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TÓM TẮT 

 
PHÁT TRIỂN CÁC CHẤT ỨC CHẾ DÒNG TẾ BÀO HEPG2 TỪ FLAVONOID CỦA 

THANH LONG (HYLOCEREUS UNDATUS) SỬ DỤNG PHƯƠNG PHÁP IN SILICO 

 
Hylocereus undatus (thanh long ruột trắng) là loại trái cây nhiệt đới giàu dinh dưỡng, chứa nhiều vitamin, 

khoáng chất và đặc biệt là các hợp chất chống oxy hóa như flavonoid, acid phenolic, betacyanin, beta-

carotene và lycopene. Các chất này có khả năng bảo vệ tế bào khỏi tổn thương do gốc tự do, góp phần ngăn 

ngừa ung thư và làm chậm quá trình lão hóa. Nghiên cứu này nhằm phát triển các hợp chất có hoạt tính 

sinh học từ H. undatus với khả năng ức chế dòng tế bào ung thư gan HEPG2 thông qua kết hợp mô hình hồi 

quy tuyến tính bội (MLR) và mô phỏng docking phân tử. Mô hình MLR được xây dựng cho thấy độ tương 

quan cao (R² = 0,897; R² hiệu chỉnh = 0,885; MSE = 0,024; F = 75,038) và xác định điện tích nguyên tử là 

thông số quan trọng ảnh hưởng đến hoạt tính. Kết quả docking cho thấy hợp chất dẫn xuất từ Isorhamnetin 

(Fla1) có ái lực liên kết mạnh nhất với protein đích 6THA (ES = –7,627 kcal/mol), tiếp theo là các dẫn xuất 

của Quercetin và Kaempferol. Tất cả các dẫn xuất mới (Fla1–Fla4) đều có ái lực liên kết cao hơn so với các 

chất ban đầu, cho thấy tiềm năng cải thiện hoạt tính sinh học. Những kết quả này khẳng định tiềm năng của 

các flavonoid được tối ưu hóa từ H. undatus như những ứng viên hứa hẹn cho quá trình phát triển thuốc 

điều trị ung thư gan dựa trên nguồn gốc tự nhiên. 
 

Từ khóa: Thanh long ruột trắng, Mô hình QSARGA-MLR, dòng tế bào HEPG2, phương pháp in silico. 

1. INTRODUCTION 

Cancer continues to be one of the leading 

causes of death worldwide. Among the 

various types, liver cancer (HEPG2) is 

particularly prevalent, with high incidence 

and mortality rates. Current cancer 

treatments face numerous challenges, 

including high costs, drug resistance, and 

severe side effects. As a result, the 

development of new, more effective, and 

safer compounds from natural resources 

has become a significant trend in 

pharmaceutical research [1]. 

H. undatus contains many compounds 

with potential anticancer properties; 

however, there are currently no specific 

studies directly evaluating the effects of 

white-fleshed H. undatus on cancer cell 

lines such as HEPG2 (liver cancer). 

Therefore, further scientific study needed 

to determine the specific effectiveness of 

H. undatus in inhibiting these types of 

cancer cells. White-fleshed H. undatus is 

a tropical fruit belonging to the cactus 

family (Cactaceae), originally from 

Central America but now widely 

cultivated in many countries, especially 
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Vietnam. With its refreshing taste, rich 

nutritional content, and abundance of 

important bioactive compounds, white-

fleshed H. undatus was not only a popular 

food but also held great potential in 

pharmaceutical and cosmetic applications 

[2],[3]. White-fleshed H. undatus 

contained many potent bioactive 

compounds, including flavonoids 

(quercetin, kaempferol, and isorhamnetin) 

that had antioxidant, anti-inflammatory, 

cardioprotective effects and support 

cancer treatment; phenolic acids (gallic 

acid, caffeic acid, ferulic acid) which 

could neutralize free radicals, provided 

antioxidant benefits, and enhanced liver 

health; betacyanins (betanin, betanidin), 

natural pigments with anti-inflammatory 

properties that protected cells and helped 

manage chronic diseases; prebiotics 

(soluble fiber, oligosaccharides) that 

supported digestive health, promoted 

beneficial gut bacteria, and improved 

immune function; as well as vitamins and 

minerals (vitamin C, B vitamins, iron, 

magnesium, calcium) that helped 

strengthen immunity, improved skin 

health, and enhanced overall well-being 

[4],[5].  

