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TOM TAT

PHAT TRIEN CAC CHAT UC CHE DONG TE BAO HEPG2 TU FLAVONOID CUA
THANH LONG (HYLOCEREUS UNDATUS) SU' DUNG PHUONG PHAP IN SILICO

Hylocereus undatus (thanh long rugt tring) 1a logi trai cay nhiér déi giau dinh dwéng, chiza nhiéu vitamin,
khoang chdr va dac biét 1a cac hop chat chong oxy héa nhw flavonoid, acid phenolic, betacyanin, beta-
carotene va lycopene. Céc chdt nay cd kha ndng bao vé té bao khai ton thwong do géc tw do, gop phan ngan
ngira ung thuw va lam chdm qud trinh 130 héa. Nghién cizu ndy nham phat trién cac hop chat c6 hogt tinh
sinh hoc tir H. undatus véi kha néng itc ché dong té bao ung thie gan HEPG2 théng qua két hop mo hinh hoi
quy tuyén tinh bgi (MLR) va mé phong docking phan tir. M6 hinh MLR diroc xay dung cho thdy dé twong
quan cao (R? = 0,897; R2 hi¢u chink = 0,885; MSE = 0,024, F = 75,038) va xdc dinh dién tich nguyén ti 1a
thong so quan trong danh hiéng dén hoat tinh. Két qua docking cho thay hop chdt ddn xudt tir Isorhamnetin
(Flal) c6 &i lic lién két manh nhdt véi protein dich 6THA (ES = —7,627 kcal/mol), tiép theo la cac dan xudt
cua Quercetin va Kaempferol. Tdt cd cac dan xudt méi (Flal—Fla4) déu c6 &i luc lién két cao hon so véi cac
chdt ban @au, cho thdy tiém ndng cdi thién hoat tinh sinh hoc. Nhiing két qua nay khdang dinh tiém nang cia
cdc flavonoid dwoc to0i wu héa tir H. undatus nhir nhitng 1ng vién hiza hen cho qué trinh phat trién thuac
diéu tri ung thu gan dwa trén nguon goc tu nhién.

Tir khoa: Thanh long ruét trang, M6 hinh QSARgamLr, dONg té bao HEPG2, phuong phép in silico.

1. INTRODUCTION H. undatus contains many compounds
Cancer continues to be one of the leading with  potential ~anticancer properties;
causes of death worldwide. Among the however, there are currently no specific
various types, liver cancer (HEPG2) is stU(_jies directly evaluating the effects of
particularly prevalent, with high incidence white-fleshed H. undatus on cancer cell
and mortality rates. Current cancer lines such as HEPG2 (liver cancer).
treatments face numerous Cha”enge& Therefore, further scientific StUdy needed
including high costs, drug resistance, and to determine the specific effectiveness of
severe side effects. As a result, the H. undatus in inhibiting these types of
development of new, more effective, and cancer cells. White-fleshed H. undatus is
safer compounds from natural resources @ fropical fruit belonging to the cactus
has become a significant trend in  family (Cactaceae), originally —from
pharmaceutica| research [1] Central America but now Wldely

cultivated in many countries, especially
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Vietnam. With its refreshing taste, rich
nutritional content, and abundance of
important bioactive compounds, white-
fleshed H. undatus was not only a popular
food but also held great potential in
pharmaceutical and cosmetic applications

[2],[3]. White-fleshed H. undatus
contained many  potent  bioactive
compounds, including flavonoids

(quercetin, kaempferol, and isorhamnetin)
that had antioxidant, anti-inflammatory,
cardioprotective effects and support
cancer treatment; phenolic acids (gallic
acid, caffeic acid, ferulic acid) which
could neutralize free radicals, provided
antioxidant benefits, and enhanced liver
health; betacyanins (betanin, betanidin),
natural pigments with anti-inflammatory
properties that protected cells and helped

manage chronic diseases; prebiotics
(soluble fiber, oligosaccharides) that
supported digestive health, promoted

beneficial gut bacteria, and improved
immune function; as well as vitamins and
minerals (vitamin C, B vitamins, iron,
magnesium,  calcium)  that  helped
strengthen immunity, improved skin
health, and enhanced overall well-being

[41.[5]

The integration of in silico screening and
QSAR (Quantitative Structure—Activity
Relationship) modeling provided a
powerful approach for the prediction,
optimization, and development of novel
bioactive compounds. This combined
strategy enhances the efficiency of
compound selection by reducing both time
and cost, while simultaneously improving
the accuracy of identifying candidates with
potent biological activity [6].

