

ISOLATION OF FLAVONOIDs FROM LEAVES OF *CARALLIA BRACHIATA*

Dến tòa soạn 01-06-2024

Trinh Thi Thanh Van, Nguyen Hoang Nam, Tran Van Hieu, Vu Van Nam,
Le Nguyen Thanh, Tran Hong Quang, Pham Van Cuong, Nguyen Quoc Vuong*
Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, Ha Noi,
Viet Nam

* Email: nguyenvuong@imbc.vast.vn

TÓM TẮT

PHÂN LẬP MỘT SỐ HỢP CHẤT FLAVONOID TỪ LÁ LOÀI XĂNG MÃ (*CARALLIA BRACHIATA MERR.*)

Từ dịch chiết ethyl acetate của lá loài Xăng mã (*Carallia brachiata Merr.*), một số hợp chất flavonoid gồm (+) - catechin (1), (-) - catechin (2), catechin 3-O- α -L-rhamnopyranoside (3), chrysoeriol (4) và engeletin (5) đã được phân lập. Cấu trúc của chúng đã được xác định dựa trên sự phân tích phổ cộng hưởng từ hạt nhân (NMR) và phổ khối (ESI-MS) và so sánh với tài liệu. Đây là lần đầu tiên những flavonoid (2-5) trên được phân lập từ chi *Carallia* cũng như từ loài Xăng mã.

Keywords: Flavonoid, catechin, chrysoeriol, engeletin, Xăng mã (*Carallia brachiata Merr.*).

1. INTRODUCTION

Carallia brachiata Merr. is a flower plant (Vietnamese name is “Xang ma, Truc tiet”) belonging to the family Rhizophoraceae. This plant has been used as a folk medicinal plant in Vietnam for treatment of tongue sores, mouth ulcers, malaria and sore throats [1,2]. In the world, chemical investigations of this plant have shown megastigmanes, aromatic compounds, condensed tannins, flavonoids, and glyceroglycolipids from it [3]. Bioactives of this plant were also reported as anti-inflammatory [4] and antimicrobial activity [5]. In Vietnam, chemical studies on this plant have been still limited. Therefore, in our project, we recently reported, from leaves of *C. brachiata*, two new catechin derivatives (carabraciatains A and B) and seven known proanthocyanidins were isolated and their anti-inflammatory activity was evaluated by inhibition of NO production in RAW264.7 cells [6]. As it was known, the proanthocyanidins were oligomeric flavonoids, many of which were oligomers of flavan-3-ol

compounds such as catechin and epicatechin. Despite low oral bioavailability, most polyphenols proved significant biological effects [7]. They were evaluated as affected biochemical and antioxidant agents used to treat various diseases such as cardiovascular, neurodegenerative and cancer [8, 9]. In this paper, we reported the isolation and structure resolution of five flavonoids including three flavan-3-ol compounds, (+)-catechin (1), (-)- catechin (2), and catechin 3-O- α -L-rhamnopyranoside (3), one flavone, chrysoeriol (4) and one flavononol, engeletin (5) from leaves of *C. brachiata* Merr.

2. RESEARCH MATERIALS AND METHODS

2.1. General experimental procedures

1 H-NMR, 13 C-NMR, and 2D-NMR spectra were recorded on a Bruker AM500 FT-NMR spectrometer using TMS as an internal standard. The electrospray ionization mass spectra (ESI-MS) were measured on an Agilent 1100 Series

LC/MSD Trap SL. Column chromatography (CC) was performed using silica gel 60 (230 - 400 mesh, Merck) or RP-18 resin (30 - 50 μ m, Fuji Silysia Chemical Ltd., Aichi, Japan). Semi-preparative high-performance liquid chromatography (HPLC) were performed on an Agilent 1260 system including binary pump, autosampler, DAD detector, and semi-preparative HPLC column YMC J'sphere ODS-H80 (4 μ m, 20 \times 250 mm) with isocratic mobile phase at the flow rate of 2.5 mL/min used in Semi-prep-HPLC. The compound was monitored at wavelengths of 205, 230, 254, and 280 nm. Optical rotations were recorded on a JASCO P-2000 Polarimeter. Thin layer chromatography used precoated silica gel plates (Merck 60 F254).

