

SYNTHESIS OF CNDs-CuBi₂O₄ HETEROGENEOUS CATALYST TO ENHANCE THE DEGRADATION EFFICIENCY OF 2,4-DICHLOROPHENOXYACETIC ACID UNDER VISIBLE LIGHT

Đến tòa soạn 17-07-2024

Nguyen Thi Thanh Huong^{1,5}, Dang Nguyen Nha Khanh^{1,4}, Ngo Thi Tuong Vy^{1,2}, Le Hai Khoa^{1,3}, Nguyen Ngoc Nghia^{2*} Nguyen Thi Kim Phuong^{1,2*}

¹ Graduate University of Science and Technology, VAST, Hanoi, Vietnam

² Institute of Applied Materials Science, VAST, Ho Chi Minh, Vietnam

³ Institute for Tropical Technology, VAST, Hanoi, Vietnam

⁴ Institute of Applied Mechanics and Informatics, VAST, Ho Chi Minh, Vietnam

⁵ Ton Duc Thang University, Ho Chi Minh, Vietnam

*E-mail: nguyenthikimp@yahoo.ca; nghia10194@gmail.com

TÓM TẮT

TỔNG HỢP XÚC TÁC DỊ THỂ CNDs-CuBi₂O₄ NHẰM NÂNG CAO HIỆU QUẢ PHÂN HỦY 2,4-DICHLOROPHENOXYACETIC AXIT DƯỚI ÁNH SÁNG KHẢ KIẾN

Ôxit đồng bismuth chám lượng tử cacbon nitrit (CNDs-CuBi₂O₄) được tổng hợp thành công bằng phương pháp tái lập cấu trúc. Hơn 90% 2,4-dichlorophenoxyacetic axit (nồng độ ban đầu 30 mg/L) bị quang phân hủy khi sử dụng 1,0 g/L CNDs(1%)-CuBi₂O₄ ở pH 4,78 sau 105 phút chiếu ánh sáng khả kiến (với $k = 0,0169 \text{ phút}^{-1}$). Không có dấu hiệu bắt đầu hoạt chất xúc tác sau bốn chu kỳ tái sử dụng, chứng tỏ độ bền và hiệu quả của CNDs(1%)-CuBi₂O₄. Sự cải thiện đáng kể về hiệu suất quang xúc tác của CNDs(1%)-CuBi₂O₄ so với CND và CuBi₂O₄ là do sự hình thành các khuyết tật tại các bề mặt tiếp xúc dị thể; do đó, sự dịch chuyển của các electron quang sinh tại bề mặt tiếp xúc giữa hai thành phần rất nhanh chóng. Sự phân hủy 2,4-D của CNDs(1%)-CuBi₂O₄ khi tiếp xúc với ánh sáng khả kiến được gây ra chủ yếu bởi các gốc superoxide ($O_2^{\bullet-}$) và các lỗ trống quang sinh (h^+).

Từ khóa: CNDs-CuBi₂O₄, 2,4-dichlorophenoxyacetic axit, phân hủy, ánh sáng khả kiến.

1. INTRODUCTION

The overuse 2,4-dichlorophenoxyacetic acid (2,4-D) in agriculture has led to its residues in the environment due to the relatively long half-life of 2,4-D [1]. The 2,4-D has serious effects on the human endocrine and immune systems. Therefore, 2,4-D removal is an urgent

issue that needs to be addressed. Photocatalysis is one of the suitable methods in environmental management because of its high selectivity, low cost, environmental friendliness, and excellent treatment efficiency [2]. As a metal-free semiconductor, graphitic carbon nitride quantum dots (CNDs) are considered

promising photocatalysts due to their stability, photochemical low toxicity, and low cost [2]. However, the wide bandgap of 2.6-2.7 eV is still a limitation, to overcome this, CNDs are combined with some other semiconductors such as TiO_2 [3], BiVO_4 [4], etc. As a spinel oxide, CuBi_2O_4 is considered a promising semiconductor photocatalyst, due to its stability, fairly small bandgap, and good response to visible radiation [5]. The combination of CuBi_2O_4 with another semiconductor with a compatible band gap is a feasible strategy to extend the separation time of the electron (e^-)/hole (h^+) to improve the activity of CuBi_2O_4 [6]. Due to the compatibility of the band gap between CNDs and CuBi_2O_4 as well as the desire to overcome the limitations of pristine CNDs and pristine CuBi_2O_4 , in this study, CNDs- CuBi_2O_4 heterojunction was synthesized by the restructuring method and the photocatalytic activity of the heterojunction was evaluated under visible light. Factors such as solution pH, catalyst dosage, 2,4-D concentration as well as active radicals affecting catalyst activity were also investigated.