Bioactive compounds from Hylocereus
undatus were identified and developed as
potential inhibitors of the MCF-7 breast
cancer cell line using in silico screening
approaches. Virtual screening techniques,
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including molecular docking, were
applied to evaluate compound-—protein
interactions and to rank candidates based
on  bhinding  affinities.  Structural
descriptors  were  combined  with
regression analysis and artificial neural
networks to construct Quantitative
Structure—Activity Relationship (QSAR)
models. Flavone-based derivatives were
designed and optimized using molecular
mechanics (MM+) methods to ensure
accurate  structural  geometry  for
computational evaluation [6],[7]. 2D and
3D molecular descriptors were used to
build multivariate models such as
multiple linear regression (MLR) and
artificial neural networks (ANN). The
QSAR models were developed to identify
the molecular descriptor parameters that
influenced the anti-breast cancer activity,
thereby guiding the design of molecules
with enhanced activity [7].

This study aimed to develop compounds
that inhibited HEPG2 cells through a
combined approach of in silico screening
and QSARga-mLr modeling, which would
help  optimize the selection and
development of potential compounds,
thereby contributing to new prospects for
cancer treatment using natural resources.

2. DATABASE AND METHODS
2.1. Database

To ensure a reliable and comprehensive
analysis, the molecular data used in this
study were carefully collected and
prepared from  reputable  sources.
Molecular structures were standardized
and curated to remove duplicates and
incomplete  entries.  Physicochemical
properties and relevant descriptors were
calculated to support further modeling
and screening processes. This rigorous
data preparation laid the foundation for
accurate and meaningful computational
analysis. Molecular structure databases of
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117 different flavonoid compounds with structures of flavonoids were shown in

antioxidant and anticancer activities were Figure 1.
itf];‘
XX
.
¢

screened from ChemBL database [8]. The

Oll
2D structure 3D structure
Figure 1. Structures of flavonoids

The dataset for this study was carefully with  promising anticancer potential.
compiled from multiple scientific sources According to various studies, flavonoids
to ensure comprehensive coverage of were a group of polyphenols known for
bioactive compounds. Molecular their antioxidant and anticancer effects
structures and  biological  activity [1],[2].[3]. Some common flavonoids in
information were curated and validated to white-fleshed H. undatus that exhibited
support accurate screening and analysis. biologically active properties and were of
This systematic data preparation allowed interest for cancer cell inhibition include
for focused investigation of flavonoids [9]:

OH O OH O OH O

Quercetin Kaempferol Isorhamnetin
In addition to flavonoids, phenolic acids Understanding the specific phenolic acids
were another important group of bioactive present helped to further evaluate the fruit
compounds found in  white-fleshed potential therapeutic effects. Some of the
Hylocereus undatus. These compounds main phenolic acids identified in white-
were well known for their strong cell- fleshed H. undatus include [10]:

protective and anticancer properties.

o) O HO
HO
or Ho "oH “o _~_OH
HO
OH HO O
gallic acid caffeic acid ferulic acid

Gallic acid, caffeic acid, and ferulic acid from damage. Their ability to inhibit
were well-studied phenolic compounds cancer cell growth, particularly in liver
known for their potent antioxidant and cancer, had been demonstrated in various
anticancer activities. These acids helped studies. Understanding the effects of these
neutralize harmful free radicals, reduced compounds supports the development of
inflammation, and protected healthy cells new therapeutic agents. These compounds

196



Tap chi phan tich Héa, Ly va Sinh hoc - Tdp 31, Sé 2A/ 2025

all exhibited inhibitory effects on HepG2
cancer cell lines.

Although phenolic acids were present in
H. undatus, their limited 3D structural
data, lower molecular weights, and
inconsistent bioactivity failed to meet
Lipinski's criteria and QSARga-MLR
requirements. Therefore, flavonoids were
selected as the core scaffolds for
designing novel bioactive derivatives with
potential inhibitory activity against
HEPG2 cells [9],[10]. White-fleshed H.
undatus fruit contained a total phenolic
content ranging from 25 to 55 mg gallic
acid equivalent per 100g, and a total
flavonoid content of 15 to 35mg
equivalent per 100 g [11].