2.2. Plant materials

Leaves and branches of *Carallia brachiata* Merr. were collected in Trieu Son, Thanh Hoa in March 2021 and identified by Dr Do Van Hai at Institute of Ecology and Biological Resources, VAST. The specimen (VAST.04.02/22-23) was kept at Institute of Marine Biochemistry, VAST.

2.3. Extraction and isolation

The *C. brachiata* (2.5 kg of the dried leaves) was pulverized then extracted with 85% MeOH (10 L \times 4) by sonification at 50 °C for each time 2 h. The extracts were combined, and MeOH were removed in reduced pressure to give a crude MeOH extract (1.2 L). The MeOH extract was suspended with water (1.2 L) and successively partitioned with *n*-hexane and ethyl acetate (EtOAc) gave *n*-hexane (CH, 21.5 g) and ethyl acetate (CE, 72.0 g) residues and a water layer (CW, 1.5 L).

The AFE residue was chromatographed on a silica gel CC eluting with EtOAc to give five fractions (fr. CE1–CE5).

Fraction CE1 was chromatographed on a silica gel column eluting with *n*-hexane/EtOAc (1/1, v/v) to give five sub-fractions (CE1.1–CE1.5). The sub-fraction CE1.2 was chromatographed on a silica gel CC eluting with CH_2Cl_2 /acetone (10/1, /v) to afford four fractions (CE1.2.1–CE1.2.4). Fraction CE1.2.1 was further chromatographed on sephadex LH-20 CC eluting with MeOH to give

four fractions (CE1.2.1.1- CE1.2.1.4). Fraction CE1.2.1.2 was purified by HPLC with MeOH/H₂O (1/2, v/v) to give compound **1** (15 mg). Fraction CE1.2.3 was further purified by sephadex LH-20 CC eluting with MeOH to give five sub-fractions (CE1.2.3.1- CE1.2.3.5). Fraction CE1.2.3.2 was purified by HPLC with MeOH/H₂O (1/2, v/v) to give compound **2** (7.5 mg). Fraction CE1.2.3.4 was chromatographed by RP-18 CC eluting with MeOH/H₂O (1/2) to yield compound to give compound **3** (2.7 mg).

The fraction CE4 was chromatographed by RP-18 CC eluting with MeOH/H₂O (1/4) to give five fractions (CE4.1-CE4.5). Fraction CE4.2 (27 g) was further purified by sephadex LH-20 CC eluting with MeOH to give compounds **4** (9.3 mg) and **5** (5.6 mg).

(+)-Catechin (**1**): yellow solid, $[\alpha]_D^{25} + 17$ (c 0.1, MeOH). Negative ESI-MS: m/z 290 [M]⁻. ¹H-NMR (CD₃OD, 500 MHz) and ¹³C-NMR (CD₃OD, 125 MHz) see Table 1.

(-)-Catechin (**2**): yellow solid, $[\alpha]_D^{25} - 49$ (c 0.1, MeOH). Negative ESI-MS: m/z 290 [M]⁻. ¹H-NMR (CD₃OD, 500 MHz) and ¹³C-NMR (CD₃OD, 125 MHz) see Table 1.

Catechin 3-*O*- α -L-rhamnopyranoside (**3**) yellow solid, $[\alpha]_D^{25} - 21$ (c 0.1, MeOH). Negative ESI-MS: m/z 435 [M]⁻. ¹H-NMR (CD₃OD, 500 MHz) and ¹³C-NMR (CD₃OD, 125 MHz) see Table 1.

Chrysoeriol (**4**): yellow solid, $[\alpha]_D^{25} - 23$ (MeOH; c 0.1). ESI-MS: m/z 301 [M+H]⁺. ¹H-NMR (CD₃OD, 500 MHz) and ¹³C-NMR (CD₃OD, 125 MHz) see Table 2.