The integration of in silico screening and 

QSAR (Quantitative Structure–Activity 

Relationship) modeling provided a 

powerful approach for the prediction, 

optimization, and development of novel 

bioactive compounds. This combined 

strategy enhances the efficiency of 

compound selection by reducing both time 

and cost, while simultaneously improving 

the accuracy of identifying candidates with 

potent biological activity [6].  

Bioactive compounds from Hylocereus 

undatus were identified and developed as 

potential inhibitors of the MCF-7 breast 

cancer cell line using in silico screening 

approaches. Virtual screening techniques, 

including molecular docking, were 

applied to evaluate compound–protein 

interactions and to rank candidates based 

on binding affinities. Structural 

descriptors were combined with 

regression analysis and artificial neural 

networks to construct Quantitative 

Structure–Activity Relationship (QSAR) 

models. Flavone-based derivatives were 

designed and optimized using molecular 

mechanics (MM+) methods to ensure 

accurate structural geometry for 

computational evaluation [6],[7]. 2D and 

3D molecular descriptors were used to 

build multivariate models such as 

multiple linear regression (MLR) and 

artificial neural networks (ANN). The 

QSAR models were developed to identify 

the molecular descriptor parameters that 

influenced the anti-breast cancer activity, 

thereby guiding the design of molecules 

with enhanced activity [7].  

This study aimed to develop compounds 

that inhibited HEPG2 cells through a 

combined approach of in silico screening 

and QSARGA-MLR modeling, which would 

help optimize the selection and 

development of potential compounds, 

thereby contributing to new prospects for 

cancer treatment using natural resources.  

2. DATABASE AND METHODS 

2.1. Database 

To ensure a reliable and comprehensive 

analysis, the molecular data used in this 

study were carefully collected and 

prepared from reputable sources. 

Molecular structures were standardized 

and curated to remove duplicates and 

incomplete entries. Physicochemical 

properties and relevant descriptors were 

calculated to support further modeling 

and screening processes. This rigorous 

data preparation laid the foundation for 

accurate and meaningful computational 

analysis. Molecular structure databases of 
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117 different flavonoid compounds with 

antioxidant and anticancer activities were 

screened from ChemBL database [8]. The 

structures of flavonoids were shown in 

Figure 1. 

 
2D structure 

 
3D structure 

Figure 1. Structures of flavonoids 

The dataset for this study was carefully 

compiled from multiple scientific sources 

to ensure comprehensive coverage of 

bioactive compounds. Molecular 

structures and biological activity 

information were curated and validated to 

support accurate screening and analysis. 

This systematic data preparation allowed 

for focused investigation of flavonoids 

with promising anticancer potential. 

According to various studies, flavonoids 

were a group of polyphenols known for 

their antioxidant and anticancer effects  

[1],[2],[3]. Some common flavonoids in 

white-fleshed H. undatus that exhibited 

biologically active properties and were of 

interest for cancer cell inhibition include 

[9]:

 
Quercetin 

 
Kaempferol 

 
Isorhamnetin 

In addition to flavonoids, phenolic acids 

were another important group of bioactive 

compounds found in white-fleshed 

Hylocereus undatus. These compounds 

were well known for their strong cell-

protective and anticancer properties. 