2. EXPERIMENT

2.1. Materials

All chemicals were of analytical grade from Sigma Aldrich including urea, sodium citrate, $\text{Bi}(\text{NO}_3)_3 \cdot 5\text{H}_2\text{O}$, $\text{Cu}(\text{NO}_3)_2 \cdot 3\text{H}_2\text{O}$, HNO_3 , NaOH , *tert*-butanol, *p*-benzoquinone, Na_2EDTA , 2,4-D.

2.2. Equipment

Rigaku Ultima IV X-ray diffractometer with $\text{CuK}\alpha$ anode ($\lambda = 0.1542 \text{ nm}$) was

applied to identify the crystal structure of the material. The chemical structures of the materials were confirmed by Fourier transform infrared (FT-IR) spectra on a Magna-IR 560 Nicolet. The band gap energy (E_g) of the materials was found from the ultraviolet-visible diffuse reflectance spectrum (DRS) which was measured on an absorption spectrometer (Jasco V-670). The Scanning Electron Microscope (SEM) of materials was operated on an S-4800 (Hitachi). Transmission Electron Microscope (TEM) of materials were measured using JEOL JEM-2100F.

2.3. Fabrication of photocatalyst

Briefly, 1 mol citrate and 6 mol urea were heated at 180 °C in a Teflon-lined (PTFE) hydrothermal autoclave for 1 hour. The result material was cleaned with ethanol and dialyzed for 24 hours in purified water, then freeze-dried the dialysis solution to gain solid CNDs [7]. A 5% HNO_3 solution containing Cu^{2+} and Bi^{3+} (3:1 molar ratio) was slowly added to a 1 M NaOH solution ($\text{pH} = 10$). The suspended product was sonicated at a power of 100 W for 24 hours at $75 \pm 5^\circ\text{C}$. CuBi_2O_4 was gained by rinsing with deionized water until pH 7, followed by drying at 70 °C for 24 hours and heating at 450 °C for 3 hours. Dispersion of solid CNDs (0, 1 or 2%) and CuBi_2O_4 in distilled water, operating conditions including ultrasonic power, temperature and time were $75 \pm 5^\circ\text{C}$, 100 W and 6 hours, respectively. The resulting products were then dried at 70 °C for 24 h and labeled as CuBi_2O_4 , CNDs(1%)

CuBi_2O_4 , and CNDs(2%)- CuBi_2O_4 .

2.4. Photodegradation experiment

The photocatalyst and 2,4-D solution were magnetically mixed in the dark for 60 min before a 300 W halogen lamp (Osram, Germany) equipped with a UV filter ($\lambda > 420$ nm) was turned on. Samples were collected every 15 min, the catalyst was removed and measured on UV/Vis spectrometer at 220 nm (Lamda XLS+, PerkinElmer, USA). The degradation rate of 2,4-D was achieved using Lagergren's pseudo-first-order model given by: $\ln(C_0/C_t) = kt$. In which, k , C_0 and C_t are the degradation rate constant (min^{-1}), 2,4-D concentration (mg/L) at the time before and during visible light irradiation, respectively. The effect of CNDs in catalyst on degradation of 2,4-D (30 mg/L) were carried out using 1.0 g/L of each catalyst at pH 4.2. The effect of pH on the degradation of 30 mg/L 2,4-D was carried out by varying the pH from 2.0 to 7.0 using 1.0 g/L CNDs(1%)- CuBi_2O_4 . The effect of catalyst dosage was evaluated by varying the amount of CNDs(1%)- CuBi_2O_4 from 0.5 to 1.5 g/L, while maintaining 2,4-D concentration of 30 mg/L and pH 4.78. The effect of 2,4-D concentration was performed by varying initial 2,4-D concentration from 30 to 40 mg/L using 1.0 g/L CNDs(1%)- CuBi_2O_4 at pH 4.78. The recyclability experiment was performed 5 consecutive cycles with 1.0 g/L of CNDs(1%)- CuBi_2O_4 , pH 4.78 and 2,4-D of 30 mg/L. The CNDs(1%)- CuBi_2O_4 was recycled by heating for 90

