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TÓM TẮT 

ỨNG DỤNG PHƯƠNG PHÁP MÔ HÌNH HÓA QSPR ĐỂ PHÁT TRIỂN CÁC PHỨC 

CHẤT MỚI GIỮA ION KIM LOẠI VÀ DẪN XUẤT THIOSEMICARBAZONE 

Bộ mô tả của mô hình trong nghiên cứu đã được tính toán cho các phức chất giữa ion kim loại và dẫn xuất 

thiosemicarbazone (kim loại-thio). Các mô tả này đã được chọn để xây dựng mô hình quan hệ định lượng 

cấu trúc-tính chất (QSPR) dựa trên các giá trị hằng số bền (log11) của các phức chất kim loại-thio trong 

nước bằng cách sử dụng phương pháp hồi quy tuyến tính đa biến và phi tuyến tính theo phương pháp máy 

học (ML). Các mô tả của mô hình QSPR như Dipole, xp5, SsCH3 và xch6 kèm các giá trị thống kê được sử 

dụng để khẳng định chất lượng của chúng. Mô hình hồi quy tuyến tính đa biến QSPRMLR có R
2

train = 0,921; 

Q
2

LOO = 0,886; MSE = 0,639 và F-stat = 143,72. Trong khi đó, mô hình ML có kết quả thống kê ấn tượng 

như: R
2
train = 0,985, R

2
test = 0,919 và Q

2
CV = 0,965. Các mô hình QSPR đã vượt qua kỹ thuật đánh giá ngoại 

về khả năng dự đoán trên tập dữ liệu bao gồm mười hai giá trị logβ11 từ thực nghiệm. Kết quả mười sáu hợp 

chất kim loại mới đã được phát hiện bằng cách sử dụng mô hình QSPR và kết quả nghiên cứu có thể được 

sử dụng để tạo ra các phức chất kim loại-thio mới để sử dụng trong hóa học phân tích. 

Keywords: Machine learning, QSPR, stability constants log11, metal-thiosemicarbazone complex. 

1. INTRODUCTION 

Metal-thiosemicarbazone (metal-thio) 

complexes have recently emerged as a 

significant class of Schiff-based ligands 

with special donor atoms as S and N. 

They are typically produced by the 

condensation reaction of aldehydes or 

ketones with thiosemicarbazide [1]. It also 

has a wide range of anticancer action. 

However, it is highly reliant on cell 

characteristics. Thiosemicarbazone 

(Thio/thio) ligands have a broad spectrum 

of biological actions, including antifungal, 

antibacterial, antimalarial, anti-

proliferative, anti-inflammatory, and 

antiviral [2]. 

Heavy metal ions naturally form alliances 

with one another in minerals. Heavy 

metals are mainly used to electroplate 

steel. Naturally, a significant proportion 

of these metals are released into the 

environment. Tobacco usage is one of the 

most common causes of metal ions 

accumulating in the body over time [3].  

Most are highly hazardous metals, and 

various widely used analytical techniques 

are used to determine heavy metal ions in 

trace amounts, especially UV-VIS method 

[4]. The spectrophotometric approach is 

recommended because it is less expensive 

and easier to use, with equivalent 

sensitivity, accuracy, and good precision. 

Numerous organic ligands are applied for 

the different metals determination using 

this spectrophotometric method. 

Sulfur-containing ligands, such as 

thiosemicarbazones, have recently gained 

prominence in analytical/inorganic 

chemistry for metal ion determination [4]. 

The metal chelates of these sulfur and 

nitrogen-containing chemicals have 

numerous applications in medicine and 

agriculture [2]. A literature review reveals 

that a few thiosemicarbazones are used 
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for direct spectrophotometric 

determination of metals in aqueous 

solution, but not for extractive 

spectrophotometric determination. In 

published articles, the authors introduced 

novel analytical reagents, 

thiosemicarbazones, for the 

spectrophotometric detection of trace 

metals. 

The stability constant plays an essential 

role in analytical chemistry by controlling 

the complexation of thiosemicarbazone 

ligands with metal ions. Currently, 

multivariate analysis and 0-3D molecular 

descriptors are utilized to screen the 

stability constants of metal-thio 

complexes [5]. In recent decades, QSPR 

models were quickly created in the 

theoretical field of chemistry to establish 

the interactions between metal ionic 

bonds and organic ligands in aqueous 

solutions. Metal ions (M = Cu
2+

, Fe
2+

, 

Ni
2+

, Co
2+

, Mn
2+

, Ag
+
, Zn

2+
, Pb

2+
, 

Cd
2+

,...) had their stability constants 

stated. However, in many cases, applying 

QSPR models were highly complicated 

due to insufficient statistical appraisal, 

model application capability gaps, 

incomplete parametric calculation 

information, and the use of molecular 

descriptors, statistical parameters, and 

new statistical techniques. The most 

effective technique to solve a significant 

portion of the problem had yet to be fully 

resolved. 

