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The global environment is being affected by the use of fossil fuels to provide energy for internal combustion 
engines (ICE) due to a large amount of CO2 emission. Specific toxic substances are NOx, and CO, soot, 
particulate matter that exists in the environment at high densities while having a global impact. The 
automotive industry of countries worldwide is constantly changing and evolving to discover new solutions 
that reduce fuel use while developing cleaner and more advanced combustion methods, which as a low-
temperature combustion engine (LTC). This study uses computational fluid dynamics (CFD) to understand 
partial pre-mixed compression combustion (PPCI), with HCCI and RCCI being advanced low-temperature 
combustion concepts. Lowering the average combustion temperature is an advantage of PCCI; it optimizes 
CO and NOx emission rates while maintaining high thermal efficiency. Investigate the intake pattern, 
including flame length, mixing pulse, and intake air volume, to determine the importance of that factor for 
oxidation using the LES. Studies have been performed using RANS and LES models to stimulate mixing and 
combustion. 
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1. INTRODUCTION 

When it comes to conventional diesel combustion (CDC), the fuel injection 
process is delayed; it continues in the combustion process (incomplete 
combustion). Resulting in a large amount of these emissions and the need 
for a post-treatment system (Zehni et al., 2020; Soloiu et al., 2015). The 
combustion temperature must be reduced to avoid the generation of soot 
and NOx (Nibin et al., 2021). The usual method to reduce the combustion 
temperature is to use an exhaust gas recirculation (EGR) system (Park et 
al., 2015; Pandey et al., 2018; Bhurat et al., 2021). In addition, the other 
method is more difficult to increase the early injection angle to give more 
pre-mix time to help the fuel and air achieve a better mixing composition. 
Therefore, the combustion temperature is lower. Besides, hydrocarbon 
gas (UHC) and CO are not completely burned when the combustion 
temperature is reduced, which can affect the combustion efficiency.  In 
SCCI mode, to overcome the HCCI mode's restriction, deliberate thermal 
or fuel stratification is used. It's not complicated for direct fuel injection to 
stratify fuel in the combustion chamber, and all of the technologies 
required to do so are currently available  (Wang et al., 2019; Yoon et al., 
2018). This combustion mode is frequently known as partial pre-
compression combustion (PPCI) or sometimes shortened as partial pre-
mix combustion (PPC), which uses direct fuel injection to regulate the fuel 
injection timing mixing time (Bhave et al., 2020; D’Ambrosio et al., 2016). 
PPCI is an intermediate process that combines conventional diesel 
combustion with the HCCI combustion mode (Zheng et al., 2019). 
Previously, research on PPCI engines focused on investigating the engine 
parameter, which controls the mixture composition and exhaust output. 
Combustion stability and engine load range must be considered as the 
combustion rate increases. CFD simulation to analyze mixtures, mixture 
combustion temperature, and flame-wall interactions to improve the 
efficiency of PPCI engines (An et al., 2017; Fukushima et al., 2015). All 
three basic combustion modes can coexist in PPC engines: ignition 
forward spread, premixed flame, and unmixed flame. Given the difficulties 
in implementing combustion methods from a numerical aspect, it is crucial 

and pivotal to assess which combustion regimen is being 
implemented. This work shows the difference between combustion with 
pre-mixing and combustion without pre-mixing (Mei et al., 2017). It was 
known to be more difficult and often required detailed numerical 
simulation (DNS) when studying the difference between pre-mixing and 
without pre-mixing. According to Musculus et al., most of mixture was 
ignited in the mixed combustion mode before the PPCI injection time is 
increased. Figure 1 illustrates a model of PPCI combustion and CDC self-
ignition (Musculus et al., 2013). 