Engeletin (**5**): yellow solid. ESI-MS: m/z 435 [M]⁻. ¹H-NMR (CD₃OD, 500 MHz) and ¹³C-NMR (CD₃OD, 125 MHz) see Table 2.

3. RESULTS AND DISCUSSION

The structure of isolated compounds was described in Figure 1.

Compound **1** was isolated as yellow solid. The ¹H-NMR spectrum of **1** (Table 1) showed signals of two doublets of two meta coupling aromatic protons of the ring A at δ_H 5.93 (d, *J* = 2.2 Hz, H-

6) and δ_H 5.84 (d, J = 2.2 Hz, H-8; three ABX system aromatic protons of ring B at δ_H 6.82 (d, J = 1.6 Hz, H-2'), 6.75 (d, J = 8.0 Hz, H-5'), and 6.74 (dd, J = 1.6, 8.0 Hz, H-6'); and signals of C ring were observed with two oxymethine groups at δ_H 4.55 (d, J = 7.5 Hz, H-2) and 3.96 (m, H-3), and a methylene group at δ_H 2.84 (dd, J = 5.6, 16.0 Hz, H-4eq) and 2.49 (dd, J = 8.0, 16.0 Hz, H-4ax). The ^{13}C -NMR (Table 1) and DEPT spectra showed signals of fifteen carbons including seven non-protonated carbons at δ_C 157.6 (C-5), 157.8 (C-7), 156.9 (C-9), 146.2 (C-3', C-4'), 100.8 (C-10) and 132.2 (C-1'); five methines at δ_C 96.2 (C-6), 95.4 (C-8), 115.2 (C-2'), 116.0 (C-5') and 120.0 (C-6'); two oxygenated aliphatic methines at δ_C 82.9 (C-2) and 68.8 (C-3); and one aliphatic methylene at δ_C

28.6 (C-4). The HMBC correlations (Figure 2) between H-2 and C-4/C-3/C-1'/C-9/C-2'/C-6'; H-3 and C-1'/C-10; H-4ax and C-3/C-2/C-10/C-9/C-5, H-4eq and C-3/C-2/C-10 indicated that these protons were located at C-2, C-3, and C-4, respectively. Furthermore, the correlations between H-6 and C-5/C-8, H-8 and C-6/C-9/C-10, presented that two protons are located at C-6 and C-8, respectively. Above 1D and 2D NMR spectroscopic analysis of **1** and comparison with literature [10] identified compound **1** to be a catechin. The large coupling constant ($J = 7.5$ Hz) of H-2 with H-3 and the resonance position of C-2 at δ_c 82.8 ppm showed the 2,3-*trans* configuration of **1**. The optical rotation of **1** was determined to be $[\alpha]_D^{25} +17$ (*c* 0.1, MeOH), establishing **1** to be (+)-catechin.