minutes at 100°C. The role of active radicals in the degradation of 30 mg/L 2,4-D using 1.0 g/L of CNDs(1%)- CuBi_2O_4 at pH 4.78 was investigated by adding 2 mM *tert*-butanol, 2 mM *p*-benzoquinone and 1 mM Na_2EDTA to scavenge hydroxyl radicals (OH^\bullet), superoxide radicals ($\text{O}_2^{\bullet-}$) and the hole in the valence band (h^+_{VB}), respectively, before visible light irradiation.

3. RESULTS AND DISCUSSION

3.1. Physicochemical properties

The weak peak at 13.1°(100) found in The XRD pattern of CNDs represents in-plane repeating tri-s-triazine units (Figure 1a). The strong peak at 27.7°(002) indicates interlayer stacking of conjugated aromatic systems (PDF No. 87-1526) [8, 9]. For CuBi_2O_4 , the main peaks located at 2θ values of 27.76° (211), 30.05° (220), 32.64° (102) and 38.78° (212) indicating tetragonal crystal of copper bismuth oxide (PDF No. 42-0334). A diffraction peak at 35.4 (-111) indicated CuO crystallizes in a monoclinic state (PDF No. 80-0076). The diffraction peaks of CNDs(1%)- CuBi_2O_4 sample was similar to those of CuBi_2O_4 .

Considering the FTIR spectrum of CuBi_2O_4 (Figure 1b), peaks below 1000 cm^{-1} indicated the interactions between metal ions with oxygen [10]. A very typical peak for the triazine ring was found in the FTIR spectrum of CNDs. The peaks at about 1625-1670 cm^{-1} were assigned to O-H bending of water and the stretching vibration of C=O [3]. Peaks

found at about 1078-1451 cm^{-1} were believed to be involved to C-N and C_3N_3 deformation [3]. The FTIR spectrum of CNDs(1%)- CuBi_2O_4 varies significantly compared to those of CNDs and CuBi_2O_4 . The change includes lowering of intensity and disappearance of many characteristic peaks. The new and sharp peak at about 1380 cm^{-1} was believed to be formed from the peaks 1272-1451 cm^{-1} , implying the tight binding of the surface functional groups of CNDs to the metal ions in CuBi_2O_4 .

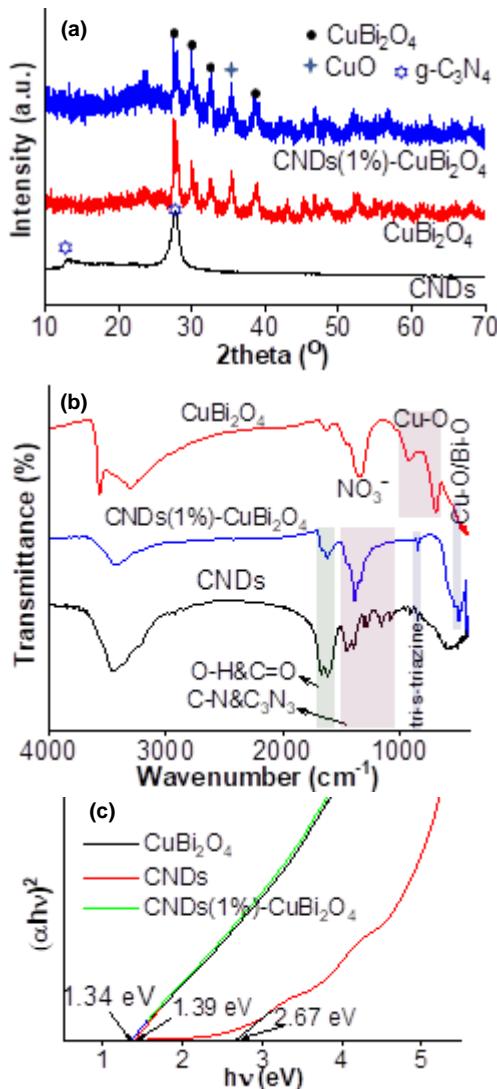


Figure 1. (a) XRD pattern, (b) FT-IR spectrum and (c) band gap energy of materials