Understanding the specific phenolic acids 

present helped to further evaluate the fruit 

potential therapeutic effects. Some of the 

main phenolic acids identified in white-

fleshed H. undatus include [10]:

 

 
gallic acid 

 
caffeic acid 

 
ferulic acid 

Gallic acid, caffeic acid, and ferulic acid 

were well-studied phenolic compounds 

known for their potent antioxidant and 

anticancer activities. These acids helped 

neutralize harmful free radicals, reduced 

inflammation, and protected healthy cells 

from damage. Their ability to inhibit 

cancer cell growth, particularly in liver 

cancer, had been demonstrated in various 

studies. Understanding the effects of these 

compounds supports the development of 

new therapeutic agents. These compounds 
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all exhibited inhibitory effects on HepG2 

cancer cell lines. 

Although phenolic acids were present in 

H. undatus, their limited 3D structural 

data, lower molecular weights, and 

inconsistent bioactivity failed to meet 

Lipinski's criteria and QSARGA-MLR 

requirements. Therefore, flavonoids were 

selected as the core scaffolds for 

designing novel bioactive derivatives with 

potential inhibitory activity against 

HEPG2 cells [9],[10]. White-fleshed H. 

undatus fruit contained a total phenolic 

content ranging from 25 to 55 mg gallic 

acid equivalent per 100 g, and a total 

flavonoid content of 15 to 35 mg 

equivalent per 100 g [11]. 

2.2. Computational methods 

2.2.1. QSARGA-MLR Method   

QSAR (Quantitative Structure–Activity 

Relationship) models have emerged as 

powerful tools in computational drug 

design [11]. They enabled researchers to 

link chemical structure with biological 

activity using statistical or machine 

learning approaches. By analyzing 

molecular descriptors or fingerprints, 

QSAR models could provide insight into 

the key structural features responsible for 

a pharmacological effect. This facilitated 

virtual screening of large compound 

libraries and supported the design of more 

potent and selective drug candidates [7]. 

QSAR was a ligand-based method widely 

used to determine mathematical 

relationships between the biological 

activity of a molecule and its structural 

characteristics, expressed through 

molecular descriptors or fingerprints. 

Because it could reduce the time and cost 

associated with experimental testing, 

QSAR played an important role in 

identifying and optimizing bioactive 

compounds [12]. The QSARGA-MLR 

approach combined the strengths of 

QSAR modeling, Genetic Algorithms 

(GA), and Multiple Linear Regression 

(MLR) to improve predictive accuracy in 

drug discovery [13]. GA was used as a 

feature selection method to identify the 

most relevant molecular descriptors from 

a large pool, while MLR helped build a 

robust mathematical model linking these 

descriptors to biological activity. This 

hybrid technique enhanced model 

interpretability and reliability, making it a 

powerful tool for screening and 

optimizing potential drug candidates 

efficiently. 

The linear QSAR model represented a 

quantitative linear relationship between 

molecular structure and biological 

activity. Therefore, linear regression was 

an essential tool for constructing 

QSARGA-MLR models [7],[11]. The 

QSARGA-MLR model, in which biological 

activity depended on multiple molecular 

descriptor variables, was represented by 

the following equation [12]: 

1

n

i i

i

y a x c   (1) 

In the above equation, y represented the 

biological activity pIC50; x1, x2, ..., xn 

were the 2D and 3D molecular 

descriptors; a1, a2, ..., an were the 

corresponding regression coefficients; 

and a₀ is the intercept of the model. The 

quality of the QSARGA-MLR model was 

evaluated based on statistical parameters 

calculated from both the training and 

test sets, including the coefficient of 

determination for the training set 

(R
2ₜᵣₐᵢₙing), model stability assessed via 

leave-one-out cross-validation (LOO), 

mean squared error (MSE) [11],[12]. 

These indices were calculated using the 

following formulas: 
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Where yexp experimental bioactivity value, 

ycal bioactivity value calculated by the 

QSARGA-MLR model on the training set 

and the test set, n: number of compounds 

used to build the model. 