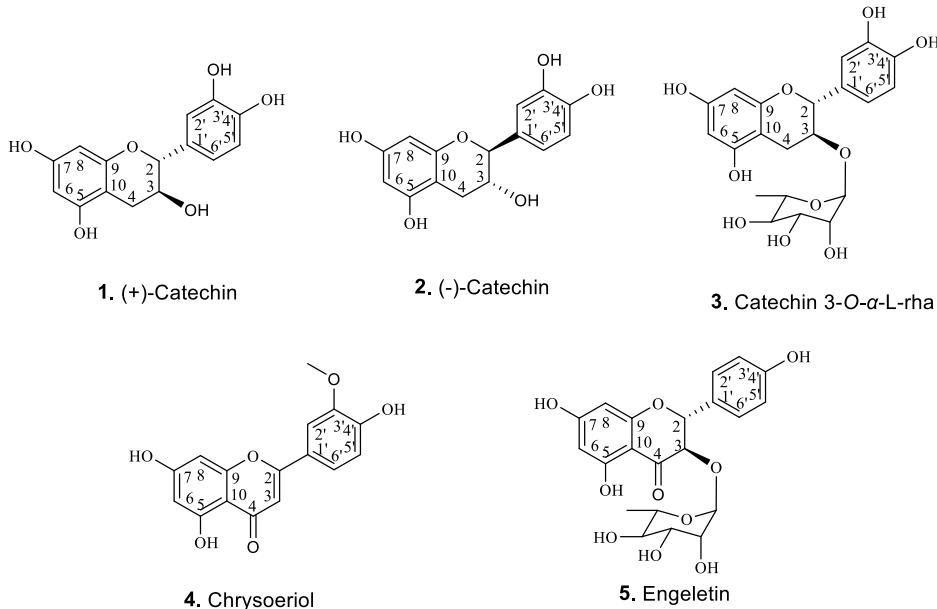


Figure 1. Chemical structures of compounds 1–5

Compound **2** was isolated as yellow solid. Similar compound **1**, the ^{13}C -NMR spectra of **2** (Table 1) gave signals of a flavanol with 15 carbons of 3 rings A, B and C including seven non-protonated carbons, five methines, two oxygenated aliphatic methines and one aliphatic methylene. The ^1H - NMR spectra of **2** (Table 1) also showed two meta coupling aromatic protons of A ring, three ABX system aromatic protons of B ring. Two protons of two oxymethine groups at δ_{H} 4.59 (d, J = 7.5 Hz, H-2) and 4.00 (ddd, 5.5, 7.5, 8.0 Hz, H-

3), and two protons of a methylene group at δ_{H} 2.87 (dd, J = 5.4, 16.2 Hz, H-4eq) and 2.53 (dd, J = 8.4, 16.2 Hz, H-4ax), of C ring. The 1D, 2D NMR spectra analysis of **2** and comparison with literature [10] (Table 1 and Figure 2) also established compound **2** to be a catechin. The large coupling constant (J = 7.5 Hz) of H-2 with H-3 and the resonance position of C-2 at δ_{C} 82.9 confirmed 2,3-*trans* configuration. The optical rotation of **2** was determined to be $[\alpha]_D^{25} - 47$ (c 0.1, MeOH), confirmed **2** to be (−)-catechin.

Compound **3** was isolated as yellow solid. The ESI-MS spectrum gave a negative quasi-molecular ion peak at m/z 435 [M-H]⁻ (C₂₁H₂₃O₁₀) and ¹³C-NMR spectrum of **3** indicated a molecular formula of C₂₁H₂₄O₁₀ (M = 436). The 1D (Table 1) and 2D NMR spectroscopic analysis of **3** revealed compound **3** to a flavanol glycoside. Moiety aglycone flavanol was a catechin similar compound **1** and **2** with signals of three rings system A, B and C. The proton signals of C ring were shown including two oxymethine groups at δ_H 4.64 (d, J = 7.8 Hz, H-2) and 3.96 (ddd, 5.4, 7.8, 8.4 Hz, H-3), and two protons of a methylene group at δ_H 2.90 (dd, J = 5.4, 16.2 Hz, H-4eq) and 2.66 (dd, J = 8.4, 16.2 Hz, H-4ax). The large coupling constant (J = 7.8 Hz) of H-2 with H-3 together the resonance position of C-2 at δ_C 81.1 confirmed 2, 3-*trans* configuration. The glycol moiety were identified to be a rhamnose

sugar by recognisable signals shown including one anomeric carbon at δ_C 102.1 (C-1") with anomeric proton at δ_H 4.32 (d, J = 1.2 Hz, H-1"); four oxygenated methines at δ_C 72.0 (C-2")/ δ_H 3.54 (dd, J = 1.2, 3.0 Hz, H-2"), δ_C 72.3 (C-3")/ δ_H 3.60 (dd, J = 3.0, 9.0 Hz, H-3"), δ_C 74.0 (C-4")/ δ_H 3.33 (m, H-4") and δ_C 70.3 (C-5")/ δ_H 3.70 (m, H-5"); and one methyl at δ_C 17.9 (C-6")/1.27 (d, J = 6.0 Hz, H-6"). The HMBC correlation (Figure 2) between H-1" and C-3 showed sugar moiety linked to aglycone at C-3. The small coupling constant between H-1" and H-2" (J = 1.2 Hz) confirmed α -orientation of rhamnose sugar moiety. Above 1D, 2D NMR spectra analysis compound **3**, and comparison with literature [11] established compound **3** to be catechin 3-*O*- α -L-rhamnopyranoside.