The E_g was found to be 1.39 eV for CuBi_2O_4 , 2.67 eV for CNDs and 1.34 eV for CNDs(1%)- CuBi_2O_4 (Figure 1c). The E_g of CNDs(1%)- CuBi_2O_4 was obviously narrower than that of CuBi_2O_4 . The E_g narrowing of CNDs(1%)- CuBi_2O_4 confirmed that an intimate chemical bond was formed between the functional groups (-COOH, -OH, C-OC, -NH₂ and -CO -NH-) of CNDs [11] with Cu²⁺, Bi³⁺ of CuBi_2O_4 . This result confirms that CNDs(1%)- CuBi_2O_4 is more easily excited by visible light, leading to enhanced photocatalytic activity under visible light.

The SEM image in Figure 2 shows that CuBi_2O_4 is a crystalline rod, with diverse sizes and chaotic distribution. By crystal structure recovery method, CuBi_2O_4 was successfully combined with CNDs to create CNDs(1%)- CuBi_2O_4 crystal flakes. The CNDs(1%)- CuBi_2O_4 TEM image shows the homogeneity between CNDs and CuBi_2O_4 . The observed lattice fringes are 0.323 nm for CuBi_2O_4 and 0.321 nm for CNDs.

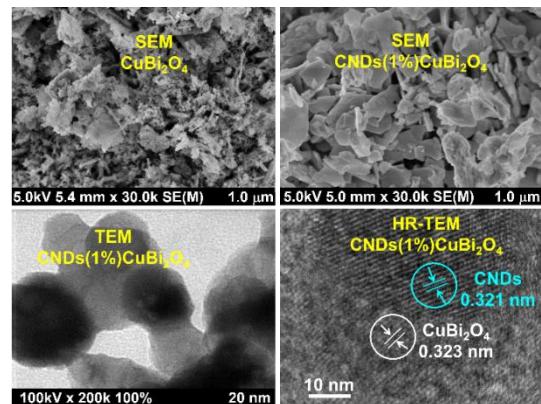


Figure 2. SEM, TEM and HR-TEM of materials

3.2. Photocatalytic properties

The photolysis experiment confirmed that 2,4-D is relatively stable under visible

light (Figure 3). About 20.2% and 60.1% of 2,4-D were degraded by CNDs and CuBi_2O_4 in visible light for 105 min, respectively. By introducing an appropriate amount of CNDs into CuBi_2O_4 , the photocatalytic activity was improved. The activity of the CNDs(1%)- CuBi_2O_4 was significantly high, ~89.2% of 2,4-D was degraded by CNDs(1%)- CuBi_2O_4 at pH 4.2. However, the amount of CNDs in the catalyst was more than 1%, low degradation of the 2,4-D was detected. Only 65.6% of 2,4-D was degraded by CNDs(2%)- CuBi_2O_4 . The excellent activity of the CNDs(1%)- CuBi_2O_4 catalyst is due to a sufficient percentage of CNDs, which prolonged separation of photogenerated e^-/h^+ pairs [12]. However, the decreased activity of the catalyst with further increase in CNDs may be due to the decrease in effective surface area of the catalyst as its active sites are occupied by CNDs [12]. Experimental kinetic data for 2,4-D degradation by CNDs- CuBi_2O_4 were modeled by the Lagergren's pseudo first-order model. Remarkably, the 2,4-D degradation rate constant (k) of the CNDs- CuBi_2O_4 catalyst were much higher than that of individual components. The CNDs(1%)- CuBi_2O_4 had superior activity, with $k = 0.0156 \text{ min}^{-1}$, and the degradation efficiency was about 11.14, 2.33 and 2.11 times higher than those of the CNDs ($k = 0.0014 \text{ min}^{-1}$), CuBi_2O_4 ($k = 0.0067 \text{ min}^{-1}$) and CNDs(2%)- CuBi_2O_4 ($k = 0.0074 \text{ min}^{-1}$), respectively.

