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TOM TAT

NGHIEN CUU PHO NMR CUA MOT SO 4-FORMYLCOUMARIN 4-(TETRA-O-
ACETYL-B-D-GLUCOPYRANOSYL)THIOSEMICARBAZONES

Cac tinh chdt phé *H va 3C NMR ciia cdc hop chdt 6- va 7-alkoxy-4-formyl-coumarin
4-(tetra-O-acetyl-f-D-glucopyranosyl)thiosemicabazon da dwoc thao luan. Cdc tin hiéu
phé dwoc qui két dwa vao phé 2D NMR COSY, HSOC va HMBC. Hang sé ghép cdp J =
9,00-9,25 Hz giita proton H-1"va H-2’ trong hop phan glucopyranose di xdc nhén cau

hinh anomer f ciia cdc thiosemicarbazone nay.

INTRODUCTION

The compounds containing coumarin
ring are abundantly found in many
natural plants [1-3]. The synthesis of ring were synthesized in good yields by
organic compounds containing this ring the reactions of substituted 3-
acetylcoumarins with 4-(tetra-O-acetyl-3-

moiety also show the biological activity
[8,9]. Some peracetylated glycopyranosyl
thiosemicarbazones containing coumarin

has long been of interest because of the

remarkable biological activity  D-glucopyranosyl)thiosemicarbazide in
compounds of these [4,5].  our laboratory [10-12]. In progress of our
Thiosemicarbazides  exhibit  various works on glycopyranosyl

biological activities and are extensively thiosemicarbazones of coumarins, we

applied in medicine, particularly in the
treatment of tuberculosis [6,7]. Several
compounds with a thiosemicarbazone
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herein report the study on the NMR
spectral characteristic of some substituted
4-formylcoumarin 4-(tetra-O-acetyl-B-D-



glucopyranosyl) thiosemicarbazones
(Scheme 1).

EXPERIMENTAL PART

Substituted 4-formylcoumarin 4-(tetra-O-
acetyl-pB-D-glucopyranosyl)
thiosemicarbazones 3 (Scheme 1) were
synthesized in following procedure [5c].
Their 'H and *C NMR spectra was
recorded on FT-NMR Avance AV500
Spectrometer  (Bruker, Germany) at
500.13 MHz and 12576 MHz,
respectively, using DMSO-dgs as solvent
and TMS as an internal standard.

RESULTS AND DISCUSSION

The assignments of *H and **C for 6- and
7-substituted-4-formylcoumarin 4-(tetra-
O-acetyl-p-D-
glucopyranosyl)thiosemicarbazones 3a-f
were confirmed using COSY, HMBC
and HSQC methods through the case of
compound 3c (R=6-OPn). The 'H and
¥C NMR spectral data of these
thiosemicarbazones were listed in Tables
1 and 2. The *"H NMR spectra of these

thiosemicarbazones showed resonance
signals for proton NH-2 at
CHO
OAc
AcO (@]
+ AcO
(0] OAc

S

NHC NHNH, ————

glacial CH,CO,H

6=12.23-12.09 ppm (singlet), for proton
NH-4 at 6=9.19-9.11 ppm (doublet) with
coupling constants of 3J=9.0-9.5 Hz. The
signal of NH-2 proton is in the downfield
region due to the influence of anizotropic
effect from adjacent azomethin bond.
Protons in glucopyranose ring have
resonance signals in  range at
6=6.03—3.98 ppm. Methyl groups in
acetate ester have chemical shifts in
range at 6= 2.00-1.92 ppm in singlet,
usually as a set of four signals (Table 1).
The coupling constants between protons
H-1 (6=6.03-5.99 ppm) and H-2’
(6=5.35-5.34 ppm) are J=9.00-9.25 Hz,
which suggests that the link proton at
position C-1° and C-2’ located trans
position to each other, meaning that the
substituent in carbon C-1’ is located in
the B anomeric position. Especially, in
the sugar region, proton H-5" (6=4.11
ppm) has coupling interactions with
proton H-6’a (6=4.23 ppm) and H-6’b
(0=3.99 ppm). Coupling constants for
these interactions are J=10.00-12.25,
2.5- 4.5 and ~1.75 Hz, respectively.

OAc

2

96% EtOH

MW irradiation

Scheme 1. Substituted 4-formylcoumarin 4-(tetra-O-acetyl-S-D-
glucopyranosyl)thiosemicarbazones 3a-f.