This study employed the quantitative 

relationship between structure and 

property (QSPR) to describe the 

molecular descriptors and stability 

constant of metal-thiosemicarbazone 

complexes. The structural descriptors 

were computed using 0-3D topologically 

optimized structures and the semi-

empirical quantum chemistry methods 

PM7 [6]. The QSPRMLR models were 

built using multivariate linear regression. 

Furthermore, the artificial neural network 

QSPRANN model was created by 

combining significant descriptors from 

the QSPRMLR model with the error back-

propagation training approach. The QSPR 

models were externally evaluated against 

the test set. QSPR models' log11 values 

for metal-thio complexes were compared 

to experimental data from the literature. 

2. METHODOLODY 

2.1. Experimental data   

Table 1 showed the stability constants 

(log11) of metal ion (M = Cu
2+

, Fe
2+

, 

Ni
2+

, Co
2+

, Mn
2+

, Ag
+
) complexes with 

various thiosemicarbazones in aqueous 

solution, based on published literature [7-

13] under various circumstances. The 0-

3D molecular structures of metal-thio 

complexes modified in the data files were 

used as input structures for the QSARIS 

program [14]. Table 1 showed how the 54 

complexes from the training set were used 

to generate the QSPR models. Figure 1 

showed the overall structure of the metal-

ligand complex. 

a) 

 

b) 

 

Figure 1. (a) Thiosemicarbazone; (b) The metal-

thio complex 

The production of the complexes could be 

understood using the Lewis acid-base 

theory, which stated that an acid accepted 

electron pairs from bases. In this work, 

the complexed species with the overall 

stability constants associated with 

equilibrium could be represented by the 

generic equation (1); charges were 

eliminated for simplicity [15]. 

m M + n L   ⇌   MmLn (1) 
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The stability constant (βpq) described the 

creation of the complex ML in a single 

step with the m value of 1 and the n value 

of 1 [15]. 

11

[ML]
 

[M][L]
   (2) 

2.2. Descriptor calculation 

The experimental structures of metal-thio 

complexes were converted into 2D 

molecular structures using ChemDraw-

Pro13. These were optimized using 

quantum mechanics (QM) on the 

MoPac2016 system. The topological and 

quantum descriptors were calculated on the 

QSARIS program and MoPac2016 systems 

using the semi-empirical quantum method 

PM7 [6]. Following the computation of all 

molecular descriptors, the procedure of 

descriptor selection was critical. The 

forward regression technique picked the 

relevant descriptors in the QSPRMLR 

models. The acceptable QSPR models had 

to meet statistically significant criteria. 

2.3. QSPR modeling 

In this study, the QSPR models were 

developed using two modelling methods: 

multivariate linear regression and 

artificial neural network. The QSPRMLR 

model's input variable was the foundation 

for the deep development of artificial 

neural networks. QSPRMLR modelling 

confirmed logβ11 values as dependent 

variables (Y), whereas structural 

descriptors (X) were independent 

variables in the equation. When the values 

of the X variables correlated strongly with 

the values of the Y targets, the QSPRMLR 

model equation was as follows [16]: 

0

1

 


 
k

j j

j

Y X  (3) 

where β0, is the constant of the model, βj 

is the regression coefficients and k is 

number of variables in the regression 

equation. 

Table 1. The 54 stability constants of complexes (n) in training data set 

No 
Thiosemicarbazone ligand Metal 

ions 

Number of 

complexes, n 
logβ11,mi

n 

logβ11,ma

x 
Ref. 