The injection's position and time are the most important factors in forming 
the premix. Due to the non-volatility of diesel, direct fuel injection is more 
commonly employed to ignite the premix (Natarajan et al., 2017). In PPCI 
mode, two alternative direct injection methods are used for the injection 
time of conventional diesel engines: early direct injection and delayed 
direct injection. Fuel is delivered directly into the cylinder during the 
compression stroke in early direct injection (Eguz et al., 2014), allowing 
adequate fuel and air to mix before the top dead center. The common 
combustion process with early direct fuel injection is premix and 
compression combustion (PCCI). 

2. WAVE PRE-COMBUSTION, PRE-MIXED FLAME, UNMIXED

FLAME

Diesel PPCI has drastically different combustion and exothermic 
characteristics than conventional diffusion-controlled combustion 
engines. Due to high dilution and premixing as well as relative cooling of 
the combustion gas in the cylinder (due to EGR), the initial ignition 
reactions in LTC mode are slower than conventional diesel combustion 
(Pandey et al., 2021; Zehni et al., 2017). Partial pre-combustion is a 
combination of pre-mixed and unmixed pre-combustion. Premix 
combustion occurs when fuel and air coexist before starting combustion 
in a completely homogeneous zone or a stratified zone consisting of dilute 
fuel-air mixtures or bold fuel-air mixtures. When fuel and air mix during 
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combustion, it is pre-mixed combustion, which means that fuel and air are 
directed separately into the combustion chamber. Therefore, PPCI is also 
used regardless of stratification conditions, whether the combustion mode 
is pre-mixed or not pre-mixed (Bilger et al., 2005). In general, to improve 
the PPCI engine's model, we have to compare two different premix 
combustion methods, namely combustion front spread and premixed 

flame front spread. The propagating transition is a chain of separate self-
ignition points regardless of the mass of the mixture and the mixture's 
temperature when it enters the combustion chamber. However, the 
combustion reaction rate depends on the ignition delay time τig which is 
varied by thermodynamic states, including three main factors: 
temperature, pressure, equivalence ratio (Fuyuto et al., 2014). 

Figure 1: Phenomenal  model of PPCI combustion and CDC self-ignition (Singh et al., 2017) 

τ ig = f(T, P,ϕ ) (1) 

In pre-combustion mode, the flame mixes first if additional heat and mass 
transfer are required, in the form of diffusion, into the combustion 
chamber to continue the combustion. The spread of the premixed flame is 
greatly influenced by the perturbation structure depicted in the famous 
Borghi diagram (Bhagatwala et al., 2015). The turbulence acts indirectly 
when propagating the combustion. The disturbance governs the mixing 
and hence the local and proportional temperature distribution equivalent 
before combustion. When combustion occurs, the integrated chaos scale is 
slower than the chemical scale. Studies that provide for PPCI-related 
conditions have been carried out within the framework of DNS, showing 
that premixed flame can occur simultaneously but that the combustion 
mode is likely to be the dominant combustion mode (Zhang et al., 2015; 
Singh et al., 2018). 

There are two diesel LTC options, called RCCI and PCCI. In RCCI 
combustion, a slow-reactive fuel (such as gasoline) is pre-mixed, and fuel 
with  high  reactivity  (such as diesel)  is injected  directly to  create a  split 

reaction in the cylinder. Partial combustion of the diesel premix is known 
as PCCI. Three types of PCCI alternatives use gasoline: (i) partial fuel 
stratification (PFS), (ii) medium fuel stratification (MFS), and (iii) high fuel 
stratification (HFS). Figure 2 shows the temperature of fuel stratification 
in the combustion chamber. In the PFS embodiment, either the injector or 
direct fuel injection is used to prepare a uniform intake very early, and 
stratification is generated by directly injecting a small volume of fuel 
afterward (Beatrice et al., 2009). The stratification is made so that 
spontaneous combustion occurs continuously while keeping the NOx and 
soot emissions super low (Zhang et al., 2015). In Figure 2, The PPCI 
combustion method is an intermediate method of HCCI and CDC. In 
different injection methods, the degree of fuel stratification will not be the 
same; this also has a different effect on the total heat from pre-mixed and 
non-premixed combustion. The different degrees of stratification and the 
amount of bold fuel mixture will increase the importance of the 
combustion method. The fuel stratification is determined by calculating 
the local equivalent proportional distribution defined by Equation (2) 
(Zhang et al., 2017; Rohani et al., 2016): 