2.2.2. Docking calculation  

Molecular docking using MOE 2024 

followed a structured workflow designed 

to predict the binding affinity and 

orientation of ligands within a target 

protein’s active site. The process began 

with importing the protein structure from 

the Protein Data Bank (PDB) [14], 

followed by cleaning steps such as 

removal of non-essential molecules (e.g., 

water), correction of protonation states, 

addition of hydrogen atoms, and energy 

minimization using force fields like 

AMBER10 or MMFF94x [15]. Ligands 

were then prepared by generating low-

energy 3D conformations, optimizing 

geometry, and assigning correct charges. 

The binding site was identified either 

from co-crystallized ligands or predicted 

using MOE Site Finder tool [16]. Docking 

was carried out using the Triangle 

Matcher algorithm for pose generation, 

followed by rescoring using London dG 

and GBVI/WSA dG scoring functions to 

estimate the binding free energy 

(ΔGbinding). To assess the accuracy of 

docking poses, the root-mean-square 

deviation (RMSD) between docked and 

reference ligand conformations was 

calculated. Ligands with low ΔGbinding 

values and acceptable RMSD (typically < 

2.0 Å) were considered potential leads 

and are selected for further screening or 

experimental validation [17],[18]. 

3. RESULTS AND DISCUSSION 

3.1. Constructing QSARGA-MLR Model 

QSARGA-MLR modeling often involved 

iterative optimization to select the most 

relevant molecular descriptors and 

improved predictive accuracy. This 

process helped in building robust models 

that could reliably predict biological 

activity for new compounds. 

The QSARGA-MLR model construction 

process was based on an evolutionary 

approach using genetic algorithms to find 

the best model. The structural and activity 

database of the flavonoid group was 

divided into two sets: a training set and a 

test set used for model building. The 

training set allowed for identifying 

predictive relationships. The predictive 

ability of the QSAR model was evaluated 

by comparing predicted values with the 

pIC50 activity of compounds in the test 

set. The linear QSARGA-MLR models, 

which included 2D and 3D structural 

descriptors listed in Table 2, were 

calculated using the QSARIS system [19]. 

Among the QSARGA-MLR models built 

from the training set (117 compounds), 

the predictive quality was assessed by 

comparing statistical values such as R²train, 

R²pred, and MSE. The variation in R² 

values, predicted correlation R²pred, MSE 

(standard error), and the 2D and 3D 

descriptor parameters in the QSARGA-MLR 

models were clearly shown in Figures 2, 

3, and Table 2. In order to evaluate the 

performance and significance of the 

QSARGA-MLR model, statistical analysis 

was conducted based on different 

numbers of molecular descriptors. These 

analyses helped identify the optimal 

number of variables that provided the 

most reliable predictive power while 

maintaining model simplicity. The graph 
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showing the variation in model statistics 

for 13 variables k in Figure 2a was based 

on the changes in R²training, R²cal, and the 

mean squared error (MSE). The graph 

indicated that the QSARGA-MLR model 

with k = 13 achieved the highest R²training 

value of 0.884 and a calculated value R²cal 

of 0.874. From Figure 2b, the contribution 

of each descriptor to biological activity 

was illustrated based on their t-student 

statistical values. The descriptors with the 

highest contribution were SHCHnX, 

ABSQ, and SsssN_acnt, while the 

descriptors with the lowest contribution 

was Dipole [19].  

 

a) 
 

b) 

Figure 2. Variation of statistical values with respect to the number of variables k; a) Statistical 

values of the model with 13 variables, b) t-Student statistical values indicating the contribution of 

molecular descriptors to biological activity in the training dataset. 
To evaluate the reliability and predictive 

performance of the QSARGA-MLR models, 

both visual and statistical analyses were 

carried out. These analyses focused on the 

relationship between predicted and 

experimental pIC50 values using multiple 

descriptors. They also helped determine 

the most suitable model based on 

statistical parameters such as R²training, 

R²cal, and MSE. From Figure 3, the 

correlation plots between predicted and 

experimental pIC50 values using 13 

variables for the training set were shown. 

