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TÓM TẮT 

 

PHÁT TRIỂN CỦA CÁC PHỨC CHẤT MỚI GIỮA ION KIM LOẠI VÀ DẪN XUẤT 

THIOSEMICARBAZONE DỰA TRÊN SỰ MÔ HÌNH QSPR  

SỬ DỤNG PHƯƠNG PHÁP MLR VÀ ANN 

 

Trong nghiên cứu này, hằng số bền (log11) của 31 phức chất mới giữa một số ion kim loại và dẫn 

xuất thiosemicarbazone được dự đoán từ kết quả của sự mô hình hóa mối quan hệ định lượng cấu trúc-

tính chất (QSPR). Những mô hình QSPR này được phát triển từ 76 giá trị log11 của các phức chất 

thực nghiệm bằng cách sử dụng hai phương pháp phổ biến như hồi quy tuyến tính đa biến (QSPRMLR) 

và mạng nơ ron nhân tạo (QSPRANN). Bộ mô tả của các phức chất được tính toán từ cấu trúc tối ưu, 

trong đó các cấu trúc này được tối ưu bằng các tính toán hóa lượng tử bán thực nghiệm với phương 

pháp mới PM7. Mô hình QSPRMLR tốt nhất tìm được bao gồm năm mô tả: diện tích Cosmo, thể tích 

Cosmo, ko, SHBa và Gmin. Kết quả nhận được các giá trị thống kê phù hợp (R2train = 0,821; Q2LOO 

= 0,789; RMSE = 0,745; Fstat = 64,3644 và PRESS = 45,92). Hơn nữa, mô hình mạng nơ ron 

QSPRANN với kiến trúc I(5)-HL(10)-O(1) được tìm thấy với các giá trị thống kê: R2train = 0,9567, 

Q2validation = 0,9841 và Q2test = 0,9825. Những mô hình QSPR này đã được kiểm tra chặt chẽ bằng 

các kỹ thuật đánh giá ngoại và kết quả rất gần với giá trị thực nghiệm. Vì vậy, các kết quả từ các mô 

hình QSPR có thể được sử dụng để thiết kế các phức chất mới nhằm ứng dụng trong hóa học phân tích. 

Keywords: Artificial neural network, Multivariate linear regression, QSPR, Stability constants logβ11, 

Thiosemicarbazone. 

 

1. INTRODUCTION 

Thiosemicarbazides were first introduced in 

the literature in the early 19th century [1] and 

thiosemicarbazones were reported as valuable 

derivatives for ketones and aldehydes in the 

early years of the 20th century. Until now, 

thiosemicarbazone derivatives have been 

synthesized in practice. Furthermore, the 

diverse structure of thiosemicarbazone, 

especially the appearance of potential donors 

led to their easy complexation with many metal 

ions. This is the reason why this group of 

agents has resulted in many useful applications 

[1]. In the field of chemistry, 

thiosemicarbazone ligands and their complexes 

have been receiving more interest in the area of 

analytical chemistry. Recently, the stability 

constant of the mentioned complexes has been 

discovered for related applications like 

analytical chemistry with the UV/VIS 

spectrophotometric technique [2]. 

The QSPR modeling is popularly used in many 

fields as in silico approach for predicting 

properties of chemical compounds based on 

261



the relationships between the structural 

characteristics and the properties [3]. 

According to statistics till 2016, the number of 

published works related to QSPR models was 

about 11,000 projects [9]. Nowadays, the 

QSPR method is widely used and is seen as an 

effective method for finding new compounds 

[3]. The QSPR models are developed using 

mathematical methods, normally, there are two 

popular approaches to establish QSPR models, 

that is linear regression (Multivariate linear 

regression, Partial least square regression, 

Principal component regression) and machine 

learning method (Support vector Regression, 

Artificial neural network) [3]. 

In this work, we developed the QSPR models 

with the logarithm of stability constants 

(logβ11) of the [ML] complexes between 

thiosemicarbazone ligands with the metal ions 

(M = Cu2+, Co2+, Mn2+, Cr3+, Cr6+, Fe2+, Fe3+, 

Zn2+, Cd2+) in aqueous solution. The logβ11 

values were collected from an experimental 

published database (Table 1). The 2D and 3D-

descriptors of metal-complexes are taken from 

the results of calculation on the structure 

optimization of complexes using semi-

empirical quantum mechanics [4-5]. The two 

kinds of QSPR models were used by using the 

multiple linear regression (QSPRMLR) and the 

artificial neural network (QSPRANN). These 

QSPR models were internally and externally 

evaluated on two independent datasets. 