Figure 2: The basic combustion methods are divided into three directions. The engine concept is determined based on the influence of each burning 
mode on the total heat output (Elzahaby et al., 2018) 
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𝜙 = (
𝑚𝑓

𝑚𝑎
) / (

𝑚𝑓

𝑚𝑎
)  

(2) 

With components: mf being the regional mass of the fuel; m a being the 
regional mass of the air, and s representing the stratified 
measurement. The value > 1 corresponds to the condition of rich fuel, the 
value < 1 corresponds to the condition of low fuel, and the value = 1 
corresponds to the ideal condition. It can be seen in Figure 3 that the 
structure of ϕ in the PPC concept is much broader than that of the HCCI 
engine concept (Soloju et al., 2018). 

NOx-soot formation and the oxidation of carbon black depend on 
combustion temperature and local equivalent ratio in the cylinder. The 
fuel determines the size and shape of the soot-forming area in the ϕ -T 
map. 

3. THE TURBULENCE OF THE FLOW 

Laminar flow is complex with no mixing of liquid particles and without 
velocity  and  pressure pulses. With the  laminar  motion of the  liquid in  a 

straight tube of constant cross-section, all lines are directed parallel to the 
axis of the tube, with no horizontal displacement of the fluid (Schmitt, 
2007). However, laminar motion cannot be considered non-moving, for 
although there is no visible vortex in it, simultaneously with the 
translational motion, there is an ordered rotation of the individual fluid 
particles around their instantaneous centers with some angular velocity 
(Elkelawy et al., 2021). Turbulent flow is characterized by vigorous fluid 
mixing and pulses of velocity and pressure. Transverse displacement and 
rotation of individual liquid volumes occur in turbulent flow, along with 
the primary longitudinal displacement of the liquid (Liang et al., 2021; 
Salahi et al., 2019). Cyclones are distinguished by scales showing different 
shapes and changes over eddy currents. The integral scale is the scale with 
the highest energy content the characteristics of length lo, velocity up, and 
time 𝜏𝑜. The Reynolds number over time is (Sone et al., 2003; Parks et al., 
2010): 

𝑅𝑒0 =
𝑢0𝑙0

𝜈
, 𝜏0 =

𝑙0

𝑢0 (3) 

Figure 3: Proposed conceptual model of the distribution of heat released in the combustion cycle depending on the equivalent ratio and combustion 
model (Lundgren, 2017). 

Figure 4: The modeled diagram of the noise kinetic energy for the RANS, LES, and DNS models (Sabelnikoy et al., 2013). 

With components: ν is the kinematic viscosity. The smallest chaos scale is 
the Kolomogrov scale, which defines eddy currents with the least amount 
of energy at the location where chaotic kinetic energy is dissipated as heat. 
The Kolomogrov scale of flame length, flame velocity, and flame time is 
defined by the formula (4) (Hoang et al., 2022; Chomiak et al., 1996; 
D’Ambrosio et al., 2015): 

𝑙𝜂 = (
𝜈3

𝜀
)

1/4

, 𝑢𝜂 = (𝜈𝜀)1/4, 𝜏𝜂 = (
𝜈

𝜀
)

(1/2)

(4) 

With components: ε is the dispersion of chaotic kinetic energy. The energy 
scale principle proposed by LF Richardson specifies the decomposition of 
large vortices with the highest energy levels into the smallest energy levels 
by reducing their energy until reaching the dispersed molecule and finally 
converted into heat. RANS and LES are two models used to model the 
perturbation scales. The energy flow associated with RANS and LES 
models is depicted in Figure 4 (Zhang et al., 2014). 