R1 R2 R3 R4 

1 H -C6H3BrOH H H Cu
2+

 1 5.633 5.633 [7] 

2 -CH3 C7H7N2 H H Mn
2+

 3 9.600 9.870 [8] 

3 -CH3 C7H7N2 H H Ni
2+

 2 10.790 10.940 [8] 

4 -CH3 C7H7N2 H H Co
2+

 2 9.900 10.020  [8] 

5 H -C8H10N H H Ag
+
 1 17.200 17.200 [9] 

6 H -C8H10N H H Cu
2+

 1 15.300 15.300 [10] 

7 H -C7H7O2 H H Fe
2+

 4 7.690 8.170 [11] 

8 H -C7H7O2 H H Co
2+

 4 7.860 8.470 [11] 

9 H -C7H7O2 H H Ni
2+

 4 8.110 8.650 [11] 

10 H -C7H7O2 H H Cu
2+

 4 9.030 9.830 [11] 

11 H -C10H7O H H Mn
2+

 4 4.660 5.670 [12] 

12 H - C9H7NO H - Ni
2+

 8 7.709 8.500 [13] 

13 H - C9H7NO H - Co
2+

 8 7.251 8.340 [13] 

14 H - C9H7NO H - Mn
2+

 8 5.439 6.041 [13] 

Because of their superior nonlinear fitting 

capabilities, artificial neural networks had  

widely used in QSPR research. Neural 

networks had topology, training 

procedures, and computational features in 

their constituents. Three distinct layers, 

I(k), HL(m), and O(n), were included. 

Layer 1 was the input layer, where each 
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neuron received structural information, 

corresponding to a structure descriptor 

used as input. The output layer's neurons 

corresponded to the projected output (The 

stability constant log11 value). Between 

these two layers, a hidden layer controled 

the neural network's predictive power. 

The complexity of the dataset dictated the 

critical number of hidden layers [18]. 

In the multilayer perceptron (MLP) 

approach of a neural network, the input 

layer I(k) was connected to all neurons of 

the hidden layer HL(m), and the output 

layer O(n) got information from the hidden 

layer. Each link between layers 1 and 2 

carried a weight value [18,19]. This work 

employed a feed-forward neural network 

with an error back-propagation method. 

The creation of the ANN model occurred 

during two periods. First, the m values of 

hidden neurons were pre-screened using 

Neural Designer tools [20], and the best 

ANN model was excommunicated via 

external validation on a data set. The 

second stage was performed using 

Matlab2016a [20] with the “nntool” 

toolbox, and the process of ANN model 

training employed three transfer functions 

in neural network research: hyperbolic 

sigmoid tangent, log-sigmoid, and 

exponential transfer functions [24-27]. 

The neural network was trained until the 

mean square error (MSE) was minimized, 

after which the output was compared to 

the experimental data [19,20]. 

The MLP approach was also used to create 

the artificial neural network models 

QSPRANN I(k)-HL(m)-O(n) utilizing neural 

network function in Matlab2016a's 

platform. The best QSPRMLR models were 

chosen using the regression techniques of 

Regress tool [16], it is add-on of MS-Excel. 

The predictability of QSPR models was 

cross-validated using the internal leave-one-

out (LOO) approach and external 

validation. The validated results are 

compared with the experimental values. 

2.4. Validation of models 

Modelling strategies aimed to minimize 

the sum of squared discrepancies between 

observed and expected values. This 

minimization resulted in the estimation of 

the model's parameters. In general, there 

were two cross-validation techniques used 

when building a model, which were the 

Leave-Many-Out (LMO) and Leave-One-

Out (LOO) methods. LOO cross-

validation was a practical approach for 

generating an almost unbiased assessment 

of model performance, especially when 

working with limited datasets where data 

utilisation for both training and testing 

was critical. In this study, the LOO 

method was used for this goal due to the 

small dataset.  Therefore, the models were 

screened using the values R
2

train for the 

training set, Q
2

LOO or Q
2

CV for the cross-

validation set, R
2

test for an independent 

test of just the ANN model, and Q
2

test for 

an external validation test of all models 

[16, 21]. They were calculated using the 

same formula (4). 

2

2 1

2

1

ˆ( )

1  

( )

n

i i

i

n

i

i

Y Y

R

Y Y







 







 (4) 

where Yi, Ŷi, and Ȳ values are the 

experimental, calculated and average 

values, respectively. 

Validation was estimating model 

parameters using a portion of the data set 

and assessing the neural network's 

predictability with the remainder. The 

training set was used to determine the 

model parameters. The validation set 

validated the model's predictability. The test 

set provided a final, independent 

assessment of model predictability [22]. 

The mean squared error (MSE) employed in 
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QSPR was a statistical tool for assessing the 

performance of a predictive model. It 

calculated the average of the squared errors 

between calculated and experimental values 

for a set of substances. The MSE is defined 

by [16,21] 

2

1

ˆ( )

1

N

i i

i

Y Y

MSE
N k






 


 (5) 

The projected results of the QSPR models 

were evaluated by the absolute value of 

the relative error (ARE,%) [23]. The 

experimental and computed stability 

constants were logβ11,exp and logβ11,cal, 

respectively, with n representing the 

number of test compounds. The typical 

absolute values of the relative error 

MARE,% [23] were the following 

equation. 