69



The *C NMR spectral data in Table 2
show the following spectral characteristic
of these thiosemicarbazones. The carbon
of the aromatic ring with the signals in
the 6=160.3-101.6 ppm. The carbon in
the glucopyranose ring is chemical shifts
in the range 6=81.7-61.7 ppm. Carbon
atoms in acetyl had signals in the range
6=20.5-20.3 ppm (for methyl group) and
170.0-169.3 ppm (for carbonyl group).
Resulted HMBC spectrum of compound
3b show the long-ranged interaction that
appeared in spectrum. The alkoxy groups
have corresponding signals for methyl

and methylene groups. The *H-'H COSY
spectrum of conpound 3b shows the
interactions between the two protons at
the carbon atoms in the molecule
together. The 'H-'H interactions appear
in the spectrum (Fig. 1, left) of 4-formyl-
7-ethoxycoumarin 4-(2,3,4,6-tetra-O-
acetyl-p-D-glucopyranosyl)-
thiosemicarbazone 3b as follows: 9.12
(NH-4)<>5.99 (H-1°)<>5.35 (H-
2°)5.43 (H-3))&4.97 (H-4)e4.11
(H-5")4.23 (H-6"a);3.99 (H-6’b); 4.23
(H-6’a)<>3.99 (H-6’b) and 4.14 (-OCH,-
)<>1.36 (CHs).

s C.2r OCH2 CHiCcO CHa-

cosve
(% ?
s e
AN A2 =
Py -

S~ HA

CHa-

Figure 1. 1H—1H7 COSY (left) and HMBC (right) spectra (expanded) of thiosemicarbazohe 3b.

The obtained HMBC spectral show the
indirect (long-range) interactions of the
protons with the carbon atoms, for
example, the carbon C=S (6=179.0 ppm)
interacts with protons NH-2 (5=12,22
ppm) of thiosemicarbazone linkage and
H-1" (6=5.99 ppm) of the pyranose ring;
carbon atom C-7” (6=161.7 ppm) has the
interaction with the proton H-5" (6=7.83
ppm), H-6" (6=7.03 ppm) and the
- OCHy— group (6=4.14 ppm) of 7-
ethoxy. One another  noteworthy
interaction is the one of carbon C-5
(0=72.3 ppm) for the protons H — 4’
(0=4.97 ppm), H-6’a (0=4,23 ppm) and
H-6’b (6=3.99 ppm) (Fig. 1, right).
Based on the 2D NMR spectra and the
1D NMR spectra of the
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thiosemicarbazone 3b, the position of the
resonance signals of proton and carbon-
13 has been assigned (Tables 1 and 2).
CONCLUSIONS

The H and C NMR spectra of
substituted  4-formylcoumarin 4-
(2,3,4,6-tetra-O-acetyl-p-D-
glucopyranosyl)thiosemicarbazone have
been studied and discussed in detail. The
values of the coupling constant
J=9.00- 9.25 Hz between the protons H-
1’ and H-2 of component glucopyranose
indicated that these thiosemicarbazones
have B-anomeric configuration.
Acknowledgments. Financial support for
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Table 1. 'H NMR spectral data of thiosemicarbazones 3a-f /d (ppm), multiplicity, J (Hz)]