4. U-RANS FORMULA 

According to formula (5), a stream quantity ϕ can be divided into two 
parts in the U-RANS model: meantime ϕ̄ and oscillation 𝜙′′ (Lo¨ rstad et 
al., 2010; Jia et al., 2013): 

:𝜙 = 𝜙‾ + 𝜙′′ (5) 

Since the reaction density varies, Favre's formula is used: 

𝜙̃ =
𝜌𝜙̅̅ ̅̅

𝜌‾ (6) 

The average time of the U-RANS equations assuming Le = 1 is: 

∂𝜌‾

∂𝑡
+

∂𝜌‾ 𝑢̃𝑗

∂𝑥𝑗
= 𝑆‾𝜌 (7) 
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∂𝜌‾ 𝑢̃𝑖

∂𝑡
+

∂𝜌‾ 𝑢̃𝑖𝑢̃𝑗

∂𝑥𝑗
= −

∂𝑝‾

∂𝑥𝑗
+

∂𝜏‾ 𝑖𝑗

∂𝑥𝑗
−

∂𝜌‾ 𝑢𝑖
′′𝑢𝑗

′′̃

∂𝑥𝑗
+ 𝑆‾𝑢𝑖 (8) 

∂𝜌‾ ℎ̃

∂𝑡
+

∂𝜌‾ 𝑢̃𝑗ℎ̃

∂𝑥𝑗
= −

∂𝑝‾

∂𝑡
+

∂

∂𝑥𝑗
(𝜌‾𝛼̃

∂ℎ̃

∂𝑥𝑗
) −

∂𝜌‾ ℎ′′𝑢𝑗
′′̃

∂𝑥𝑗
+ 𝑆‾ℎ (9) 

∂𝜌‾ 𝑌𝑘̃

∂𝑡
+

∂𝜌‾ 𝑢̃𝑗𝑌𝑘̃

∂𝑥𝑗
=

∂

∂𝑥𝑗
(𝜌‾𝐷̃

∂𝑌̃𝑘

∂𝑥𝑗
) −

∂𝜌‾ 𝑌𝑘
′′𝑢𝑗

′′̃

∂𝑥𝑗
+ 𝜌‾𝜔̃𝑘 + 𝑆‾𝑌𝑘 (10) 

According to the Boussinesq conjecture, Reynolds' tensile stress can be 
written as (Srihari et al., 2017): 

−𝜌‾𝑢𝑖
′′𝑢𝑗

′′̃ = 𝜇𝑡 (
∂𝑢̃𝑖

∂𝑥𝑗
+

∂𝑢̃𝑗

∂𝑥𝑖
−

2

3

∂𝑢̃𝑘

∂𝑥𝑘
𝛿𝑖𝑗) −

2

3
𝜌‾𝑘𝛿𝑖𝑗 

(11) 

The k - ε model is a perturbation model, which is used to calculate the 
perturbation viscosity μ t is defined as (Murata et al., 2009): 

𝜇𝑡 = 𝜌‾𝐶𝜇
𝑘2

𝜀 (12) 

With components: k is the perturbation kinetic energy; ε is the dispersion 
rate; C μ constant model. Their perturbation to the mass of the mixture and 
the temperature of the mixture are modeled with the uprise diffusion 
method as follows (Singh et al., 2020):  

−𝜌‾𝑌𝑘
′′𝑢𝑗

′′̃ =
𝜈𝑠𝑔𝑠

𝑆𝑐𝑠𝑔𝑠

∂𝑌̃𝑘

∂𝑥𝑗   
(13) 

−𝜌‾ℎ′′𝑢𝑗
′′̃ =

𝜈𝑠𝑔𝑠

𝑃𝑟𝑠𝑔𝑠

∂ℎ̃

∂𝑥𝑖 (14) 

5. LES FORMULA 

G space is used in the LES model to resolve certain perturbation scales. The 
selected variables can be written as (Maghbouli et al., 2015; Jia et al., 
2011): 