Besides, a new series of thiosemicarbazone 

ligands and complexes were designed and 

calculated the stability constant from the 

results of the developed QSPR models. 

2. COMPUTATIONAL METHODS 

There are several steps to construct a QSPR 

model. The process must comply with The 

Organisation for Economic Cooperation and 

Development (OECD) principles [6]. All are 

presented in the following sections. 

2.1. Structure of complex and dataset 

The thiosemicarbazone ligands can form 

several kinds of complexes with metal ions. 

They are known as monodentate, bidentate and 

tridentate ligands. This work chooses the 

monodentate ligand type to form the ML 

complex that reacted between a metal ion (M) 

and a thiosemicarbazone ligand (L). The 

structure of the selected complexes is shown in 

Figure 1. 

a)             b)      

Figure 1. Structure of the thiosemicarbazone ligand (a) and the  

metal-thiosemicarbazone complex (b) 

 

The properties of complexes is characterized 

by the stability constant (β11) values and  the 

experimental values that used in this research 

were published in the article. They are target 

values in this research. So, the data mining is 

the first step in QSPR modeling research [3]. 

Firstly, big data was mined from valuable data 

sources [7-16], then the methods of cluster 

division as k-means and agglomerative 

hierarchical clustering (AHC) were used to 

separate it into several data subsets [3] by 

using the XLSTAT2016 package [17].  In this 

study, a dataset including the 76 values logβ11 of 

metal-thiosemicarbazone complexes was 

utilized to develop the QSPR models in Table 1. 

2.2. Calculation of structural descriptors  

The molecular descriptors are recognized as 

the variables of the descriptive equations in the 

QSPR modeling. They can be definited as 

basic numerical characteristics regarding the 

molecular structures. They have been formed 

through years of development covering many 
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different theories and until now they are relatively 

complete [3]. The metal-thiosemicarbazone 

complexes were sketched the structures by using 

ChemBioDraw 13.0 [18] and calculated the 

molecular descriptors from the QSARIS tool [19-

20] after they were optimized by using the semi-

empirical quantum method with new version PM7 

on the MoPac2016 system [6]. 

2.3. Development of QSPR models 

As a mentioned-above matter, the two 

modeling methods were presented to develop 

the QSPR regression models in this 

investigation, which are MLR and ANN 

methods. Attentively, the artificial neural 

network models were deeply developed based 

on the input variables of the QSPRMLR model. 

In the QSPRMLR modeling method, the values 

logβ11 are confirmed that they are the endpoint 

values, in this case, they are dependent 

variables (Y) while the numerical values of 

structural descriptors (X) are the independent 

variables in the equation. When the values of X 

variables correlate well with the values of the 

Y targets, the equation of the QSPRMLR model 

is represented as follows: [20-21] 

0

1

k

j j

j

Y b b X


                 (1) 

where b0, is the constant of the model, bj is the 

regression coefficients and k is the number of 

variables in the regression equation. 

 

Table 1. The 76 stability constants of complexes (n) in experimental dataset with minimal (logβ11,min) 