Since CNDs(1%)- CuBi_2O_4 gives the best catalytic activity, it will be used for further research.

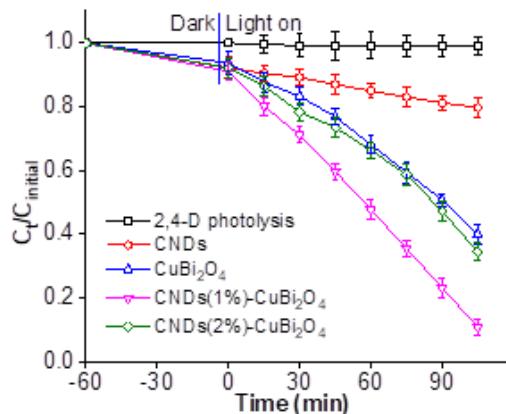


Figure 3. Photodegradation of 30 mg/L 2,4-D at pH 4.2 using 1.0 g/L catalysts in visible light for 105 min

3.3. Effect of pH, CNDs(1%)- CuBi_2O_4 dosage, 2,4-D concentration and reusability

The surface charge of a photocatalyst is largely regulated by the pH of the solution. Therefore, pH is an important parameter that determines the efficiency of pollutant degradation. Notably, 2,4-D concentrations dropped dramatically at pH 4.78 in visible light for 105 min. About 90.9% of 2,4-D was degraded (with $k = 0.0169 \text{ min}^{-1}$) by CNDs(1%)- CuBi_2O_4 at pH 4.78 (Figure 4a), whereas the degradation of 2,4-D achieved ~60.5% ($k = 0.0069 \text{ min}^{-1}$), 89.2% ($k = 0.0156 \text{ min}^{-1}$) and 69.4% ($k = 0.0085 \text{ min}^{-1}$) for pH of 2.0, 4.2 and 7.0, respectively. The decrease in 2,4-D degradation efficiency at pH lower or higher than 4.78 can be understood as follows. The catalytic activity was controlled by the point of zero charge (pH_{PZC}), while the protonation of the carboxyl groups was controlled by the pK_a of 2,4-D. The pH_{PZC} of CND(1%)- CuBi_2O_4 was found to be ~7.0 (Figure 4a inset). When solution pH $< \text{pH}_{\text{PZC}}$, the surface charge of

CNDs(1%)-CuBi₂O₄ is positive. However, at solution pH = 2.0 < pKa of 2,4-D (2.74), the ability to protonate 2,4-D molecules is limited, resulting in less decomposition of 2,4-D molecules. For comparison, at solution pH = 7.0 (\approx pH_{PZC}), the surface charge of CND(1%)-CuBi₂O₄ is neutral. The electrostatic attraction that exists between the surface of CND(1%)-CuBi₂O₄ and the 2,4-D anion in solution is negligible, so the degradation of 2,4-D is less. At pH 4.78, the better 2,4-D degradation is due to the fully protonated carboxyl groups, which are favorable for 2,4-D anions to reach positively charged CNDs(1%)-CuBi₂O₄, leading to significant 2,4-D degradation.