𝜙‾(𝑥, 𝑡) = ∫ 𝐺(𝑟, 𝑥)𝜙(𝑥 − 𝑟, 𝑡)𝑑𝑟  (15) 

The selection function G must match the basic condition ∫G(r, x) dr = 1. The 
Favre formula is used as 

𝜙̃ =
𝜌𝜙̅̅ ̅̅

𝜌‾
(16) 

In the LES model, the variable ϕ is resolved by ϕ̃ and the variable 𝜙′′ is 
unresolved (sub-grid). The tuning equations for the reactive multiphase 
current in the LES framework can be constructed as follows (Jain et al., 
2017): 

∂𝜌‾

∂𝑡
+

∂𝜌‾ 𝑢̃𝑗

∂𝑥𝑗
= 𝑆‾𝜌, 

(17) 

∂𝜌‾ 𝑢̃𝑖

∂𝑡
+

∂

∂𝑥𝑗
[𝜌‾𝑢̃𝑖𝑢̃𝑗 − 𝜏‾𝑖𝑗 − 𝜏𝑖𝑗

𝑠𝑔𝑠
] = 𝑆‾𝑢𝑖 (18) 

∂𝜌‾ 𝑌̃𝑘

∂𝑡
+

∂𝜌‾ 𝑢̃𝑗𝑌̃𝑘

∂𝑥𝑗
−

∂

∂𝑥𝑗
[𝜌‾𝐷̃

∂𝑌̃𝑘

∂𝑥𝑗
+ Φ𝑌𝑘

𝑠𝑔𝑠
] = 𝑆‾𝑌𝑘

+ 𝜔̃̇𝑘 (19) 

∂𝜌‾ ℎ̃

∂𝑡
+

∂𝜌‾ 𝑢̃𝑗ℎ̃

∂𝑥𝑗
−

∂

∂𝑥𝑗
[𝜌‾𝛼̃

∂ℎ̃

∂𝑥𝑗
+ Φℎ

𝑠𝑔𝑠
] =

∂𝑝

∂𝑡
+ 𝑆‾ℎ (20) 

With components: 𝑆‾𝜌 , 𝑆‾𝑢𝑖
, 𝑆‾𝑌𝑘

, 𝑆‾ℎ are selected terms such as mass,

momentum, types, and enthalpy equations between the gas and liquid 
phases. 

Sub-grid concepts, concept - sgs, continue to require closed modeling. 
Selected stress tension obtained from resolved tension rate 𝑆‾𝑖𝑗 and 

pressure  according to the formula (21) (Pei et al., 2015; Splitter et al., 
2010): 

𝜏‾𝑖𝑗 = −𝑝‾𝛿𝑖𝑗 + 2𝜇‾ (𝑆̃𝑖𝑗 −
1

3𝑆̃𝑘𝑘𝛿𝑖𝑗
)  

(21) 

The sub-grids tensile stress is modeled using a one-equation vortex (Shim 
et al., 2020). 

𝜏𝑖𝑗
𝑠𝑔𝑠

= 2𝜌‾𝜈𝑠𝑔𝑠(𝑆̃𝑖𝑗 − 1/3𝑆̃𝑘𝑘𝛿𝑖𝑗) − 2/3𝜌‾𝑘𝑠𝑔𝑠𝛿𝑖𝑗 (22) 

where the sub-grid viscosity is modeled according to (23) 

𝜈sgs = 𝐶𝑣√𝑘𝑠𝑔𝑠Δ‾ (23) 

Where Δ‾ = 𝑉cell
1/3

. 