  
a) 

 
b) 

Figure 3. The training results of QSARGA-MLR model; a) predictted results vs experimental cases; 

b) the correlation between predicted and experimental pIC50 values 
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Figure 3a illustrated the correlation 

between predicted and experimental 

pIC₅₀ values, while Figure 3b showed that 

the data points closely align with the 

regression line, indicating a strong 

predictive performance of the model 

across all datasets. Among the 13 

candidate models summarized in Table 1, 

the QSARGA-MLR model with k = 13 

exhibited the best statistical fit and was 

selected as the optimal model for further 

prediction. 

Table 1. Statistical parameters and coefficients in the QSARGA-MLR models with k = 1 

Variables Descriptors Coefficients SE tstat value Pr > |t| 

C Intercept 4.831 0.082 58.554 < 0.0001 

x1 ABSQ -0.383 0.038 -10.194 < 0.0001 

x2 Dipole 0.009 0.003 3.386 0,001 

x3 SsssN_acnt 0.252 0.025 10.240 < 0.0001 

x4 SdO_acnt -0.264 0.029 -9.144 < 0.0001 

x5 SaaO_acnt -0.283 0.058 -4.872 < 0.0001 

x6 k0 0.033 0.005 6.668 < 0.0001 

x7 SHCHnX -0.882 0.093 -9.536 < 0.0001 

x8 SHBint3 -0.015 0.002 -7.239 < 0.0001 

x9 SHBint3_Acnt 0.268 0.032 8.466 < 0.0001 

x10 SHBint4_Acnt -0.188 0.024 -7.802 < 0.0001 

x11 SHBint5_Acnt -0.131 0.030 -4.431 < 0.0001 

x12 numHBa 0.090 0.021 4.277 < 0.0001 

x13 LogP 0.106 0.021 4.991 < 0.0001 

Table 2. Structures of 4 newly designed flavonoid compounds and their predicted pIC₅₀ values based on the 

QSARGA-MLR model 

No Compound pIC50 Compound pIC50 Compound pIC50 

lead 

Quercetin 

4.679 

 Kaempferol 

4.650 

Isorhamnetin  

4.631 

Fla4 
 

4.742 
 

4.723 
 

4.644 

Fla3 
 

5.431 
 

5.365 
 

5.437 

Fla2 
 

5.479 

 

5.670 

 

5.532 

Fla1 
 

5.632 

 

5.672 
 

5.647 

 

The QSARGA-MLR models with k ranging 

from 1 to 13 were listed in order, showing 

the variation of R², R²cal, and MSE values. 

Models with k between 11 and 13 had the 

highest R²cal values. To construct the 

QSARGA-MLR model, statistical parameters 
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including coefficients, standard errors, t-

values, and p-values play an essential role 

in developing the model using multiple 

linear regression. These statistical 

parameters and corresponding coefficients 

were presented in Table 3. The QSARGA-

MLR model was constructed using multiple 

linear regression combined with a genetic 

algorithm: 

pIC50 = 4.831 - 0.383x1 + 0.009x2 + 

0.252x3 - 0.264x4 - 0.283x5 + 0.033x6  

- 0.882x7 - 0.015x8 + 0.268x9 - 

(4) 

0.188x10 - 0.131x11 + 0.090x12 

0.106x13 

The statistical values used to evaluate the 

quality of the QSARGA-MLR model were as 

follows: 

R² = 0.897;  R²Adj = 0.885; MSE = 0.024; 

giá trị F-stat = 75.038. The training 

dataset was well-described by the 

regression equation. The equation was 

statistically significant. 

3.2. New molecular design 

 
a) 

 
b) 

 
c) 

Figure 4. The predicted results for four newly designed flavonoids from various lead compounds:  

a) the Quercetin; b) Kaempferol; c) Isorhamnetin. 