The CNDs(1%)-CuBi₂O₄ of 1.0 g/L provides optimal 2,4-D decomposition efficiency (Figure 4b), ~90.9% of 2,4-D was degraded in visible light for 105 min, while the degradation of 2,4-D achieved ~64.1% ($k = 0.0082 \text{ min}^{-1}$) and 71.3% ($k = 0.0101 \text{ min}^{-1}$) for 0.5 and 1.5 g/L catalyst, respectively. Catalyst dosage higher or lower than 1.0 g/L did not give the best 2,4-D degradation which was due to the reasonable ratio between the amount of CNDs(1%)-CuBi₂O₄, the 2,4-D concentration and the number of photons on CNDs(1%)-CuBi₂O₄, which led to the best 2,4-D degradation rate. A very low dosage of CNDs(1%)-CuBi₂O₄ resulted in insufficient generation of oxidizing radicals ($\cdot\text{OH}$, and $\text{O}_2^{\cdot-}$) to decompose 2,4-D. Meanwhile, excessive dosage of CNDs(1%)-CuBi₂O₄ would increase turbidity, making it impossible for light to reach the active site of the catalyst,

leading to a decrease in the formation of photogenerated e^-/h^+ pairs followed by a decrease in the formation of $\cdot\text{OH}$, and $\text{O}_2^{\cdot-}$.

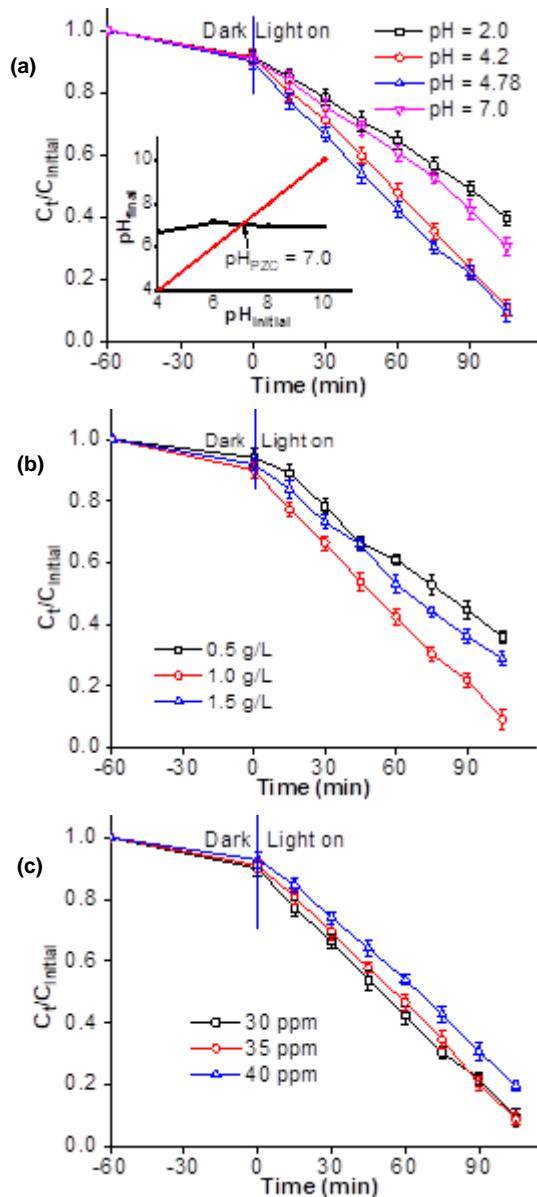


Figure 4. Photodegradation of 2,4-D (a) Effect of the pH solution (inset: pH_{PZC} of CNDs(1%)-CuBi₂O₄ using pH drift method); (b) Effect of CNDs(1%)-CuBi₂O₄ dosage (2,4-D of 30 mg/L at pH 4.78) and (c) Effect of 2,4-D concentration (CNDs(1%)-CuBi₂O₄ of 1.0 g/L at pH 4.78)

The degradation rate of 2,4-D achieved 0.0169, 0.0167 and 0.0120 min^{-1} for initial 2,4-D concentration 30, 35 and 40

mg/L, respectively. High 2,4-D concentration leads to low degradation efficiency (Figure 4c) which can be explained as follows: Because the amount of CNDs(1%)-CuBi₂O₄ and the light intensity were constant, the number of reactive radicals produced such as e^-/h^+ pairs, $\cdot OH$, and $O_2^{\bullet-}$ were also constant while the initial concentration of 2,4-D increased. Therefore, the low 2,4-D degradation for high 2,4-D concentrations is due to the insufficient number of reactive radicals to attack 2,4-D.