Unreleased kinetic energy ksgs  according to the following transport 
formula: 

∂𝜌‾ 𝑘𝑠𝑔𝑠

∂𝑡
+

∂𝜌‾ 𝑢̃𝑗𝑘𝑠𝑔𝑠

∂𝑥𝑗
= 𝜏𝑖𝑗

𝑠𝑔𝑠 ∂𝑢̃𝑖

∂𝑥𝑗
− 𝐷𝑠𝑔𝑠 +

∂

∂𝑥𝑗
(𝜌‾

𝜈𝑠𝑔𝑠

𝑃𝑟𝑠𝑔𝑠

∂𝑘𝑠𝑔𝑠

∂𝑥𝑗
) + 𝑊̇ 𝑠

(24) 

In which W is the term spray disturbance. Modeling the kinetic energy 
dissipation of the sub-grid: 

𝐷𝑠𝑔𝑠 = 𝐶𝜖𝜌‾𝑘𝑠𝑔𝑠3/2/Δ‾ (25) 

According to Sone and Menon, the model coefficients Cv and Cϵ are set to 
0.05 and 0.3. Components containing sgs are modeled by the uprise 
diffusion method 

Φ𝑌𝑘

𝑠𝑔𝑠
= 𝜌‾

𝜈𝑠𝑔𝑠

𝑆𝑐𝑠𝑔𝑠

∂𝑌̃𝑘

∂𝑥𝑗

Φℎ𝑠

𝑠𝑔𝑠
= 𝜌‾

𝜈𝑠𝑔𝑠

𝑃𝑟𝑠𝑔𝑠

∂ℎ̃𝑠

∂𝑥𝑗

(26) 

(27) 

The chemical source term ω ̇̃ k for the k-types in this paper is treated by the 
WSR and PaSR approaches. 

6. BURNING PATTERNS 

Model the conversion of energy into heat using kinetic-chemical theory. A 
complete reaction is constructed as follows (Kiplimo et al., 2012): 

𝐹 + 𝑂𝑥 → 𝑃𝑟  (28) 

According to the Arrhenius formula, the reaction is regulated by the 
reaction rate k 

𝑘 = 𝐴𝑇𝑏 exp (−
𝐸𝐴

𝑅𝑢𝑇
) 

(29) 

Components: A is the pre-exponential constant; Ru is the spectral gas 
constant; E A is the activation energy, and T is the temperature (Kanda et 
al., 2005). 

7. WSR

According to the Arrhenius formula, the chemical term in each type of 
equation is established in the form of a formula as follows (Norhafana et 
al., 2018; Torregrosa et al., 2013): 

𝜔‾ 𝐹 = 𝐴𝑇̃𝑏[𝑋̃𝐹]
𝑛

[𝑋̃𝑂𝑥]
𝑚

exp (−
𝐸𝐴

𝑅𝑢𝑇̃
)  (30) 

The above formula, input from the solved part of the steam calculation 
formula, the no-subgrid burning model is included. This is the approach, 
the well-stirred reactor (WSR). In addition, in different conditions, PPCI 
engines use partially stirred reactors (PaSR) (Kokjohn et al., 2010). 

8. PASR

Chomiak and Karlsson propose a partially mixed reactor approach to 
representing the combustion zone in the CFD element. That means there 
is only a certain amount of mixture inside the reacting element. The 
reaction proportional to the ratio between the mixing time scale and the 
chemical mixture 𝜏𝑐 and 𝜏mix is 

𝜔̃̇𝑘(𝑇, 𝑌𝑘) = 𝜅𝜔̇𝑘(𝑌̃𝑘 , 𝑇̃) (31) 

𝜅 =
𝜏𝑐

𝜏𝑐+𝜏mix (32) 

𝜏mix = 𝐶mix
√𝑘

𝜖
(

𝜈

𝜖
)

1/2

(33) 

Sabelnikov and Fureby, based on the PaSR model, develop different 
combustion models. The modified PaSR model proposed by Amin et al. in 
which a transformation function is applied based on the stratification of 
the mixture to evaluate whether the reaction level is bounded or not 
(Hanson et al., 2010). 
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9. METHODOLOGY 

This section will introduce the simulation implementation process, such 
as initial boundary conditions, and mesh construction. 