 To explore the potential of new 

anticancer agents, molecular design was 

carried out by generating derivatives of 

key flavonoids found in Hylocereus 

undatus, namely Quercetin, Kaempferol, 

and Isorhamnetin. These new compounds 

were evaluated using previously 

developed QSAR models to predict their 

inhibitory activity against the HEPG2 

liver cancer cell line. From Figure 1, new 

compounds were designed corresponding 

to each flavonoid. The QSAR models 

were developed and applied to predict the 

pIC₅₀ activity against the HEPG2 cell 

line, as presented in Table 2. This 

representsed a key objective in new 

molecular design research, particularly in 

the development of compounds inhibiting 

cancer cell activity. The results also 

provided valuable insights into the 

practical applicability of the QSAR 

models. To rationally design new 

flavonoid derivatives with enhanced 

anticancer potential, we focused on 

optimizing key molecular descriptors 

identified in the QSARGA-MLR model. 

Among these, SHCHnX (the sum of E-

state values of sp³-hybridized carbon 

atoms bonded to electronegative atoms), 

ABSQ (the absolute charge of the 

molecule), and SsssN_acnt (the count of 

tertiary nitrogen atoms) were shown to 

contribute significantly to inhibitory 

activity. Based on key molecular 

descriptors, a structure-based design 

approach was applied to generate four 

novel analogs from each of the flavonoids 

Quercetin, Kaempferol, and 

Isorhamnetin-compounds naturally 

present in H. undatus. These parent 

molecules were selected due to their 

reported anticancer potential. The 

predictive performance of the established 

QSARGA-MLR model was employed to 
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estimated the cytotoxic activity of the 

designed analogs against HEPG2 

hepatocellular carcinoma cell lines. The 

predicted bioactivity data were presented 

in Table 2. The predicted pIC₅₀ values 

from the QSARGA-MLR model matched 

well with experimental data. These 

predicted activities would support further 

molecular docking studies. The newly 

designed flavonoid compounds exhibited 

higher predicted pIC₅₀ values than their 

corresponding lead compounds, as 

showed in Figure 4. 

3.3. Docking calculation  

Before performing molecular docking in 

MOE, the crystal structure of the target 

protein 6THA was obtained from the 

RCSB Protein Data Bank (PDB) [14]. 

The structure was first loaded into MOE, 

and the Structure Preparation module was 

used to process the file. Water molecules, 

co-crystallized ligands, and irrelevant 

heteroatoms were removed unless they 

were involved in the active site. Hydrogen 

atoms were added using the Protonate 3D 

tool to assign proper protonation states 

and to optimize hydrogen-bonding 

interactions. The protonated structure was 

then subjected to partial energy 

minimization using the default 

Amber10:EHT force field, focusing on 

relieving steric clashes and correcting 

bond geometries, particularly around the 

binding pocket. After that, the binding site 

was defined either from the known ligand 

position in the crystal structure or using 

MOE Site Finder tool, which detected 

potential binding cavities. The processed 

protein structure was saved in MOE .moe 

or .mdb format for subsequent docking 

simulations [15],[16]. Prior to docking 

simulations in MOE, all ligand structures 

were first drawn or imported in 2D format 

using MOE Builder tool or imported from 

external databases such as ChEMBL [8]. 

The ligands were then converted into 3D 

format and their geometries were 

optimized using the Wash function, which 

ensured proper valency, tautomeric forms, 

and protonation states appropriate for 

physiological pH (typically ~7.4). Partial 

charges were assigned using the 

MMFF94x force field. Energy 

minimization was performed to relieve 

any strain and to generate a stable 

conformation using the Energy Minimize 

tool in MOE. Additionally, multiple low-

energy conformations of each ligand were 

generated using the Conformation Import 

or Conformation Search tool to better 

simulate ligand flexibility [15]. The final 

prepared ligands were saved in MOE 

database (.mdb) format for use in the 

docking protocol. The docking results for 

the newly designed flavonoids with the 

highest predicted pIC50 values are 

presented in Table 5. 

