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In this paper, effect of porosity on nonlinear analysis of plate structures is presented. Two porous 

distributions are considered. Governing equations are expressed by using isogeometric analysis (IGA) and 

the third-order shear deformation theory (TSDT). With these approaches, it is easy to fulfil the C1-continuity 

requirement of the plate model. The obtained results demonstrate the significance of porosity volume 

fraction, porosity distributions and volume fraction exponent on nonlinear analysis of the plate structures.  
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1. INTRODUCTION 

For Industry 4.0, new materials in engineering play an important role and 

have been ordered to scientists for inventing. According to this general 

trend, porous functionally graded materials (PFGM) by integrating both 

advantages of functionally graded materials and metallic materials with 

porosities have increased higher fracture toughness, bonding strength, 

minimization of stress concentration. With a high demand in engineering 

design to achieve improved structure performance, study on the PFGM 

structures has attracted several researchers. Nonlinear free vibration of 

functionally graded sandwich Timoshenko beams with porosities using 

Ritz method (Chen et al., 2016a) was investigated. The buckling load of 

porous circular plates (Mojahedin et al., 2016) was studied. Free vibration 

analysis of rectangular plates with porosities based on a simple first-order 

shear deformation theory (FSDT) (Rezaei et al., 2017) was performed. In 

their results, the governing equations of the system were solved 

analytically for Lévy-type boundary conditions. Free and forced vibrations 

of functionally graded (FG) Timoshenko beams with non-uniform porosity 

distribution using Ritz trial functions were reported by Chen et al. (Chen 

et al., 2016b). Buckling analysis of a solid circular functionally graded (FG) 

Love-Kirchhoff plate with porous materials subjected to radial loads was 

presented by Jabbari et al. (Jabbari et al., 2014). Buckling and post-

buckling analyses of porous FG plates resting on Pasternak foundations 

under thermo-mechanical loads using analytical solutions (Cong et al., 

2018) was also reported. At present, literature review show that some 

papers have been focused to dynamic responses of PFGM plates/beams. In 

the view of practical applications of porous functionally graded materials, 

mentioned problem should be addressed to accommodate reference 

solutions for material and structural design. That motivates us study 

porous plate structures. Thus, this paper develops nonlinear analysis of 

plate structures with porosities. Porosity-dependent material properties 

are incorporated to the modified power law index. Some obtained results 

can be considered as benchmark results to analyze porous plate 

structures. 

2. THEORITICAL FORMULATIONS 

A porous plate with length a, width b and thickness h is considered, as 

shown in Figure 1. Two porosity distributions including even porosities 

(PFGM-I) and uneven porosities (PFGM-II) are also considered.  

Based on the modified rule of mixture, the material properties of PFGM 
are defined as: 
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where   is porosity volume fraction; Vc and Vm are volume fractions of 

ceramic and metal defined as: 
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in which subscript c and m represent ceramic and metal, respectively; 
and n is volume fraction exponent. 

Figure 1: Geometry of FGM nanoplates with two porosity 

distributions. 
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Based on the multi-step sequential infiltration technique, material 
properties of PFGM such as Young’s modulus, density, Poisson’s ratio, etc., 
are expressed 

Displacement fields of the plate can be given 

where c = -4/(3h2). 

The strains are formulated as follows 
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According to Von Karman theory, the strains in Eq. (5) are rewritten 
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and, 
NLε  in Eq. (7) are defined as 
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The stress strain relation is expressed as 
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By using isogeometric analysis, displacement fields can be approximated 
as 
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IR  is 

NURBS basis functions. 

The strain can be obtained as 
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and 
NL

IB  is dependent on displacement field given as 

,

,y

0 0 0 0
where

0 0 0 0

I xNL

I g g

I

R

R


  

= =   
    

A
B B B

0

 
(15) 

Equations for nonlinear analysis of the plate can be obtained: 

 Kd = F (16) 
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3. NUMERICAL RESULTS 

To verify the accuracy of the present method, a porous Al/ZrO2-2 plate (a 

= 0.2 and h = 0.01) is investigated. The load parameter P  and central 

deflection w  are formulated: 
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Figure 2 shows nonlinear deflection of the PFGM plate with 0 = .  

Reference solutions were performed by Phung-Van et al. (Phung-Van et al., 
2017). It can be found that present results match very well with those in 
ref. (Phung-Van et al., 2017). Also, from  
Figure 2, it can be seen that a little bit differences between the present 
results and the reference solutions. This is because material properties in 
this study were formulated by using the mixture rule, while those in the 
reference solutions using Mori Tanaka. 

 

Figure 2: Nonlinear deflection of the PFGM plate made of Al/ZrO2-2 

( ) ( )

( ) ( )

( ) for PFGM-I
2

2
( ) 1 for PFGM-II

2

c m c m c m

c m c m c m

P z P P V P P P

z
P z P P V P P P

h





= − + − +

 
= − + − + − 

 

(3) 

( )

( ) ( )

3

0 0,

3

0 0,

0

, / 2 / 2

x x x

y y y

u u z cz w

v v z cz w h z h

w w

 

 

= + + +

= + + + −  

=

(4) 



Journal of Technology & Innovation (JTIN) 1(1) (2021) 10-12 

Cite the Article: P. Phung-Van and Toan Khong Trong (2021). Effect of Porosity On Behaviours of Plate Structures.  
 Journal of Technology & Innovation, 1(1): 10-12. 

Figure 3: Nonlinear deflection of 

a SSSS PFGM-I plate made of 

Al/ZrO2-2 with n = 3. 

Figure 4: Nonlinear deflection of 

a CCCC PFGM plate made of 

Al/Al2O3 with n = 3, 0.3 = . 

Next, a porous Al/ZrO2-2 plate (a = 10 and a/h = 10) with volume fraction 
n = 3 is considered. Effects of porosity parameter on nonlinear analysis of 
a simply supported PFGM-I plate made of Al/ZrO2-2 are plotted in Figure 
3. It can be observed that with an increase of porous volume fraction leads 
to a decrease of the stiffness of the plate, nonlinear deflections increase. 
Comparisons between PFGM-I and PFGM-II plates made of Al/Al2O3 (a = 
10 and a/h = 10) are plotted in Figure 4. Deflection of PFGM-II is smaller 
than that of PFGM-I. So, the stiffness of PFGM-I is smaller than that of 
PFGM-II.  

4. CONCLUSIONS 

This paper presented effect of porosity on nonlinear bending analysis of 
plate structures using IGA based on TSDT. The proposed method using 
NURBS elements naturally fulfils the C1-continuity requirement of the 
porous plate. Some benchmark examples for nonlinear responses of the 
porous plates were investigated. It was obtained that nonlinear behaviors 
of the plates are influenced by the porous factor. It was also found that 
porosities reduce the stiffness of the plates and distributions of porosities 
influence the stiffness significantly. 
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