2.2. Computational methods
2.2.1. QSARGA.MLR Method

QSAR (Quantitative Structure—Activity
Relationship) models have emerged as
powerful tools in computational drug
design [11]. They enabled researchers to
link chemical structure with biological

activity using statistical or machine
learning approaches. By analyzing
molecular descriptors or fingerprints,

QSAR models could provide insight into
the key structural features responsible for
a pharmacological effect. This facilitated
virtual screening of large compound
libraries and supported the design of more
potent and selective drug candidates [7].

QSAR was a ligand-based method widely
used to determine  mathematical
relationships between the biological
activity of a molecule and its structural
characteristics, expressed through
molecular descriptors or fingerprints.
Because it could reduce the time and cost
associated with experimental testing,
QSAR played an important role in
identifying and optimizing bioactive
compounds [12]. The QSARGa-MLR
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approach combined the strengths of
QSAR modeling, Genetic Algorithms
(GA), and Multiple Linear Regression
(MLR) to improve predictive accuracy in
drug discovery [13]. GA was used as a
feature selection method to identify the
most relevant molecular descriptors from
a large pool, while MLR helped build a
robust mathematical model linking these
descriptors to biological activity. This
hybrid  technique enhanced  model
interpretability and reliability, making it a
powerful tool for screening and
optimizing potential drug candidates
efficiently.

The linear QSAR model represented a
quantitative linear relationship between
molecular  structure and biological
activity. Therefore, linear regression was
an essential tool for constructing
QSARGA_MLR models [7],[11] The
QSARga-mLr model, in which biological
activity depended on multiple molecular
descriptor variables, was represented by
the following equation [12]:

n
y=) ax-+c (1)

i=1
In the above equation, y represented the
biological activity plICsp; X1, X2, ..., Xn
were the 2D and 3D molecular
descriptors; a;, az, ..., an, were the
corresponding regression coefficients;
and ay is the intercept of the model. The
quality of the QSARga-mLr model was
evaluated based on statistical parameters
calculated from both the training and
test sets, including the coefficient of
determination for the training set
(Rtraining), Model stability assessed via
leave-one-out cross-validation (LOO),
mean squared error (MSE) [11],[12].
These indices were calculated using the
following formulas:
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n

Z (yi,exp - yi,cal)2

Rtzraining =1- i71n (2)
Z(yi,exp - 7)2
B ; (yi,exp - yi,cal) (3)

MSE

training —

n

Where yey, experimental bioactivity value,
Yea bioactivity value calculated by the
QSARGa-mLr mModel on the training set
and the test set, n: number of compounds
used to build the model.

2.2.2. Docking calculation

Molecular docking using MOE 2024
followed a structured workflow designed
to predict the binding affinity and
orientation of ligands within a target
protein’s active site. The process began
with importing the protein structure from
the Protein Data Bank (PDB) [14],
followed by cleaning steps such as
removal of non-essential molecules (e.g.,
water), correction of protonation states,
addition of hydrogen atoms, and energy
minimization using force fields like
AMBER10 or MMFF94x [15]. Ligands
were then prepared by generating low-
energy 3D conformations, optimizing
geometry, and assigning correct charges.
The binding site was identified either
from co-crystallized ligands or predicted
using MOE Site Finder tool [16]. Docking
was carried out using the Triangle
Matcher algorithm for pose generation,
followed by rescoring using London dG
and GBVI/WSA dG scoring functions to
estimate the binding free energy
(AGpinding)- To assess the accuracy of
docking poses, the root-mean-square
deviation (RMSD) between docked and
reference ligand conformations was
calculated. Ligands with low AGpinging
values and acceptable RMSD (typically <
2.0 A) were considered potential leads
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and are selected for further screening or
experimental validation [17],[18].

3. RESULTS AND DISCUSSION
3.1. Constructing QSARga-mLr Model

QSARga-mLr modeling often involved
iterative optimization to select the most
relevant molecular  descriptors and
improved predictive accuracy. This
process helped in building robust models
that could reliably predict biological
activity for new compounds.