1

11,exp 11,cal

11,exp

,%

,%

log log
.100

log
                

n

i

i

ARE

MARE
n

n

 










 (6)  

3. RESULTS AND DISCUSSION 

3.1. Linear regression modeling 

To modelling linear regression, the data 

set had to be randomly split into training 

and test subsets, with the training subset 

taking up 80% of the data. In the first 

step, QSPRMLR models were built using 

complexes from the training group, which 

included 0-3D molecular descriptors and 

quantum parameters. These QSPRMLR 

models evaluated the model quality using 

statistical measures such as k number of 

molecular descriptors, R
2

train, R
2

adj, Q
2

LOO, 

MSE, and F-stat. The highest values of 

R
2

train, R
2

adj, Q
2

LOO, and F-stat indicated 

model quality, as did the lowest value of 

MSE. Table 2 showed the statistical 

values for the QSPRMLR models (k of 4). 

The results showed that five models were 

built in Table 2. In the next step, the 

selection of the best MLR model was 

performed by external evaluation on an 

independent data set (Table 4) based on 

two parameters: Q
2

ext and MARE%. The 

results in this step showed that the MLR3 

model (in bold in Table 2) was the best 

model selected for ANN model 

development and design of new ligands 

and metal-thio complexes. 

Table 2. The results of QSPRMLR models construction 

No QSPRMLR models 

1 
log11 = -9.527 - 0.925×xp3 + 2.389×SsCH3 - 30.45×

1
N + 21.81×xch6 

R²train = 0.945; R
2
adj = 0.940; Q

2
LOO = 0.928 ; MSE = 0.535 ; F-stat = 210.31 

2 
log11 = 8.081 + 0.002×core-core repulsion - 18.89×xp5 + 18.45×xp6 - 23.45×MaxQp 

R²train = 0.942; R
2
adj = 0.938; Q

2
LOO = 0.912; MSE = 0.548; F-stat = 200.02 

3 
log11 = 7.441 - 0.177×Dipole - 1.338×xp5 + 2.409×SsCH3 + 27.86×xch6 

R²train = 0.921; R
2

adj = 0.915; Q
2

LOO = 0.886; MSE = 0.639; F-stat = 143.72 

4 
log11 = 66.67 - 0.105×Cosmo Area - 3.893×nelem - 0.516×ncirc - 0.943×numBHa 

R²train = 0.951; R
2
adj = 0.947; Q

2
LOO = 0.882; MSE = 0.505; F-stat = 237.91 

5 
log11 = 60.44 - 0.063×Cosmo Volume - 4.012×nelem - 0.388×ncirc - 5.149×Hmax 

R²train = 0.958; R
2
adj = 0.955; Q

2
LOO = 0.944; MSE = 0.465; F-stat = 282.23 
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Therefore, the QSPRMLR3 model's 

variables included Dipole, xp5, SsCH3, 

and xch6, all of which had excellent 

statistical values. Specifically, the Dipole 

parameter was the 3D index that 

represented the molecule's dipole moment 

[24]. The Gasteiger-Marsili approach, 

which was implemented in the QSARIS 

tool [20], calculated the dipole moment 

based on the 3D structure and charges. 

Meanwhile, xp5 and xch6 were simple chi 

indices [24, 25]. The xp5 represented the 

simple 5th-order indices, which were part 

of the chi path indices of simple chi 

indices. The parameter was defined up to 

the fifth-order path of the molecule. The 

xch6 was a chi chain six from the chain 

chi indices of simple chi indices, also 

known as the simple 6th-order chain chi 

index. The atom type count index, Ssch3, 

counted the number of (-CH3) groups in 

the molecule. It demonstrated that the 

presence of -CH3 groups in the molecule 

had a significant impact on the complexes' 

stability constant values. So, critical 

indices would be used to create new thio 

and metal-thio compounds.  To use these 

parameters for the purpose of developing 

new ligands, this study designed hundreds 

of new compounds based on a clear 

concept explained below. Then, 

optimization and descriptor calculations 

were performed as performed on the 

training compounds. Hundreds of new 

compounds were screened to select the 

ones that fit the constructed model by 

inputting the descriptors of these new 

compounds into the model and 

performing AD and Outliers evaluation 

techniques to select the suitable 

compounds. 

