertex set V = {v1, v2, . . . , vn}. The

reduced Laplacian matrix with respect to a vertex vi, denoted L′ = L′(G), is the

(n− 1)× (n− 1) matrix formed from the Laplacian matrix by removing the row and

the column corresponding to the vertex vi.

Definition 4. [9] Let G be a finite graph with vertices v1, v2, . . . , vn. We single out

one vertex, vn, called the sink. The sandpile group of G is defined as the quotient

SP (G) = Zn−1/L′Zn−1.

This group was defined independently by Dhar [6], and motivated by the abelian

sandpile model of self-organized criticality in statistical physics [5]. In the combina-

torics literature, other common names for this group are the critical group [2] and

the Jacobian [4].

The sandpile group can be understood combinatorially in terms of chip-firing [3, 2].

A nonnegative vector u ∈ Zn−1 may be thought of as a chip configuration on G with

ui chips at vertex vi. A vertex vi is unstable if ui ≥ di. An unstable vertex may

fire, sending one chip along each incident edge. Note that the operation of firing

the vertex vi corresponds to adding the column vector L′
i to u. We say that a chip

configuration u is stable if every non-sink vertex has fewer chips than its degree, so

that no vertex can fire. If u is not stable, one can show that by successively firing

unstable vertices, in finitely many steps we arrive at a stable configuration u0. Note

that firing one vertex may cause other vertices to become unstable, resulting in a

cascade of firings in which a given vertex may fire many times. The order in which

firings are performed does not affect the final configuration ; this is the “abelian

property” of abelian sandpiles [6].

The structure of sandpile group of a cycle graph is clearly and was proved by Merris

on 1992 [10]. In this paper, we give an elementary proof by transfering the reduced

Laplacian of the cycle graph Cn to its the Smith normal form.

Theorem 1. [11] Let G = (V,E) be a graph. If A = dial(α1, ..., αn−1) is the Smith

normal form of the reduced Laplacian matrix L′(G) then

SP (G) ∼= Zα1 ⊕ ...⊕ Zαn

where Za = Z/aZ, Z1 is the trivial group and Z0 = Z.
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Example 1. Let C4 be the cycle of length 4. The adjacency matrix of C4 is

A =


0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0


Then the Laplacian matrix of C4 is

L(C4) =


2 −1 0 −1

−1 2 −1 0

0 −1 2 −1

−1 0 −1 2


and the reduce Laplacian matrix respect to the vertex v4 is

L′(C4) =

 2 −1 0

−1 2 −1

0 −1 2


2 THE SANDPILE GROUP OF CYCLE GRAPH

We state now the main result of this paper.

Theorem 2. SP (Cn) ∼= Zn

Proof. To show SP (Cn) ∼= Zn, we must compute the Smith Normal Form of the

reduced Laplacian forKn, thus obtaining the invariant factors for L(G). The reduced

Laplacian matrix is for Cn is the (n− 1)× (n− 1) matrix:

L′(Cn) =


2 −1 0 ... 0 0

−1 2 −1 0 ... 0

0 −1 2 −1 ... 0

...

0 0 ... 0 −1 2


The Smith Normal form can be obtained by the following process:

First, by adding to the 1st-column by n− 2 other column, we get
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L′(Cn) →


1 −1 0 ... 0 0

0 2 −1 0 ... 0

0 −1 2 −1 ... 0

...

1 0 ... 0 −1 2


Then, by adding to the 2nd-column by n− 2 other column of the matrix, we obtain

L′(Cn) →


1 0 0 ... 0 0

0 1 −1 0 ... 0

0 0 2 −1 ... 0

...

1 2 ... 0 −1 2


Next, by adding to the 3rd-column by n − 3 other columns from the 2nd-colums to

the (n− 1)th-columns of the matrix, we have:

L′(Cn) →


1 0 0 0 ... 0 0

0 1 0 0 0 ... 0

0 0 1 −1 0 ... 0

...

1 2 3 ... 0 −1 2


Similar, we add columns n− 2 to column n− 1:

L′(Cn) →


1 0 0 0 ... 0 0

0 1 0 0 0 ... 0

0 0 1 0 0 ... 0

...

1 2 3 ... n− 3 n− 2 n


Lastly, we subtract k times row k from row n − 1, that mean rn−1 → rn−1 − krk,

k = 1, 2, ..., n− 2:
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L′(Cn) →


1 0 0 ... 0

0 1 0 ... 0

0 0 1 ... 0

...

0 0 0 ... n


So, SP (Cn) ∼= Zn.

3 CONCLUSION

In this paper, we compute the sandpile group of cycle graph by using the Smith

Normal Form for an integer matrix. We confirm that, the sandpile group of cycle

graph Cn is exactly the finite cyclic group of order n. This result gives a geometrical

description of the cyclic group Zn.
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