The QSARga-mLr mModel construction
process was based on an evolutionary
approach using genetic algorithms to find
the best model. The structural and activity
database of the flavonoid group was
divided into two sets: a training set and a
test set used for model building. The
training set allowed for identifying
predictive relationships. The predictive
ability of the QSAR model was evaluated
by comparing predicted values with the
plCso activity of compounds in the test
set. The linear QSARga-mLr Mmodels,
which included 2D and 3D structural
descriptors listed in Table 2, were
calculated using the QSARIS system [19].
Among the QSARga.mLr models built
from the training set (117 compounds),
the predictive quality was assessed by
comparing statistical values such as R%,in,
R%red, and MSE. The variation in R?
values, predicted correlation R%yeq, MSE
(standard error), and the 2D and 3D
descriptor parameters in the QSARGa-MLR
models were clearly shown in Figures 2,
3, and Table 2. In order to evaluate the
performance and significance of the
QSARGa-mLr Model, statistical analysis
was conducted based on different
numbers of molecular descriptors. These
analyses helped identify the optimal
number of variables that provided the
most reliable predictive power while
maintaining model simplicity. The graph
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showing the variation in model statistics
for 13 variables k in Figure 2a was based
on the changes in RZyining, R%a, and the
mean squared error (MSE). The graph
indicated that the QSARgamr Model
with k = 13 achieved the highest R2?yaining
value of 0.884 and a calculated value R%
of 0.874. From Figure 2b, the contribution
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of each descriptor to biological activity
was illustrated based on their t-student
statistical values. The descriptors with the
highest contribution were SHCHnX,
ABSQ, and SsssN_acnt, while the
descriptors with the lowest contribution
was Dipole [19].
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Figure 2. Variation of statistical values with respect to the number of variables k; a) Statistical
values of the model with 13 variables, b) t-Student statistical values indicating the contribution of
molecular descriptors to biological activity in the training dataset.

To evaluate the reliability and predictive
performance of the QSARga-mLr Models,
both visual and statistical analyses were
carried out. These analyses focused on the
relationship  between predicted and
experimental plCsy values using multiple
descriptors. They also helped determine
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the most suitable model based on
statistical parameters such as RZyaining,
R2., and MSE. From Figure 3, the
correlation plots between predicted and
experimental plCsy values using 13
variables for the training set were shown.
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Figure 3. The training results of QSARga.mLr Model; a) predictted results vs experimental cases;
b) the correlation between predicted and experimental pICsy values
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Figure 3a illustrated the correlation
between predicted and experimental
plCs, values, while Figure 3b showed that
the data points closely align with the
regression line, indicating a strong
predictive performance of the model

across all datasets. Among the 13
candidate models summarized in Table 1,
the QSARGA-MLR model with k 13
exhibited the best statistical fit and was
selected as the optimal model for further
prediction.

Table 1. Statistical parameters and coefficients in the QSARgamLr Mmodels with k = 1

Variables Descriptors Coefficients SE  tyq Value Pr>|t|

C Intercept 4.831 0.082 58.554 < 0.0001
X1 ABSQ -0.383 0.038 -10.194 < 0.0001
Xo Dipole 0.009 0.003 3.386 0,001
X3 SsssN_acnt 0.252 0.025 10.240 < 0.0001
X4 SdO_acnt -0.264 0.029 -9.144 < 0.0001
Xs Saa0_acnt -0.283 0.058 -4.872 < 0.0001
Xs k0 0.033 0.005 6.668 < 0.0001
X7 SHCHnX -0.882 0.093 -9.536 < 0.0001
Xg SHBInt3 -0.015 0.002 -7.239 < 0.0001
Xo SHBInt3_Acnt 0.268 0.032 8.466 < 0.0001
X10 SHBInt4_Acnt -0.188 0.024 -7.802 < 0.0001
X11 SHBInt5_Acnt -0.131 0.030 -4.431 < 0.0001
X12 numHBa 0.090 0.021 4,277 <0.0001
X13 LogP 0.106 0.021 4.991 < 0.0001

Table 2. Structures of 4 newly designed flavonoid compounds and their predicted plC;, values based on the
QSARGA-MLR model

No Compound pICso Compound pICso Compound pICso
OH OH oH
HO o O oH HO (e} O HO (o} O o~
lead CLL, ser9 L o se50 4.631
OH O OH O OH O
Quercetin Kaempferol Isorhamnetin
HN/\HO o o N HO o. O - HNNHO o z:H]
Fla4 SBeee 4742 SPeue 4723 "I 4.644
OH OH OH
Fla3 Q 5431 "0 O 5365 "I o o 5437
OH O OH O OH O
OH OH OH
Fla2 =000 7> 5479 =000 560 NI To 5530
OH O ° NH, O OH O o
OH OH OH
Flal 3000 o sem Q 5672 ") e sear