10. GRID TECHNIQUE

For linear static problems, we can usually solve them with global grid 
conditions and obtain acceptable results in terms of both computation 
time and accuracy. For dealing with dynamic or nonlinear problems, the 
solutions to these problems are very sensitive to mesh quality (Mao et al., 
2019). With poor-quality meshes, simulations can give inaccurate results. 
In addition, since dynamic problems and nonlinear problems require a lot 
of computing resources, poor mesh quality can make the simulation more 
difficult and result in poor results, with a long computation time. For the 
nonlinear problem, the simulation time can be improved by improving the 
mesh quality leading to easy convergence. Conversely, it can be difficult to 
converge because of unacceptable mesh quality. In the short term, mesh 
quality is a good or bad problem for the solution and a matter of success 
or failure. Failure for the problem (accuracy and runtime). What 
complicates the meshing inside the engine is how different motion mesh 
techniques are used to reproduce piston movement while also meeting the 
mesh requirements for fuel injection. One known method is the "addition 
and subtraction" method established by the Polimi group. This technique 
involves adding or subtracting a layer of elements based on the selected 
elements' longitudinal elongation as the piston moves. Then, the CFD 
elements in the fuel injection zone are not changed, which helps to 
improve simulation accuracy and stability. The direction of CFD elements 
relative to the spray angle is also high. In reference, the spray pattern gives 
higher results if the CFD plots are adjusted for the injection direction 
(Ibron et al., 2019). The alternative method is uniform or adjusted 
deformation of elements, i.e. "transform". The limitation of the transform 
method is the profound requirement of remapping between grid nodes 
when the CFD cells are heavily distorted, which reduces the accuracy of 
the simulation. The alternative method, known as sink boundary, uses 
piston topology to cut Cartesian cells outside the computational area. This 
technique gained popularity due to its better durability and less expensive 
to prepare the mesh than the other two methods. Another technique 
related to motor mesh is the automatic mesh reconstruction (AMR) 
method) (Parthasarathy et al., 2020). The method shows that the number 
of elements in the area will be optimally calculated, by reselecting the 
essential part of the method, depending on specific conditions, for 
example, temperature uprise or specific reaction level. Therefore, a 
combined method using uniform transformation of cells with alignment in 
the direction of spray is optimal.  

11. BOUNDARY CONDITIONS 

The system of Euler equations together with the continuity equation form 
a complete system of dynamic equations for the ideal fluid, allowing us to 

define the field of the hydrodynamic variables to be sought – pressure p, 
and velocity vector components u, v, w. It is an elliptical system of partial 
differential equations, and to find a solution, initial and boundary 
conditions must be given (Van Alstine et al., 2012). Initial conditions – 
conditions for the pressure and velocity fields at the initial time (t=0). The 
functions … have any degree because they satisfy the compatibility 
condition in each specific problem. Note that initial conditions are only 
necessary if the flow is non-stationary, but they are not necessary for 
stationary (stationary) flow. The boundary condition is a condition that 
must be satisfied for the solution of the problem at each time, and it 
depends on each specific problem. The engine simulations performed 
involve the simulation of the "closed cycle", which is the time from closing 
the inlet valve (IVC) to the opening of the outlet valve (OVO).  Therefore, 
the difficulty is determining the stream conditions created by the inlet 
valves (IVC). One practice seen in closed-loop simulation is to use the 
rotation of a rigid body to represent vortex and turbulent motion 
(Prikhodko et al., 2012). The influence of initial steam conditions on 
mixing in PCCI engines has been studied by Ibron et al., It has been shown 
that perturbation caused by injection is much more advantageous than 
perturbation produced by the flow of the intake valve. But for PPCI 
engines, this may fail due to uneven mixing, particularly for advanced 
injection timing. The inlet conditions change such as intake air 
temperature and air pressure, cylinder wall temperature, mix ingredients 
(in the case of EGR), and the number of cylinders. On the other hand, it is 
necessary to define boundary conditions for fuel injection, such as fuel 
volume, spray speed, spray pressure, and injection start time. Figure 5 
presents the local equivalent scale and temperature fields for SOI -
17.5. Although the injection time is quite late, at the beginning of 
combustion, the mixture composition is in the range of 0.3 < ϕ < 0.7, which 
means that all mixtures are poor. Therefore, the combustion mode is a pre-
mix mode, the same as a PCCI engine. The sprayed fuel acts on the top of 
the piston to create an upward vortex that pushes the gaseous mixture 
toward the cylinder cover. The center of fire starts with the thinnest 
mixtures and spreads along with the richer mixtures. 