Proton 6-OBu (3a) 6-OiBu (3b) 6-OPn (3c) 6-OiPn (3d) 7-OiBu (3¢) 7-OiPn (3f)
CH=N 8.54:s5.1H 8.51;s.1H 8.55;s;1H 8.55;s;1H 8.45;s;1H 8.45;s;1H
NH-2 12.09;s;1H 12.08;s;1H 12.09;s;1H 12.09;s;1H 12.22;5;1H 12.23;5;1H
NH-4 9.17;d;1H; J 9.0 9.17;d;1H;;J 8.5 9.19;d;1H; J 9.0 9.18;d;1H; J 8.5 9.11;d;1H; J 9.5 9.12;d;1H; J 9.5
H-1° 6.03;t. 1H; J9.25 6.03;t; 1H; J 9.25 6.03;t. 1H; J9.25 6.03;t. 1H; J9.25 5.99;t. 1H; J 9.0 5.99;t. 1H; J9.25
H-2° 5.29;t. 1H; J 9.25 5.32;t; 1H; J 9.0 5.30;t. 1H; J 9.25 5.29;t. 1H; J 9.25 5.35;t. 1H; J 9.25 5.35;t. 1H; J 9.0
H-3° 5.43;t. 1H;J 9.5 5.43;t. 1H; J 9.5 5.43;t.1H;J9.5 5.43;t.1H; J9.5 5.43;t.1H; J9.5 5.43;t.1H; J 9.5
H-4° 4.97:t. 1H; J 10.0 4.98;t. 1H; J9.75 4,97;t.1H;J 9.75 4.97;t. 1H; J9.75 4.97;t. 1H; J9.75 4.97;t. 1H; J9.75
H-5° 412;00d;1H; 12045100 411;dad1H; J2045100 413;dad;1H; J2.384.389.88 4.12;ddd;1H;J2.13 4.10,ddd;1H; J 2.38/4.38,9.88 413-411m;3H
H-6’a 4.22;dd:1H; 150,125 4.23,dd;1H; 345125 4.22;dd;1H; 350,125 4.22,dd;1H; 35,0125 4.23:dd;1H; J4.75,12.75 4.22:dd:1H; J4.2512.25
H-6’b 399;dd;1H; J.75,12.25 3.99:d;1H;J 11.0 3.99;dd:1H; J20,125 399;dd:1H; J.75,12.25 4.00 - 3.98;m;1H 3.99:d;1H;J 12.0
H-3” 7.32;s;1H 7.30;s;1H 7.34;s;1H 7.34;s;1H 7.07;s;1H 7.07;s;1H
H-5” 7.30;s;1H 7.22-7.21;m;2H 7.29;s;1H 7.31;s;1H 7.84:d;1H;J 8.0 7.83;d.1H;J 8.5
H-6” - - - - 7.06-7.05;m;2H 7.05-7.03;m;2H
H-7” 7.26;dd;1H; J 2.25,9.0 7.34;dd;1H; J 3.0,9.0 7.28;d;1H;J 8.25 7.28;dd;1H; J 2.5,9.0 - -
H-8” 7.40;d;1H;J 9.0 7.22-7.21;m;2H 7.41;d;1H; 3 8.5 7.41;d;1H; J 9.0 7.06 — 7.05;m;2H 7.05-7.03;m;2H
CH5;CO 2.00-1.93;5;12H 2.00-1.93;s;12H 2.00-1.92;s;12H 2.00-1.92;s;12H 2.00-1.93;s;12H 2.00-1.93;5;12H
4.05;t. 2H; J 6.75, 408t.2H; J6.75,
4061t 2H;J70, 413421;m2H,
OCH,CH,CH,CH; 3.77;d;2H; J 6.0, . OCH,CHLCH(CHg),
. OCHY{CH,):CH; 1. 76,uintet 2H; J OCH,CH,CH(CHa); 164:quartet
1.74;quintet. 2H; J OCH,CH(CHj3),; 2.06- 165quartet. 2H; J6.75, 387,d2H; J650CH,CH(CHy),
70,0CHCH,/CH,),CHz 142, 2H;J700CHCHCH(CHy
Other 6.75,0CH,CH,CH,CHjs; 2.02;m,1H, it 2] OCH,CH,LCH(CHy), 205; septet 1H; J65, 17 13
Proton 1.46;sextet,2H; J6.75, OCH,CH(CHy),; « : 181;septet 1H; J6.75, OCH,CH(CHy), '
700(CHY,CHLHLCH; 1.37:5extet 700CHLHLCH(CH),
OCH,CH,CH,CHg; 0.99;d;6H; J, 2HI70 OCH)CHCH, OCH,CH,CH(CH,), 099,d,6H; J65, OCHLCH(CH), 0GB I70
0.95;t,3H; J6.75, OCH,CH(CH), 0803 J70,0CH)CH, 09506H, J67, OCHCHCHCH,
OCH,CH,CH,CH, e OCHLCHLH(CHy,
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Table 2. **C NMR spectral data of thiosemicarbazones 3a-h /d (ppm)]

: 6-OiPn 7-OiBu .
Carbon | 6-OBu (3a) | 6-OiBu (3b) | 6-OPn (3c¢) 7-0OiPn (3f)
(3d) (3e)
C=S 179.0 178.9 178.9 179.0 179.0 179.0

CH3CO | 170.0-169.4 | 170.0-169.3 | 170.0-169.3 | 170.0-169.3 | 170.0-169.3 | 170.0-169.3
C=0

160.1 160.1 160.1 160.1 162 161.9
(lactone)

CH=N 137.2 136.7 137.8 137.0 137.4 137.4
C-1’ 81.7 81.7 81.7 81.7 81.7 81.6
C-2’ 71.0 71.0 71.0 71.0 70.8 70.8
C-3’ 724 724 724 72.4 724 72.3
C-4 67.8 67.8 67.8 67.8 67.8 67.8
C-5° 72.7 72.7 72.7 72.7 72.7 72.7
C-6 61.8 61.8 61.7 61.7 61.7 61.7
C-3” 107.6 107.6 107.6 107.6 109.2 109.2
C-4” 144.0 143.9 144.4 144.0 144.4 144.4
C-47a 117.6 117.5 118.1 119.9 110.3 110.3
C-5” 120.0 111.8 113.0 118.1 125.9 125.8
C-6” 155.0 155.1 147.8 147.8 113.0 113.0
C-77 118.1 118.1 119.9 117.5 160.3 160.3
C-8” 118.1 119.9 117.5 118.1 101.6 101.6

C-87a 147.0 147.8 155.0 155.0 155.5 155.5

CH3;CO | 20.5-20.3 20.5-20.3 20.5-20.3 | 20.5-20.3 | 20.5-20.3 | 20.5-20.3
68.1 67.8 66.9
67.8 74.4 28.3 374 74.0 371
Other 30.7 27.8 | ' 74.4 '
carbon in 27.7 24.6 24.6
18.8 19.0 27.6
alkoxy 21.8 22.4 22.3
13.7 18.9
group 13.8 14.0 14.0
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