NH, O

The QSARga-mLr Models with k ranging
from 1 to 13 were listed in order, showing
the variation of R?, R2.,, and MSE values.
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Models with k between 11 and 13 had the
highest RZ; values. To construct the
QSARGa-mLr Model, statistical parameters



Tap chi phan tich Héa, Ly va Sinh hoc - Tdp 31, Sé 2A/ 2025

including coefficients, standard errors, t- 0.188xy0 - 0.131x3; + 0.090x1,
values, and p-values play an essential role 0.106x13

in developing the model using multiple
linear  regression. These statistical
parameters and corresponding coefficients
were presented in Table 3. The QSARga-
mLr Model was constructed using multiple R? = 0.897; R2aqj = 0.885; MSE = 0.024;
linear regression combined with a genetic gid tri F-stat = 75.038. The training
algorithm: dataset was well-described by the

0ICso = 4.831 - 0.383x; + 0.009%, + regression equation. The equation was
50 — . - U 1 . 2

0.252%s - 0.264x, - 0.283xs + 0.033%s  (4) statistically significant.
- 0.882x; - 0.015xg + 0.268xy - 3.2. New molecular design

The statistical values used to evaluate the
quality of the QSARga-mLr Mmodel were as
follows:
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new quercetin derivatives new kaempferol derivatives new Isorhamnetin derivatives

a) b) c)
Figure 4. The predicted results for four newly designed flavonoids from various lead compounds:
a) the Quercetin; b) Kaempferol; c) Isorhamnetin.

To explore the potential of new flavonoid derivatives with enhanced
anticancer agents, molecular design was anticancer potential, we focused on
carried out by generating derivatives of optimizing key molecular descriptors
key flavonoids found in Hylocereus identified in the QSARgamLr mModel.
undatus, namely Quercetin, Kaempferol, Among these, SHCHnX (the sum of E-
and Isorhamnetin. These new compounds state values of sp3-hybridized carbon
were  evaluated using  previously atoms bonded to electronegative atoms),

developed QSAR models to predict their ABSQ (the absolute charge of the
inhibitory activity against the HEPG2 molecule), and SsssN_acnt (the count of

liver cancer cell line. From Figure 1, new tertiary nitrogen atoms) were shown to
compounds were designed corresponding contribute significantly to inhibitory
to each flavonoid. The QSAR models activity. Based on key molecular
were developed and applied to predict the descriptors, a structure-based design
pICs, activity against the HEPG2 cell approach was applied to generate four
line, as presented in Table 2. This novel analogs from each of the flavonoids
representsed a key objective in new Quercetin, Kaempferol, and
molecular design research, particularly in Isorhamnetin-compounds naturally
the development of compounds inhibiting present in H. undatus. These parent
cancer cell activity. The results also molecules were selected due to their
provided valuable insights into the reported anticancer  potential.  The
practical applicability of the QSAR predictive performance of the established
models. To rationally design new QSARga-mLr model was employed to
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estimated the cytotoxic activity of the
designed analogs against HEPG2
hepatocellular carcinoma cell lines. The
predicted bioactivity data were presented
in Table 2. The predicted plCs, values
from the QSARga-mLr model matched
well with experimental data. These
predicted activities would support further
molecular docking studies. The newly
designed flavonoid compounds exhibited
higher predicted plCs, values than their
corresponding lead compounds, as
showed in Figure 4.

3.3. Docking calculation

Before performing molecular docking in
MOE, the crystal structure of the target
protein 6THA was obtained from the
RCSB Protein Data Bank (PDB) [14].
The structure was first loaded into MOE,
and the Structure Preparation module was
used to process the file. Water molecules,
co-crystallized ligands, and irrelevant
heteroatoms were removed unless they
were involved in the active site. Hydrogen
atoms were added using the Protonate 3D
tool to assign proper protonation states
and to optimize hydrogen-bonding
interactions. The protonated structure was
then subjected to partial energy
minimization using the default
Amberl0:EHT force field, focusing on
relieving steric clashes and correcting
bond geometries, particularly around the
binding pocket. After that, the binding site