and maximal (logβ11,max) values 

No 
Thiosemicarbazone ligand Metal 

ions 

Number of 

complexes, n logβ11,min logβ11,max Ref. 
R1 R2 R3 R4 

1 H H H -C6H3BrOH Cu2+ 1 5.633 5.633 [7] 

2 H H CH3 -CH=N-NHC6H5 Co2+ 4 9.900 10.220 [8-9] 

3 H H CH3 -CH=N-NHC6H5 Mn2+ 3 9.600 9.870 [9] 

4 H H H -C6H3(OH)OCH3 Cr6+ 1 4.842 4.842  [10] 

5 H H H -C9H5NOH Zn2+ 1 6.680 6.680 [11] 

6 H H H -C6H3(OH)OCH3 Mn2+ 3 4.120 5.280 [12] 

7 H H H -C6H3(OH)OCH3 Pb2+ 4 6.530 7.100 [12] 

8 H H H -C6H3(OH)OCH3 Fe2+ 4 7.690 8.150 [12] 

9 H H H -C6H3(OH)OCH3 Co2+ 4 7.860 8.470 [12] 

10 H H H -C6H3(OH)OCH3 Ni2+ 4 8.110 8.650 [12] 

11 H H -CH3 -C6H4OH Cu2+ 3 5.810 6.840 [13] 

12 H H -CH3 -C6H4OH Ni2+ 2 5.140 5.310 [13] 

13 H H H -C10H6OH Mg2+ 2 3.310 3.250 [14] 

14 H H H -C10H6OH Cd2+ 4 5.930 6.560 [14] 

15 H H H -C10H6OH Pb2+ 1 6.570 6.570 [14] 

16 H H H -C10H6OH Zn2+ 1 7.170 7.170 [14] 

17 H H - -C9H8NO Pb2+ 7 7.307 8.109 [15] 

18 H H - -C9H8NO Zn2+ 8 7.039 8.160 [15] 

19 H H - -C9H8NO Cd2+ 7 6.611 7.889 [15] 

20 H H - -C9H8NO Mn2+ 8 5.439 6.041 [15] 

21 H H H -C6H4NO2 Cr3+ 2 10.150 11.250 [16] 

22 H H H -C6H4NO2 Fe3+ 2 11.100 11.630 [16] 
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In addition, an artificial neural network (ANN) 

is a non-linear regression method that is known 

as the deep learning method. Nowadays, this 

method is used widely in many fields like 

information technology, drug designs, 

chemistry and several other fields [22-23]. In 

this study, we developed the QSPRANN models 

with the multilayer perceptron (MLP) type by 

using an error back-propagation algorithm 

[24]. The architecture of the MLP-ANN type 

has the formation I(k)-HL(m)-O(n). It includes 

three layers: the input layer (k), the hidden 

layer (m) and the output layer (n). Therein, the 

input layer is the variables of the resulted MLR 

model, the number of hidden neurons is 

determined by neurons on the input and output 

layer and the output layer is the stability 

constant logβ11 values. The construction of the 

ANN model takes place in two stages. Firstly, 

the m values of hidden neurons are prematurely 

screened by using Neural Designer tools [25], 

then the best ANN model is excommunicated 

through external validation on a data set. The 

second step is run on the Matlab 2016a [26] 

with Neural Network tool (nntool) toolbox and 

the process of ANN model training uses two 

major transfer functions in the neural network 

research: the hyperbolic sigmoid tangent and 

log-sigmoid transfer function. Two transfer 

functions are defined in the following 

equations: [24-27] 
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2.4. Validation of QSPR models 

According to OECD principles [6], the QSPR 

models have to meet the requests of statistics, 

so it is essential to validate internally and 

externally on two different datasets and the 

good models must be received the acceptance 

criteria of Tropsha’s. The indices consist of the 

values R2
train and Q2

LOO for an internal set or 

Q2
CV for an external-validation set [20-21]. 

These standard criteria are calibrated by the 

same formula (4): 

2

2 1

2

1

ˆ( )

1

( )







 







n

i i

i

n

i

i

Y Y

R

Y Y

             (4) 

where Yi, Ŷi and Ȳ are the experiment, 

calculated and average values, respectively. 

The root means square error (RMSE) 

determined by the equation 5, is the square root 

of the mean squared error (MSE). [20-21]. 

Meanwhile, the ANN models are trained until 

the mean square error (MSEANN) is minimized 

followed by a difference of the output and real 

values [24-27]. Consequently, MSEANN is the 

average squared error between the network 

outputs (o) and the target outputs (t). It is 

calculated by the equation (6): 
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where N is the number of variables in the 

training dataset and k is the number of 

variables in the models. 

Furthermore, this work uses the average 

absolute values of the relative errors MARE 

(%) to compare the quality of the models. 