Table 1. The ¹H, ¹³C-NMR spectroscopic data of compounds **1-3**

No.	1			2			3		
	δ_C ppm ^{a, b} [10]	δ_C ppm ^{c, d}	δ_H ppm ^{c, e} (mult., J = Hz)	δ_C ppm ^{a, b} [10]	δ_C ppm ^{c, d}	δ_H ppm ^{c, e} (mult., J = Hz)	δ_C ppm ^{a, f} [11]	δ_C ppm ^{a, g}	δ_H ppm ^{a, h} (mult., J = Hz)
2	82.8	82.9	4.55 (d, 7.5)	82.8	82.9	4.59 (d, 7.5)	80.2	81.1	4.64 (d, 7.8)
3	68.4	68.8	3.96 (m)	68.3	68.8	4.00 (ddd, 5.5, 7.5, 8.0)	74.5	75.9	3.96 (ddd, 5.4, 7.8, 8.4)
4	28.8	28.6	2.49 (dd, 8.0, 16.0) 2.84 (dd, 5.6, 16.0)	28.8	28.5	2.53 (dd 8.4, 16.2) 2.87 dd (5.4, 16.2)	27.6	27.9	2.66 (dd, 8.4, 16.2) 2.90 (dd, 5.4, 16.2)
5	157.1	157.6	-	157.2	157.5	-	157.0	157.5	-
6	96.2	96.2	5.93 (d, 2.2)	96.1	96.3	5.88 d (2.4)	95.4	96.4	5.96 (d, 2.4)
7	157.6	157.8	-	157.7	157.8	-	157.6	157.9	-
8	95.5	95.4	5.84 (d, 2.2)	95.3	95.5	5.95 d (2.4)	96.4	95.5	5.88 (d, 2.4)
9	156.7	156.9	-	156.9	156.9	-	156.5	156.9	-
10	100.7	100.8	-	100.6	100.8	-	100.2	100.7	-
1'	132.3	132.2	-	131.8	132.2	-	131.6	132.0	-
2'	115.3	115.2	6.82 (d, 1.6)	115.2	115.3	6.86 d (1.8)	114.9	115.1	6.86 (d, 1.8)
3'	145.6	146.2	-	146.1	146.2	-	145.6	146.4	-
4'	145.7	146.2	-	146.0	146.3	-	145.7	146.2	-
5'	115.7	116.0	6.75 (d, 8.0)	115.7	116.1	6.78 d (8.4)	115.8	116.1	6.79 (d, 7.8)
6'	120.1	120.0	6.70 (dd, 1.6, 8.0)	118.8	119.8	6.74 dd (1.8, 8.4, 1.8)	119.6	119.8	6.74 (dd, 1.8, 7.8)

1"	-	-	-	-	-	-	-	101.2	102.1	4.32 (d, 1.2)
2"	-	-	-	-	-	-	-	71.5	72.0	3.54 (dd, 1.2, 3.0)
3"	-	-	-	-	-	-	-	72.2	72.3	3.60 (dd, 3.0, 9.0)
4"	-	-	-	-	-	-	-	73.6	74.0	3.33 (m)
5"	-	-	-	-	-	-	-	69.6	70.3	3.70 (m)
6"	-	-	-	-	-	-	-	18.0	17.9	1.27 (d, 6.0)

Recorded in ^aacetone-*d*6 at ^b125 MHz, ^cCD₃OD, ^d100 MHz, ^e500 MHz, ^f25.05 MHz, ^g150 MHz, ^h600 MHz