Table 5. Docking simulation results of the newly designed compounds 

No interaction 2D interaction 3D Docking Energy 

Lead 

 

 
Quercetin 

ES = -5.943 kcal/mol 

RMSD = 1.153 Å 
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Fla1 

 

 
Quercetin derivative Fla1 

ES = -6.866 kcal/mol 

RMSD = 3.163Å 

Lead 

 

 
Kaempferol 

ES = -5.699kcal/mol 

RMSD = 1.943 Å 

Fla1 

 
 

Kaempferol derivative Fla1 

ES = -6.844 kcal/mol 

RMSD = 2.084Å 

Lead 

 
 

Isorhamnetin  

ES = -6.0149 kcal/mol 

RMSD = 1.045Å 

Fla1 

 
 

Isorhamnetin derivative Fla1 

ES = -7.627 kcal/mol 

RMSD = 2.705Å 

  

Docking results indicated that compounds 

derived from white-flesh H. undatus 

possess potential inhibitory activity 

against HEPG2 liver cancer cells. The E-

scores (binding energies) reflected the 

ability of the compounds to bind to the 

target protein 6THA. More negative E-

scores indicated stronger and more stable 

interactions. Kaempferol showed the 

lowest binding energy among the parent 

compounds (ES = –5.699 kcal/mol; 

RMSD = 1.943 Å), while the newly 
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designed Isorhamnetin derivative 

exhibited the strongest binding affinity 

(ES = –7.627 kcal/mol; RMSD = 2.705 

Å). These results suggest that the new 

Isorhamnetin compound could be a 

promising lead candidate for further 

research in liver cancer therapy. The other 

newly designed compounds also 

demonstrated strong potential in 

inhibiting the 6THA target protein 

involved in the growth of HEPG2 cells. 

As shown in Table 5, the newly designed 

compound Fla1 derived from 

Isorhamnetin exhibited the highest 

binding affinity, with an estimated 

binding energy (ES) of −7.627 kcal/mol. 

This was followed by Fla1 derived from 

Quercetin (ES = −6.866 kcal/mol) and 

that from Kaempferol (ES = −6.844 

kcal/mol). Notably, all Fla1 analogs 

outperformed their respective lead 

compounds in terms of predicted binding 

affinity, suggesting enhanced molecular 

interactions and potential for improved 

biological activity. These findings 

highlighted the promise of rationally 

optimized flavonoid derivatives as 

prospective candidates for further 

development in anticancer drug discovery 

pipelines. The newly designed 

compounds Fla1, derived from Quercetin, 

Kaempferol, and Isorhamnetin presented 

in Hylocereus undatus (dragon fruit), 

have demonstrated binding affinities 

toward the HEPG2-associated target 

protein with PDB ID: 6THA through 

multiple molecular docking interactions. 

These compounds exhibited potential 

inhibitory effects on HEPG2 cell 

proliferation by inducing cell cycle arrest 

at different phases (G0/G1 or G2/M). The 

binding mechanism involving the 6THA 

protein was associated with the regulation 

of cyclin expression (Cyclin D1, Cyclin 

B1) and cyclin-dependent kinases 

(CDK2, CDK4). 

4. CONCLUSION 

This study demonstrated the successful 

application of integrated in silico 

approaches, including QSARGA-MLR 

modeling and molecular docking, to 

design and evaluate novel flavonoid 

derivatives from H. undatus. All designed 

analogs (Fla1–Fla4) exhibited enhanced 

binding affinities toward the 6THA target 

protein compared to their respective 

parent compounds, suggesting improved 

inhibitory potential against HEPG2 liver 

cancer cells. Notably, the Isorhamnetin-

derived compound Fla1 showed the 

strongest interaction (ES = −7.627 

kcal/mol), highlighting its promise as a 

lead candidate. These findings underscore 

the potential of rationally optimized 

natural products in anticancer drug 

discovery and support further 

investigation of H. undatus-derived 

flavonoids for liver cancer therapy. 
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