MARE (%) is presented as follows [20]  

11,exp 11,cal

11,exp

log log
100
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,%

 
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
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n

 (7) 

where n is the number of observations; β11,exp 

and β11,cal are the experimental and calculated 

stability constants, respectively, 

Finally, MPxk,i (%) quantity is the average 

contribution percentage [20] which is proposed 

to find the important variables that have a great 

influence on the models. It is determined 

according to formula (8) 
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where N is the number of observations; m is 

the number of compounds used to calculate 

Pxk,i value; bk,i are the parameters of the model. 

3. RESULTS AND DISCUSSION 

3.1. QSPRMLR modeling 

The modeling of the multiple linear regression 

method was operated on MS-EXCEL [28-29] 

with the Regress system [21] as an add-in 

program by using the forward and backward 

elimination regression technique. The method 

for internally validating the QSPR models in 

this study is cross-validation (CV) and  the 

process of CV for QSPR models were carried 

out by the leave-one-out (LOO) method using 

the statistic Q2
LOO. [20-21]. 

The full dataset to build the  QSPRMLR models 

including the 76 stability constants values of 

complexes is separated into the training set and 

the test set, in which, the test one is randomly 

selected 20 percent of the original data one. In 

addition, the criteria of statistical values such 

as Fstat (Fischer’s value), RMSE and PRESS 

are used to evaluate the quality of models 

[3,6]. The results of QSPRMLR models and the 

statistical values are indicated in Table 2.  

The selection of the best QSPR model is based 

on the results of Table 2 and Fig 2a. The 

descriptors of models are chosen according to 

the changing tendency of the R2
train, Q2

LOO, 

RMSE and Fstat values and the number of 

variables k  that the models reach the goal of 

the statistical standards. The data from Table 2 

presented that when k values increased to 5, 

the QSPR model met the statistical 

requirements. Although when the k value is 6, 

the statistical indexes are better, this variation 

is negligible and it is not recommended to 

build the model. So the selection of the model 

with the k of 5 is the best QSPR model. 

Besides, the variables from x1 to x5 were 

closely monitored on the basis of the p-value 

(< 0.05) and t-student characterized the 

variables [3,6].  

The MLR regression model is found as 

following equation with the statistical values: 

logβ11 = -29.585  + 0.310·x1 -0.120·x2 - 

0.896·x3 + 0.249·x4 - 1.342·x5 

n = 76; R2
train = 0.821; Q2

LOO = 0.789; RMSE = 

0.745; Fstat = 64.3644            (9) 

 

Table 2. Selected models QSPRMLR (k of 1 to 6) and statistical values 

k Variables RMSE R²train Q²LOO Fstat PRESS 

1 x1 1.576 0.154 0.118 13.4636 191.60 

2 x1/x2 1.452 0.292 0.248 15.0196 163.24 

3 x1/x2/x3 1.062 0.626 0.578 40.2067 91.73 

4 x1/x2/x3/x4 0.886 0.744 0.708 51.4509 63.41 

5 x1/x2/x3/x4/x5 0.745 0.821 0.789 64.3644 45.92 

6 x1/x2/x3/x4/x5/x6 0.709 0.848 0.799 64.5886 43.59 

Notation of molecular descriptors  

cosmo area x1  SHBa x4  

cosmo volume x2  Gmin x5  

ko x3  S6 x6  

 

As a consequence, the training data set used to 

develop the MLR is completely qualified; also, 

the results showed that the predictive ability of 

the QSPRMLR model is very suitable for this 

complex group. Therefore, this model can be 

used to predict new complexes of the same 

type group based on the Applicability Domain 

(AD) and Outliers rules [3,6]. 

On the flip side, GMPxi values (GMPxi is the 

average value of MPxk,i) are used to evaluate 

the affected level of the variables in the models 

by using three neighboring models. The 
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outcome of data in Table 3 showed that the 

main contribution of the descriptors in 

sequential order of cosmo area (x1) > cosmo 

volume (x2) > ko (x3) with corresponding 

values of 57.1460, 26.8409 and 11.0105. The 

cosmo area and cosmo volume parameter are 

the sums of surface area and volume of 

molecules that are calculated by COSMO 

methods [19]. The ko is Kappa zero index or 

Shannon information index based on atom 

classes. The Kappa zero index is the 

information content (IC) index that supplies 

information as the number of graph vertices, 

hydride groups, or non-hydrogen atoms [19]. 