was defined either from the known ligand
position in the crystal structure or using
MOE Site Finder tool, which detected
potential binding cavities. The processed
protein structure was saved in MOE .moe
or .mdb format for subsequent docking
simulations [15],[16]. Prior to docking
simulations in MOE, all ligand structures
were first drawn or imported in 2D format
using MOE Builder tool or imported from
external databases such as ChEMBL [8].
The ligands were then converted into 3D
format and their geometries were
optimized using the Wash function, which
ensured proper valency, tautomeric forms,
and protonation states appropriate for
physiological pH (typically ~7.4). Partial
charges were assigned using the
MMFF94x force field. Energy
minimization was performed to relieve
any strain and to generate a stable
conformation using the Energy Minimize
tool in MOE. Additionally, multiple low-
energy conformations of each ligand were
generated using the Conformation Import
or Conformation Search tool to better
simulate ligand flexibility [15]. The final
prepared ligands were saved in MOE
database (.mdb) format for use in the
docking protocol. The docking results for
the newly designed flavonoids with the
highest predicted pIC50 values are
presented in Table 5.

Table 5. Docking simulation results of the newly designed compounds

No interaction 2D Docking Energy
. € Es = -5.943 kcal/mol
RMSD = 1.153 A
Lead 3
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Es = -6.866 kcal/mol

RMSD = 3.163A
Flal

Es = -5.699kcal/mol

RMSD = 1.943 A
Lead

Es = -6.844 kcal/mol

RMSD = 2.084A
Flal

Es = -6.0149 kcal/mol

RMSD = 1.045A
Lead

Es = -7.627 kcal/mol

RMSD = 2.705A
Flal

e

Isorhamn

etin driative Flal

Docking results indicated that compounds
derived from white-flesh H. undatus
possess potential inhibitory activity
against HEPG2 liver cancer cells. The E-
scores (binding energies) reflected the
ability of the compounds to bind to the
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target protein 6THA. More negative E-
scores indicated stronger and more stable
interactions. Kaempferol showed the
lowest binding energy among the parent
compounds (Es -5.699 kcal/mol;
RMSD = 1.943 A), while the newly
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designed Isorhamnetin derivative
exhibited the strongest binding affinity
(Es = —7.627 kcal/mol; RMSD = 2.705
A). These results suggest that the new
Isorhamnetin  compound could be a
promising lead candidate for further
research in liver cancer therapy. The other
newly  designed compounds also
demonstrated  strong  potential  in
inhibiting the 6THA target protein
involved in the growth of HEPG2 cells.
As shown in Table 5, the newly designed
compound Flal derived from
Isorhamnetin  exhibited the highest
binding affinity, with an estimated
binding energy (Es) of —7.627 kcal/mol.
This was followed by Flal derived from
Quercetin (Es = —6.866 kcal/mol) and

that from Kaempferol (Es = —6.844
kcal/mol). Notably, all Flal analogs
outperformed their respective lead

compounds in terms of predicted binding
affinity, suggesting enhanced molecular
interactions and potential for improved
biological activity. These findings
highlighted the promise of rationally
optimized flavonoid derivatives as
prospective  candidates for  further
development in anticancer drug discovery
pipelines. ~ The  newly  designed
compounds Flal, derived from Quercetin,
Kaempferol, and Isorhamnetin presented
in Hylocereus undatus (dragon fruit),
have demonstrated binding affinities
toward the HEPG2-associated target
protein with PDB ID: 6THA through
multiple molecular docking interactions.
These compounds exhibited potential
inhibitory effects on HEPG2 cell
proliferation by inducing cell cycle arrest
at different phases (GO/G1 or G2/M). The
binding mechanism involving the 6THA
protein was associated with the regulation
of cyclin expression (Cyclin D1, Cyclin
B1) and cyclin-dependent Kinases
(CDK2, CDKA4).
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4. CONCLUSION

This study demonstrated the successful
application of integrated in silico
approaches, including  QSARga-MLR
modeling and molecular docking, to
design and evaluate novel flavonoid
derivatives from H. undatus. All designed
analogs (Flal-Fla4) exhibited enhanced
binding affinities toward the 6 THA target
protein compared to their respective
parent compounds, suggesting improved
inhibitory potential against HEPG2 liver
cancer cells. Notably, the Isorhamnetin-
derived compound Flal showed the
strongest interaction (Es —7.627
kcal/mol), highlighting its promise as a
lead candidate. These findings underscore

the potential of rationally optimized
natural products in anticancer drug
discovery and support further
investigation of H. undatus-derived

flavonoids for liver cancer therapy.
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