3.2. Modeling non-linear ANN model  

The neural network was trained with four 

selected descriptors as input values and 

log11 stability constants as output values. 

The QSPRANN models were created by 

non-linear characterization of an ANN. 

The MLP-ANN of I(4)-HL(m)-O(1) were 

created using the Levenberg-Marquardt 

algorithm. Table 1 showed the utilization 

of 54 metal-thiosemicarbazone complexes 

as a training set. The non-linear ML of 

ANN I(4)-HL(m)-O(1) model was utilized 

by determination of the stability constant 

log11 values on the external data set, as 

illustrated in Table 4. Table 3 showed the 

initial results of m values neurons. 

Table 3. The initial screening of MLP-ANN I(4)-HL(m)-O(1) model 

Symbol 
The m values of 

HL(m) layer 
R

2
train Q

2
test Q

2
CV 

Training 

error 

Test 

error 

Validation 

error 

Training 

algorithm 

ANN1 HL(3) 0.987 0.913 0.967 0.075 0.143 0.099 Tanh 

ANN2 HL(7) 0.985 0.918 0.966 0.087 0.135 0.104 Logistic 

ANN3 HL(4) 0.985 0.920 0.965 0.088 0.133 0.124 Logistic 

ANN4 HL(3) 0.986 0.918 0.963 0.082 0.135 0.115 Exponential 

ANN5 HL(6) 0.982 0.919 0.966 0.109 0.135 0.116 Logistic 

In the next stage, an external dataset was 

utilized to train the optimal neural 

network model. This was followed by an 

external evaluation of the MLR model 

using the external validation technique, 

specifically employing the Q
2

ext index. 

The results revealed the ANN model with 

the architecture I(4)-HL(4)-O(1), as 

illustrated in Figure 2, which was 

emphasized in bold in Table 3. This 

model achieved the highest predictability, 

reflected in a Q
2

ext value of 0.899, as 

shown in Figure 3. Consequently, a 



Tạp chí phân tích Hóa, Lý và Sinh học - Tập 31, Số 3A/ 2025 

 

227 

logistic transfer function was employed to 

identify the best network training and to 

determine the optimal parameters for the 

artificial neural network (ANN), 

including a learning rate of 0.01, a 

momentum constant of 0.05, and a 

convergence objective of 10
-10

. 

Therefore, the optimal neural network 

I(4)-HL(4)-O(1) chosen was statistically 

significant, with values R
2

train = 0.985, 

R
2

test = 0.920, and Q
2

CV = 0.965. 

Furthermore, the results in Figure 3 

demonstrate that the MLP-ANN4 of I(4)-

HL(4)-O(1) model outperforms the MLR 

model. Thus, the MLP-ANN4 model was 

appropriate for predicting the external 

dataset. 

 

Figure 2. Architecture of neural network I(4)-

HL(4)-O(1) 

3.3. Validation of QSPR models 

A comprehensive QSPR model had to be 

externally assessed using an independent 

data source [21]. It was the final phase in 

the model-building procedure. The other 

dataset for external validation containing 

twelve metal-thio compounds from the 

published articles was used to validate 

both the QSPRMLR and QSPRANN models. 

The evaluation results were displayed in 

Table 4. 

According to the calculable data in Table 

4, the MARE values for the linear and 

non-linear ML I(4)-HL(4)-O(1) models 

were 7.898 % and 5.711 %, respectively. 

The non-linear ML model of ANN I(4)-

HL(4)-O(1) outperformed the linear 

model in terms of predictability, with 

projected log11,cal values closely 

matching experimental log11,exp values. 

Based on the data analysis in Table 4 and 

Figure 3, the predictions from the two 

models are conclusive. Both the ANN4 

model and the MLR3 model demonstrated 

a strong correlation between the predicted 

values and the experimental values, with 

Q²ext values of 0.899 and 0.814, 

respectively. Besides, the MARE, % 

value also showed that the choice of the 

ANN4 model among the five initially 

developed ANN models (Table 3) was 

reasonable. At the same time, the result 

also shows that the prediction of the 

ANN4 model was better than the MLR3 

model with the MARE, % values of 5.711 

and 7.898, respectively. 

The ANOVA approach was used to 

examine the differences between the 

values of both models in Figure 3. 

Consequently, the differences were 

minimal (F = 0.0751 < F0.05 = 3.2849). 