The parameters such as cosmo area, cosmo 

volume and ko indicate the important role of 

the structural size of the complexes and the 

subsistence of the atoms and groups types in 

the complexes. The two remaining variables 

(SHBA and Gmin) affect insignificantly the 

model. These key parameters will be used for 

the design and search of new ligands and 

complexes. 
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Figure 2. a) Changing tendency of the values RMSE, R2
train and Q2

LOO according to k descriptors; b) 

Correlation of experimental vs. predicted values logβ11 of the training compounds using the QSPRMLR 

model (with k = 5) 

Table 3. The full data for calculation of MPxk,i and GMPxi contribution in models QSPRMLR with k of 4 to 6 

Statistical values and variables 
QSPRMLR MPxk,i, % 

GMPxi, % 
k = 4 k = 5 k = 6 k = 4 k = 5 k = 6 

R2
train 0.744 0.821 0.848 – – – – 

R2
adj 0.729 0.809 0.827 – – – – 

Q2
LOO 0.708 0.789 0.799 – – – – 

RMSE 0.886 0.745 0.709 – – – – 

constant -19.4629 -29.5855 -33.1463 – – – – 

x1 0.3066 0.3105 0.3292 55.9339 57.4241 58.0801 57.1460 

x2 -0.1688 -0.1203 -0.1236 33.1196 23.9355 23.4675 26.8409 

x3 -0.5249 -0.8968 -0.9282 7.4385 12.8762 12.7167 11.0105 

x4 0.2172 0.2490 0.2427 3.5081 4.0782 3.7920 3.7928 

x5 – -1.3426 -1.4183 – 1.6860 1.6993 1.1284 

x6 – – -1.0643 – – 0.2443 0.0814 

 

3.2. QSPRANN modeling 

Firstly, the ANN models are screened to find 

the architecture of ANN models from the same 

dataset of the MLR model and the resulting 

variables of the MLR model. Thereupon, the 

models are developed upon five-variables 
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QSPRMLR model and the architecture of the 

neural network consist of three layers I(5)-

HL(m)-O(1), in which the input layer I(5) 

includes five neurons: cosmo area, cosmo 

volume, ko, SHBa and Gmin; the output layer 

O(1) includes 1 neuron it is the stability 

constant logβ11 values; the number of the 

hidden layer (m) will be scanned to look for 

several good models. The results of the m 

neurons are given in Table 5.  

In the next step, an external data set is used to 

train the best ANN model combined with 

external evaluation for the multivariate linear 

regression model by the external-validation 

technique through the Q2
CV index. The results 

are found the QSPRANN model with 

architecture I(5)-HL(10)-O(1) with the best 

predictability associated with the Q2
CV value of 

0.896 as in Figure 3b. Consequently, the 

hyperbolic tangent function is used for the 

search of the best network training with the 

optimum ANN parameters such as the learning 

rate of 0.01, the momentum constant of 0.05 

and the convergent goal of 10-7. 

 

Table 4. The screening of QSPRANN model I(5)-HL(m)-O(1) with statistical parameters 

No QSPRANN model R2
train Q2

test Q2
validation 

Training 

error 

Test 

Error 

Validation 

Error 
Transfer Function 

1 I(5)-HL(11)-O(1) 0.9677 0.9753 0.9831 0.0753 0.1214 0.0634 hyperbolic tangent 

2 I(5)-HL(8)-O(1) 0.9655 0.9651 0.9823 0.0825 0.1940 0.1418 log-sigmoid 

3 I(5)-HL(6)-O(1) 0.9785 0.9768 0.9836 0.0505 0.1303 0.0622 hyperbolic tangent 

4 I(5)-HL(10)-O(1) 0.9567 0.9823 0.9841 0.1012 0.0820 0.0587 hyperbolic tangent 

5 I(5)-HL(6)-O(1) 0.9645 0.9795 0.9846 0.0834 0.1000 0.0742 log-sigmoid 

 

In the next step, an external data set is used to 

train the best ANN model combined with 

external evaluation for the multivariate linear 

regression model by the external-validation 

technique through the Q2
CV index. The results 

are found the QSPRANN model with 

architecture I(5)-HL(10)-O(1) with the best 

predictability associated with the Q2
CV value of 

0.896 as in Figure 3b. Consequently, the 

hyperbolic tangent function is used for the 

search of the best network training with the 

optimum ANN parameters such as the learning 

rate of 0.01, the momentum constant of 0.05 

and the convergent goal of 10-7. 