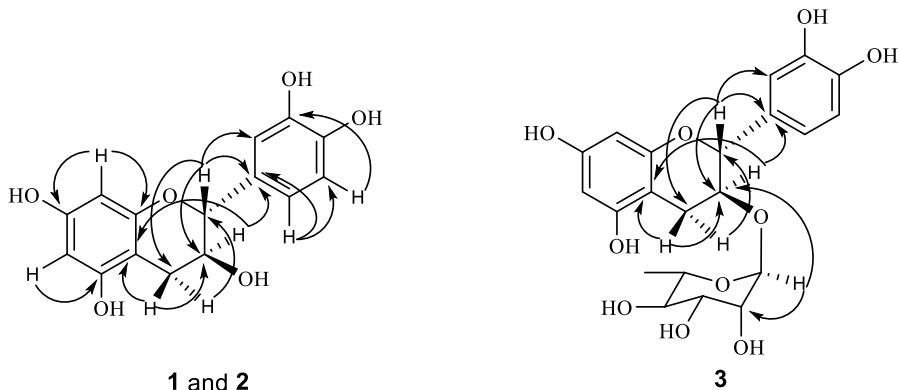


Figure 2. Key HMBC correlations of catechin (**1** and **2**) and **3**

Compound **4** was isolated as a yellow solid. ¹H-NMR spectrum of compound **4** (Table 2) exhibited signals of a flavone including two meta coupling aromatic protons of A ring at δ_{H} 6.55 (d, *J* = 1.9 Hz, H-8) and δ_{H} 6.26 (d, *J* = 1.9 Hz, H-6); three ABX coupling aromatic protons of B ring at δ_{H} 7.61 (d, *J* = 2.0 Hz, H-2'), 7.57 (dd, *J* = 2.0, 8.2 Hz, H-6') and 7.00 (d, *J* = 8.2 Hz, H-5'); and one methine aromatic proton of C ring at δ_{H} 6.69 (s, H-3). The ¹³C-NMR (Table 2) and DEPT spectra indicated signals of fifteen carbons including one carbonyl at δ_{C} 183.2 (C-4); eight non-protonated carbons at 163.4 (C-5), 165.1 (C-7), 158.8 (C-9), 148.9 (C-3'), 151.4 (C-4'), 165.0 (C-2), 105.2 (C-10) and 123.5 (C-1'); and six methines at δ_{H} 99.7 (C-6), 94.8 (C-8), 110.5 (C-2'), 116.5 (C-5'), 121.4 (C-6') and 104.5 (C-3'). Furthermore, the HMBC correlations between H-3 and C-1'/C-2/C-4/C-10 and between H-8 and C-6/C-7/C-9/C-10 determined two protons at C-3 and C-8, respectively; between H-6' and C-2'/C-4'/C-2 and between protons of OCH₃ and C-3' (δ_{C} 148.9) identified the methoxy group located on position C-3' of B ring. On the ESI-MS of **4**, a positive quasi-molecular ion peak at m/z

301[M+H]⁺ (C₁₆H₁₃O₆⁺) was observed, together 13C-NMR spectrum of **4** determined a molecular formula of **4** to be C₁₆H₁₂O₆ (M = 300). The analysis of ESI-MS and NMR spectra of **3** and comparison with those reported in literature [12] identified compound **4** to be chrysoeriol (3'-methoxy-4',5,7-trihydroxyflavone).

Compound **5** was isolated as a yellow solid. The 1D and 2D NMR spectroscopic analysis (Table 2) of **5** shown compound **5** to a flavanone glycoside. Similar compounds **1-3**, moiety aglycone flavanone of is three rings system A, B and C with a methylene at C-4 oxidated to a ketone group (4-C=O). The ¹H-NMR spectrum of compound **5** showed signals of a flavanone with two meta coupling aromatic protons of A ring at δ_{H} 5.94 (d, *J* = 2.4 Hz, H-8) and δ_{H} 5.91 (d, *J* = 2.4 Hz, H-6); four protons of the 1,4-substituted aromatic B ring at δ_{H} 7.37 (d, *J* = 9.0 Hz, H-2', H-6'), 6.86 (d, *J* = 9.0 Hz, H-3', H-5'); and two protons of oxymethine groups of C ring at δ_{H} 5.15 (d, *J* = 10.8 Hz, H-2) and δ_{H} 4.63 (d, *J* = 10.8 Hz, H-3). The large coupling constant of H-2 with H-3 determined 2,3-*trans* configuration. The ¹³C-NMR and DEPT spectra exhibited signals of a