The feed temperature requested for CA-50 increased to 28oK when the 
spray time slowed to SOI-3. The result is the equivalent ratio and 
temperature distribution shown in Figure 6. In this situation, the order of 
combustion is the same as in a regular CDC cycle. Most of the mixture will 
be mixed before starting to burn due to the miscibility and prolonged 
burning time caused by the cooling process (Dumitrescu et al., 
2012). Furthermore, the partially premixed mixtures had sufficient mixing 
time to blend better near or below the layering measurement (white 
line). Therefore, the mixed composition formed in SOI-3 will rapidly 
increase the pressure rise rate (Ewphun et al., 2020). The injection 
pressure is less than 800 bar, which is a normal Diesel cycle, and in the 
case of a high spray pressure of 1600 bar, it is a typical PPCI cycle - partial 
pre-mixed compression combustion. Due to the higher injection pressure, 
the injection time is reduced to preserve the injected fuel quantity 
(Bhiogade et al., 2017). 

Figure 5: Image of temperature distribution and equivalent scale for the case: SOI -17.5 ATDC, P in = 2.15 bar, T in = 452oK  (Karthickeyan et al., 2020) 
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Figure 6: Image of temperature distribution and equivalent scale for the case: SOI -3.0 aDTC, P in = 2.15 bar, T in = 480oK (Singh et al., 2017) 

Figure 7: Distribution image Pressure and distribution of fuel and temperature for 800 bar injection case (left) and 1600 bar injection case (right) 
(Sankaralingam et al., 2018).

Figure 7 shows the pressure and temperature distributions and 
equivalent ratios for these two cases during combustion. At the start of 
combustion, it is 1.25 CAD with a pressure of 800 bar and 6 CAD with a 
pressure of 1600 bar, the injector equilibrium region, is much larger in the 
case of higher injection pressure. Mixed products containing a large 
amount of premix at the percentile mixture will lead to rapid burning at 
high temperatures and thus increase the rate of NOx formation 
(Satishkumar et al., 2021). The delayed combustion is in the case of high 
injection pressure. High cetane diesel oil injection will not cause prolonged 
late fire due to the higher diesel spray pressure. 

12. CONCLUSION 

The probable existence of all fundamental combustion modes, such as 
ignition forward propagation, and pre-mixed and non-premixed 
propagation, has made the CFD modeling of PPCI engines difficult. We 
solely discriminate between pre-mix and non-premix combustion modes 
in this research. Under the low stratification condition with 0.2 < ϕ < 0.5, 
the RANS-WSR method provides a decent prediction. The PaSR approach, 
which is established from accumulated knowledge, must calibrate an 
operating model constant for a limited range of conditions; it is a heuristic 

method. Across all SOIs, this technique does not give superior 
predictability. In the PPC engine's real performance, depending on load 
and required EGR conditions, we can divide it into two cases: low load 
cases and higher load cases. Despite being very behind in SOI time, all the 
lean fuel mixtures can burn to "stratified HCCI" in low-load cases. Locally 
rich mixes will begin to appear in higher load cases, resulting in a 
combination of premixed and no premixed. Based on the simulations 
performed, issues that need to be further considered are as follows: 

• More research and testing are required to achieve more efficient 
and advanced CFD models, for example, based on tabulation. 

• Diesel injection research using dual injection strategies should be 
carried on to study air intake rates and soot oxidation under various 
circumstances. 
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