 

a) 

 

b)  

 Q2
CV = 0.896 of QSPRANN

 Q2
CV = 0.804 of QSPRMLR
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Figure 3. (a) Architecture of neural network I(5)-HL(10)-O(1); (b) The correlation between 

experimental vs. predicted values of external data set of QSPR models 

 

3.3. The external validation of QSPR models 

The external validation is the last step of the 

model building technique. An external data set 

including seventeen complexes from the 

experiment is used for the validation on both 

QSPRMLR and QSPRANN models. The results of 

the evaluation are featured in Table 6. 

The calculable data from Table 5 indicated that 

the MARE values of QSPRMLR and QSPRANN 

I(5)-HL(10)-O(1) models are 10.478 % and  

7.343 %, respectively. As a result, the ANN 

model with architecture I(5)-HL(10)-O(1) has 

better predictability than the MLR model and 

the predicted logβ11,cal values of the ANN 
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model are close to the experimental logβ11,exp 

values. Based on the results of data analysis in 

Table 5 and Figure 3b, it can conclude that the 

prediction of the two models turn out to be in a 

good agreement with the experimental data 

[20]. The QSPRANN and QSPRMLR models 

represent the significant correlation between 

the predicted values and the experimental 

values with Q2
CV values of 0.804 and 0.896, 

respectively [3,6].  

Table 5. The experimental logβ11,exp and external predicted logβ11,cal values from the QSPR models 

Thiosemicarbazone ligand Metal  

ions 
logβ11.exp 

logβ11.cal 
ref. 

R1 R2 R3 R4 QSPRMLR QSPRANN 

H H H - C5H4N Mn2+ 4.320 3.651 3.512 [30] 

H H H - C6H4OH Cu2+ 4.920 4.903 4.924 [31] 

H H H -C13H16NO3 Fe2+ 12.240 14.397 11.107 [32] 

H H H -C4H3O Co2+ 5.099 3.832 3.718 [33] 

H H CH3 -CH=N-NHC6H5 Ni2+ 10.790 11.684 9.977 [9] 

H CH3 CH3 -CH=N-NHC6H5 Co2+ 10.590 8.422 9.891 [9] 

H CH3 CH3 -CH=N-NHC6H5 Ni2+ 11.030 12.187 10.821 [9] 

H H H -C14H12N Cd2+ 5.860 5.833 6.450 [34] 

H H H -C6H3(OH)OCH3 Cd2+ 7.340 8.681 8.480 [12] 

H H H -C6H3(OH)OCH3 Zn2+ 7.470 7.903 8.037 [12] 

H H H -C6H3(OH)OCH3 Cu2+ 9.030 8.026 8.083 [12] 

H H -CH3 -C6H4OH Mg2+ 3.300 3.917 3.628 [13] 

H H -CH3 -C6H4OH Mn2+ 4.320 4.292 4.001 [13] 

H H -CH3 -C6H4OH Cd2+ 5.590 6.355 6.043 [13] 

H H H -C10H6OH Mn2+ 4.660 4.665 4.517 [14] 

H H - -C9H8NO Co2+ 7.591 7.218 7.651 [15] 

H H H -C6H4NO2 Al3+ 11.240 12.015 11.482 [16] 

    MARE, % 10.478 7.343  

 

The calculable data from Table 5 indicated that 

the MARE values of QSPRMLR and QSPRANN 

I(5)-HL(10)-O(1) models are 10.478 % and  

7.343 %, respectively. As a result, the ANN 

model with architecture I(5)-HL(10)-O(1) has 

better predictability than the MLR model and 

the predicted logβ11,cal values of the ANN 

model are close to the experimental logβ11,exp 

values. Based on the results of data analysis in 

Table 5 and Figure 3b, it can conclude that the 

prediction of the two models turn out to be in a 

good agreement with the experimental data 

[20]. The QSPRANN and QSPRMLR models 

represent the significant correlation between 

the predicted values and the experimental 

values with Q2
CV values of 0.804 and 0.896, 

respectively [3,6].  