flavanonol with fifteen carbons including one carbonyl at δ_{C} 195.9 (C-4); six non-protonated aromatic carbons at 165.3 (C-5), 168.8 (C-7), 164.1 (C-9), 102.5 (C-10), 128.6 (C-1'), 159.4 (C-4'); six aromatic methine carbons at 96.4 (C-6), 97.2 (C-8), 130.0 (C-2' C-3'), 116.4 (C-5', C-6'); two oxymethine groups at δ_{C} 83.8 (C-2), 78.7 (C-3). The glycol moiety was identified similarly as compound **5** to be a rhamnose sugar by recognisable signals shown including one anomeric carbon at δ_{C} 102.2 (C-1'') and an

anomeric proton at δ_{H} 4.04 (d, J = 1.2 Hz, H-1''); four oxygenated methines, and one methyl. The HMBC correlation between H-1'' and C-3 revealed sugar moiety linked to aglycone at C-3. The small coupling constant between H-1'' and H-2'' (J = 1.2) determined α -orientation of rhamnoside sugar moiety. Above 1D, 2D NMR spectra analysis compound **5** and in comparison with literature [13], determined compound **5** to be engeletin.

Table 2. The ^1H , ^{13}C -NMR spectroscopic data of compounds **4** and **5**

No.	4			5		
	δ_{C} ppm ^{a, b} [12]	δ_{C} ppm ^{c, d}	δ_{H} ppm ^{c, e} (mult., J = Hz)	δ_{C} ppm ^{c,f} [13]	δ_{C} ppm ^{c,b}	δ_{H} ppm ^{c, h} (mult., J = Hz)
2	164.9	165.0	-	83.8	83.8	5.15 (d, 10.8)
3	104.5	104.5	6.69 (s)	78.7	78.7	4.63 (d, 10.8)
4	182.9	183.2	-	196.1	195.9	-
5	163.3	163.4	-	165.5	165.3	-
6	99.7	99.7	6.26 (d, 1.9)	97.4	96.4	5.94 (d, 2.4)
7	165.0	165.1	-	168.5	168.8	-
8	94.7	94.8	6.55 (d, 1.9)	96.3	97.2	5.91 (d, 2.4)
9	158.7	158.8	-	164.1	164.1	-
10	105.2	105.2	-	102.2	102.5	-
1'	123.6	123.5	-	128.6	128.6	-
2'	110.7	110.5	7.61 (d, 2.0)	130.1	130.0	7.37 (d, 9.0)
3'	148.8	148.9	-	116.4	116.4	6.86 (d, 9.0)
4'	151.3	151.4	-	159.4	159.4	-
5'	116.4	116.5	7.0 (d, J = 8.2 Hz)	116.4	116.4	6.86 (d, 9.0)
6'	121.4	121.4	7.57 (dd, J = 2.0; 8.2 Hz)	159.4	159.4	7.37 (d, 9.0)
1''	-	-	-	102.5	102.2	4.04 (d, 1.2)
2''	-	-	-	71.7	71.8	3.52 (dd, 3.0, 1.2)
3''	-	-	-	72.1	72.2	3.68 (dd, 3.0, 9.0)
4''	-	-	-	73.8	73.8	3.33 (m)
5''	-	-	-	70.5	70.5	4.27 (m)
6''	-	-	-	17.9	17.8	1.21 (d, 6.0)
3' -OCH ₃	56.6	56.6	3.97 (s)	-	-	-
5-OH	-	-	12.97 (s)	-	-	-

Recorded in ^a acetone-*d*₆, at ^b 150 MHz, ^c CD₃OD, ^d 125 MHz; ^e 500 MHz, ^f 100 MHz, ^h 600 MHz.