The activity of CNDs(1%)-CuBi₂O₄ is more favorable than previous catalytic systems. More than 83% of 2,4-D (100 mg/L) was removed by 0.5 g/L TiO₂@MgFe₂O₄/H₂O₂ at pH 2 in visible light for 240 min [13]. About 90% of 2,4-D (30 mg/L) was removed by 1.0 g/L 2.0rGO/ZnBi₂O₄ at pH 2.45 in visible light for 120 min [14].

Along with catalytic activity, catalyst stability and recyclability are equally important for practical applications. The reusability results indicated that CNDs(1%)-CuBi₂O₄ exhibited significant photo-stabilization after 105 min, and the 2,4-D decomposition efficiency reached $90.9 \pm 3.0\%$ for the 1st use, $87.9 \pm 1.8\%$ for the 2nd reuse, $86.8 \pm 2.4\%$ for the 3rd reuse, $85.5 \pm 2.5\%$ for the 4th reuse and $84.4 \pm 1.9\%$ for the 5th reuse.

3.4. Experiments to capture active radicals

It is known that OH[•], O₂^{•-} and h^+_{VB} are strong active radicals, which mainly act in photocatalysis to decompose pollutants. Figure 5 shows that when 2.0 mM *tert*-

butanol was added as an OH[•] scavenger to the photocatalytic experiment, about 63.6% of 2,4-D was degraded by CNDs(1%)-CuBi₂O₄. The rate of degradation was found to be $\sim 0.0077 \text{ min}^{-1}$, thus the OH[•] radical did not play a major role in the degradation of 2,4-D by CNDs(1%)-CuBi₂O₄.

Figure 5. Effect of different scavengers on the degradation of 30 mg/L 2,4-D using 1.0 g/L CNDs(1%)-CuBi₂O₄ at pH 4.78 in visible light for 105 min

By adding 2.0 mM *p*-benzoquinone as an O₂^{•-} scavenger to the photocatalytic experiment, the degradation efficiency of 2,4-D by CNDs(1%)-CuBi₂O₄ was significantly reduced. Without the presence of oxidizing agent O₂^{•-}, $\sim 33.0\%$ of 2,4-D was degraded under visible light with **degradation rate of 0.0028 min⁻¹**. When adding to the degradation reaction 1.0 mM Na₂EDTA as the h^+_{VB} scavenger, the degradation efficiency of 2,4-D by CNDs(1%)-CuBi₂O₄ was dramatically reduced. About 39.7% of 2,4-D was degraded with **degradation rate of 0.0035 min⁻¹**. These findings demonstrate that O₂^{•-} and h^+_{VB} are the powerful agents for the degradation of 2,4-D by CNDs(1%)-CuBi₂O₄, while the OH[•] radical is not a strong agent.

4. CONCLUSION

The CNDs-CuBi₂O₄ photocatalyst was successfully synthesized and showed much better photocatalytic performance than the individual components. The best sample is CNDs(1%)-CuBi₂O₄, which achieved a degradation efficiency of 90.9% of 2,4-D ($k = 0.0169 \text{ min}^{-1}$) in visible light for 105 min. All active species (O₂^{•-}, OH[•] and h⁺_{VB}) got involved in 2,4-D removal, in which O₂^{•-} and h⁺_{VB} play the major role. CNDs(1%)-CuBi₂O₄ has great potential for practical applications because of its relatively good stability in at least five consecutive experiments.

Acknowledgment: This work is supported by Vietnam Academy of Science and Technology (VAST) under grant number THTETN.08/23-24.