Furthermore, the one–way ANOVA method is used 

to evaluate the difference between the experimental 

and predictive values of both models, accordingly, 

the differences between the QSPR models are 

insignificant (F = 0.0711 < F0.05 = 3.1788).  

3.4. Development of new complexes 

We selected two kinds of derivatives, namely 

the phenothiazine and carbazole to design new 

thiosemicarbazone and the complexes between 

the new ligands with some metal ions as Ag+, 

Ni2+, Cd2+, Cu2+ and Zn2+. The derivatives 

were synthesized and published in the 

literature [35-38]. The selection is based on the 
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five descriptors: Cosmo area, Cosmo volume, 

ko, SHBa and Gmin form the results of the 

QSPR models. The new thiosemicarbazones 

are designed by means of adding phenothiazine 

and carbazole groups at the R4 site on the 

structure of the thiosemicarbazones and the 

other positions as R1, R2 and R3 are hydrogen 

atoms. A series of new complexes are sketched 

and calculated the structural descriptors. Then 

they were carefully screened and put into the 

spatial data of the training set to validate by 

AD and Outlier [3,6]. As a matter of course, 

the thirty-one new complexes meet the 

standards of AD and they are predicted the 

stability constant from the two built QSPRMLR 

and QSPRANN models. The prediction of new 

complexes (logβ11,new) is given in Table 6. 

Using the single-factor ANOVA to compare 

the predicted logβ12,pred values resulted from 

the QSPRMLR and QSPRANN models, it 

indicated that the difference is insignificant 

between the two models (F = 0.1335 < F0.05 = 

4.0012).  

 

Table 6. The thirty-one new predicted logβ11,new values of metal-thiosemicarbazone complexes from the 

developed QSPR models 

R4 site 
metal 

ions 

logβ11,pred 
R4 site  

metal 

ions 

logβ11,new 

MLR ANN MLR ANN 

 

Ag+ 7.4741 7.4863 

 

Cd2+ 8.7000 9.2852 

Ni2+ 10.4742 9.2753 Ni2+ 9.8782 9.2888 

Cu2+ 10.1601 9.2732 Zn2+ 8.5015 9.2764 

 

Ag+ 9.9575 9.1703 

 

Ag+ 9.8744 9.2879 

Cd2+ 9.2782 9.0967 Cd2+ 8.9198 9.2876 

Cu2+ 7.9016 8.7918 Cu2+ 8.6660 9.2874 

Ni2+ 8.5959 8.9287 Ni2+ 8.6097 9.2875 

Zn2+ 7.6084 8.7115 Zn2+ 8.9877 9.2874 

 

Cu2+ 10.9610 9.3018 

 

Cd2+ 10.2095 9.1353 

Zn2+ 10.7333 9.3023 Zn2+ 9.4431 8.6861 

 

Ag+ 10.6217 9.2910 

 

Cd2+ 10.9209 9.3612 

Cu2+ 8.8434 9.2886 Cu2+ 8.3245 9.3022 

Ni2+ 10.1772 9.2907 Ni2+ 8.7107 9.3080 

Zn2+ 8.7257 9.2883 Zn2+ 9.7639 9.3655 

 

Cd2+ 7.8791 9.2452 

 

Cd2+ 9.3364 9.2880 

 

Cd2+ 7.7389 9.3041     

 

4. CONCLUSION 

In this investigation, two popular methods such 

as the multivariate linear regression  and 

artificial neural network were used to build 

successfully the quantitative structure-property 

relationship (QSPR) models and the QSPR 
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models were developed by using the dataset of 

structural descriptors and the stability constant 

values of metal-thiosemicarbazone complexes. 

The study was a combination of semi-

empirical quantum mechanics calculations 

with new version PM7 and statistics 

techniques. Moreover, the in silico method was 

studied on big data through design, screening, 

and mining data techniques. The QSPR models 

were fully built based on OECD principles and 

the model acceptance criteria of Golbraikh and 

Tropsha’s as R2
train, Q2

LOO, MARE, %, and 

ANOVA. The results from the new models 

allowed us to develop thirty-one new 

complexes with the predicted  stability 

constant values. As a result, the built QSPR 

models can be useful to explore new 

complexes.  
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