CONCLUSION

From leaves of *Carallia brachiata*, five known flavonoids including three flavon-3-ol compounds, (+)-catechin (**1**), (-)-catechin (**2**), and catechin 3-

O- α -L-rhamnopyranoside (**3**), one flavone, chrysoeriol (**4**), and one flavanonol, engeletin (**5**), were isolated and chemical structural identified. It was the first time these compounds (**2-5**) had been

isolated from *Carallia* genus as well as *C. brachiata*.

ACKNOWLEDGEMENTS

The authors would like to thank Vietnam Academy of Science and Technology for financial support with Code: VAST 04.02/22-23.

REFERENCES

[1] Phạm Hoàng Hộ, (2003). Cây cỏ Việt Nam, Nhà xuất bản trẻ, xuất bản lần thứ nhất, **II**, 114-115 (4392-4395 *Carallia*).

[2] Võ Văn Chi, (2012). Từ điển cây thuốc Việt Nam (Bộ mới), Nhà xuất bản Y học, **2**, 663.

[3] Ling S. K., Takashim T., Tanaka T., Fujioka T., Mihashi K., Kouno I., (2004). A new diglycosyl megastigmane from *Carallia brachiata*. *Fitoterapia*, **75**, 785-788.

[4] Nalinratana N., Suriya U., Laprasert C., Wisidsri N., Poldorn P., Rungrotmongkol T., Limpanasitthikul W., Wu H. C., Chang H. S. & Chansriyom C., (2023). In vitro and in silico studies of 7'',8''-buddlenol D anti-inflammatory lignans from *Carallia brachiata* as p38 MAP kinase inhibitors. *Sicence report*, **13**, 3558.

[5] Neeharika V., Krishnaveni B., Swetha T., Lakshmi P. K., Reddy B. M., (2010). Antimicrobial activity of *Carallia brachiata*. *CAB Direct*, **1(2)**, 1-5.

[6] Trinh Thi Thanh Van, Nguyen Hoang Nam, Nguyen Thi Hue, Le Nguyen Thanh, Do Thi Trang, Bui Huu Tai, Nguyen Le Tuan, Nguyen Thi Viet Ai, Pham Van Cuong, Nguyen Quoc Vuong, and Phan Van Kiem, (2023). Carabracchianins A and B: Two New Phenylpropanoid-Substituted Catechins of *Carallia brachiata* Merr.. *Natural Product Communications*, **18(12)**, 1-6.

[7] Luo Y., Jian Y. K., Liu Y. K., Jiang S., Muhammad D., and Wang W., (2022). Flavanols from Nature: A Phytochemistry and Biological Activity Review. *Molecules*, **27**, 719.

[8] Chen S., Wang X. J., Cheng Y., Gao H. S., and Chen S. H., (2023). A Review of Classification, Biosynthesis, Biological Activities and Potential Applications of Flavonoids. *Molecules*, **28(13)**, 4982.

[9] Patricia M. Aron and James A. Kennedy (2008). Flavan-3-ols: Nature, occurrence and biological activity. *Mol. Nutr. Food Res.*, **52**, 79 – 104.

[10] El-Razek M. H. A. E., (2007). NMR Assignments of Four Catechin Epimers. *Asian J. Chem.*, **19(6)**, 4867-4872.

[11] Ishimaru K. J., Nonaka G. I. and Nishioka I., (1987). Flavan-3-ol and procyanidin glycosides from *Quercus miyagii*. *Phytochemirtry*, **26(4)**, 1167-1170.

[12] Silva L. A. L., Faqueti L. G., Reginatto F. H., Santos A. D. C., Barison A., Biavatti M. W., (2015). Phytochemical analysis of *Vernonanthura tweedieana* and a validated UPLC-PDA method for the quantification of eriodictyol. *Revista Brasileira de Farmacognosia*, **25**, 375-381.

[13] Huang H. Q., Cheng Z. H., Shi H. M., Xin W. B., Wang T. T. Y., and Yu L. L., (2011). Isolation and Characterization of Two Flavonoids, Engeletin and Astilbin, from the Leaves of *Engelhardia roxburghiana* and Their Potential Anti-inflammatory Properties. *J. Agr. Food Chem.*, **59**, 4562–4569.