REFERENCES

1. F. Amiri, M. Dehghani, Z. Amiri, S. Yousefinejad, A. Azhdarpoor, (2021). Photocatalytic degradation of 2,4-dichlorophenoxyacetic acid from aqueous solutions by Ag₃PO₄/TiO₂ nanoparticles under visible light: kinetic and thermodynamic studies. *Water Science Technology*, **83(12)**, 3110-3122.
2. A.Y. Goren, Y.K. Recepoglu, V. Vatanpour, Y. Yoon, A. Khataee, (2023). Insights into engineered graphitic carbon nitride quantum dots for hazardous contaminants degradation in wastewater. *Environmental Research*, **223**, 115408.
3. P. Kumar, U.K. Thakur, K. Alam, P. Kar, R. Kisslinger, S. Zeng, S. Patel, K. Shankar, (2018). Arrays of TiO₂ nanorods embedded with fluorine doped carbon nitride quantum dots (CNFQDs) for visible light driven water splitting. *Carbon*, **137**, 174-187.
4. X. Lin, C. Liu, J. Wang, S. Yang, J. Shi, Y. Hong, (2019). Graphitic carbon nitride quantum dots and nitrogen-doped carbon quantum dots co-decorated with BiVO₄ microspheres: A ternary heterostructure photocatalyst for water purification. *Separation and Purification Technology*, **226**, 117-127.
5. Z. Zhang, B. Zhu, X. Guan, (2022). Operational Spectroelectrochemical Investigation on the Interfacial Charge Dynamics of Copper Bismuth Oxide Based Photocathode. *Journal of Physical Chemistry Letters*, **13(10)**, 2356-2364.
6. X. Chen, C. Yu, R. Zhu, N. Li, J. Chen, S. Li, W. Xia, S. Xu, H. Wang, X. Chen, (2019). Ag₃PO₄ Deposited on CuBi₂O₄ to Construct Z-Scheme Photocatalyst with Excellent Visible-Light Catalytic Performance Toward the Degradation of Diclofenac Sodium. *Nanomaterials*, **9**, 959.
7. J. Zhou, Y. Yang, C.-y. Zhang, (2013). A low-temperature solid-phase method to synthesize highly fluorescent carbon nitride dots with tunable emission. *Chemical Communications*, **49(77)**, 8605-8607.
8. Z. Zhao, W. Zhang, X. Shen, T. Muhamood, M. Xia, W. Lei, F. Wang, M.A. Khan, (2018). Preparation of g-C₃N₄/TiO₂/BiVO₄ composite and its application in photocatalytic degradation of pollutant from TATB production under visible light irradiation. *Journal of Photochemistry and Photobiology A: Chemistry*, **358**, 246-255.
9. M.A. Khan, S. Mutahir, F. Wang, W. Lei, M. Xia, S. Zhu, (2019). Facile one-step economical methodology of metal free g-C₃N₄ synthesis with remarkable photocatalytic performance under visible

light to degrade trans-resveratrol. *Journal of Hazardous Materials*, **367**, 293-303.

10. C. Parvathiraja, S. Shailajha, (2021). Bioproduction of CuO and Ag/CuO heterogeneous photocatalysis-photocatalytic dye degradation and biological activities. *Applied Nanoscience*, **11(4)**, 1411-1425.

11. M.M. Xavier, N.N. Adarsh, P.R. Nair, S. Mathew, (2021). Carbon Nitride Quantum Dot-Embedded Poly(vinyl alcohol) Transparent Thin Films for Greenish-Yellow Light-Emitting Diodes. *ACS Omega*, **6(35)**, 22840-22847.

12. R. Noroozi, M. Gholami, V. Oskoei, M. Hesami Arani, S.A. Mousavifard, B. Nguyen Le, M. Fattahi, (2023). Fabrication of new composite NCuTiO₂/CQD for photocatalytic degradation of ciprofloxacin and pharmaceutical wastewater treatment: degradation pathway, toxicity assessment. *Scientific Reports*, **13(1)**, 16287.

13. Bui The Huy, D.-s. Jung, Nguyen Thi Kim Phuong, Y.-I. Lee, (2017). Enhanced photodegradation of 2,4-dichlorophenoxyacetic acid using a novel TiO₂@MgFe₂O₄ core@shell structure. *Chemosphere*, **184**, 849-856.

14. Nguyen Thi Mai Tho, Dang Nguyen Nha Khanh, Nguyen Quoc Thang, Y.-I. Lee, Nguyen Thi Kim Phuong, (2020). Novel reduced graphene oxide/ZnBi₂O₄ hybrid photocatalyst for visible light degradation of 2,4-dichlorophenoxyacetic acid. *Environmental Science and Pollution Research*, **27(10)**, 11127-11137.