 

Figure 3. The Q
2
ext and MARE(%) values of 

models 
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Table 4. The data set for validating externally the models 

No. 
Ligands Metal  

ions 
logβ11.exp 

logβ11.cal 
ref. 

R1 R2 R3 R4 MLR ANN 

1 H -C7H7O3 H H Ni
2+

 6.489 7.316 6.999 [26] 

2 -CH3 C7H7N2 H H Ni
2+

 11.080 10.799 11.091 [8] 

3 -CH3 C7H7N2 H H Cu
2+

 11.530 10.701 10.465 [8] 

4 H -C7H7O2 H H Pb
2+

 7.100 8.042 7.408 [11] 

5 H -C7H7O2 H H Cd
2+

 7.340 8.297 7.407 [11] 

6 H -C7H7O2 H H Zn
2+

 7.470 8.404 7.623 [11] 

7 H -C7H7O2 H H Fe
2+

 8.150 8.524 7.882 [11] 

8 -C6H4 -C7H6NO H H Cu
2+

 5.748 5.523 5.034 [27] 

9 H - C9H7NO H - Cu
2+

 9.060 7.591 7.858 [13] 

10 H - C9H7NO H - Pb
2+

 7.307 7.362 6.914 [13] 

11 H - C9H7NO H - Zn
2+

 7.039 6.605 6.966 [13] 

12 H - C9H7NO H - Cd
2+

 6.611 6.732 7.181 [13] 

     MARE, % 7.898 5.711  

3.4. Development of novel metal-thio 

derivatives 

The study made the structuring new thio 

ligands by adding selected phenothiazine 

and carbazole derivatives, to form new 

thio and metal-thio complexes between 

thio ligands with metal ions, such as Cu
2+

, 

Ag
+
, Cd

2+
, Zn

2+
, and Ni

2+
. The selected 

compounds were referred in published 

documents [28-30]. The design was based 

on the four descriptors, Dipole, xp5, 

Ssch3, and xch6, of QSPR models. The 

new thio ligands were developed by 

attaching the groups at the R4 site of the 

structure (Figure 1a), and the other 

positions, such as R1, R2, and R3, were 

hydrogen atoms. 

Various freshly constructed compounds 

were drawn, and structural variables were 

derived. They were carefully selected and 

integrated into the training data set for 

check AD and Outlier [21], utilizing Cook's 

distance value (DCook). QSPR models would 

forecast new derivatives inside the AD of 

the training dataset with |DCook| values less 

than 1.0, whereas derivatives found in the 

dataset's outliers with |DCook| values more 

than 1.0 will be rejected.  

The sixteen novel complexes of eleven 

thiosemicarbazone ligands (Figure 4) 

matched the AD criteria, and their stability 

constant was anticipated by the two 

developed QSPMLR and QSPRANN models. 

Figure 6 showed the predicted log11,pred 

values for sixteen novel metal-thio 

complexes.
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Figure 4. Structures of eleven new thiosemicarbazone ligands 

Similar properties of newly optimized 

complexes were added to the training 

dataset to precisely manufacture and 

screen many novel thiosemicarbazone-

ligand molecules. The stability constants 

that had to exceed the AD and Outliers 

requirements were anticipated by new 

complexes using the absolute values D-

Cook. The findings are shown in Figure 5. 

  

Figure 5. The D-Cook values of the building data set and new complexes 

A comparison of calculated values from 

MLR and ANN models (log11,pred) using 

single-factor ANOVA revealed no 

significant difference (F = 0.9141 < F0.05 

= 4.1709). 

 

Figure 5. The log11,pred values of sixteen metal-thio compounds 
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4. CONCLUSION 

The study found that the in silico 

approach effectively models for 

complexes between metal ions and thio 

ligands, with stability constants log11 

values. The QSPRMLR models were 

constructed using multivariate regression 

techniques. The 4-decriptors linear model 

effectively generated the best non-linear 

ML model, ANN of I(4)-HL(4)-O(1). The 

created QSPR models were statistically 

acceptable. These QSPR models could 

accurately estimate the log11 stability 

constants of metal-thio complexes. QSPR 

models predicted logβ11 stability constants 

for complexes in the external set, 

consistent with experimental results. 

QSPR models might predict logb11 

stability constants for freshly designed 

ligand complexation with metal ions. As a 

result, sixteen novel metal-complexes 

were newly designed using QSPR models, 

and these results promised to bring many 

values to fields such as analytical 

chemistry, environment, and pharmacy. 
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