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TOM TAT

PHAT TRIEN CUA CAC PHUC CHAT MOI GIUA ION KIM LOAI VA DAN XUAT
THIOSEMICARBAZONE DUA TREN SU MO HINH QSPR
SU DUNG PHUONG PHAP MLR VA ANN

Trong nghién cieu nay, hang sé bén (109B11) cia 31 phirc chat méi giita mét sé ion kim logi va dan
xudt thiosemicarbazone dvoc du doan tir két qua cua sy moé hinh hoa méi quan hé dinh luong cdu triic-
tinh chat (QSPR). Nhitng md hinh QSPR ndy duwgc phdt trién tir 76 gid tri logfl1 cia cdc phire chat
thuwe nghiém bang cdch sir dung hai phirong phdp phé bién nhw hoi quy tuyén tinh da bién (OSPRMLR)
va mang no ron nhan tao (QSPRANN). B6 mo ta cua cdc phirc chdt dwoc tinh todn tir cdu tric t6i wu,
trong dé CAcC cdu tric nay duwgc toi wu bang cdc tinh todn héa lwong tir ban thue nghiém véi phwong
phdp méi PM7. M6 hinh QSPRMLR t6t nhat tim dwoc bao gom ndam mé ta: dién tich Cosmo, thé tich
Cosmo, ko, SHBa va Gmin. Két qud nhédn dwoc c&c gid tri thong ké phi hop (R2train = 0,821; Q2LOO
= 0,789; RMSE = 0,745; Fstat = 64,3644 va PRESS = 45,92). Hon nita, mé hinh mang no ron
OSPRANN véi kién trac 1(5)-HL(10)-O(1) duwoc tim thdy véi cdc gid tri thong ké: R2train = 0,9567,
Q2validation = 0,9841 va Q2test = 0,9825. Nhizng md hinh QSPR nay da diege kiém tra chat ché bang
cdc ky thudt danh gid ngoai va két qua rat gan véi gid tri thuc nghiém. Vi vdy, cdc két quad tir cdc mé
hinh QSPR ¢4 thé durgre sit dung dé thiét ké cdc phirc chat méi nham vmg dung trong héa hoc phan tich.
Keywords: Artificial neural network, Multivariate linear regression, QSPR, Stability constants logfi,
Thiosemicarbazone.

1. INTRODUCTION agents has resulted in many useful applications
Thiosemicarbazides were first introduced in [1]. In the field of  chemistry,
the literature in the early 19th century [1] and thiosemicarbazone ligands and their complexes
thiosemicarbazones were reported as valuable have been receiving more interest in the area of
derivatives for ketones and aldehydes in the analytical chemistry. Recently, the stability
early years of the 20th century. Until now, constant of the mentioned complexes has been
thiosemicarbazone derivatives have been discovered for related applications like
synthesized in practice. Furthermore, the analytical chemistry with the UV/VIS
diverse structure of thiosemicarbazone, spectrophotometric technique [2].

especially the appearance of potential donors The QSPR modeling is popularly used in many
led to their easy complexation with many metal fields as in silico approach for predicting
ions. This is the reason why this group of properties of chemical compounds based on
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the relationships between the structural
characteristics and the properties [3].
According to statistics till 2016, the number of
published works related to QSPR models was
about 11,000 projects [9]. Nowadays, the
QSPR method is widely used and is seen as an
effective method for finding new compounds
[3]. The QSPR models are developed using
mathematical methods, normally, there are two
popular approaches to establish QSPR models,
that is linear regression (Multivariate linear
regression, Partial least square regression,
Principal component regression) and machine
learning method (Support vector Regression,
Acrtificial neural network) [3].

In this work, we developed the QSPR models
with the logarithm of stability constants
(logB11) of the [ML] complexes between
thiosemicarbazone ligands with the metal ions
(M = Cu?*, Co?*, Mn?*, Cr3*, Cr%*, Fe?*, Fe*,
Zn%*, Cd?*) in aqueous solution. The logPis
values were collected from an experimental
published database (Table 1). The 2D and 3D-
descriptors of metal-complexes are taken from
the results of calculation on the structure
optimization of complexes using semi-

b)

empirical quantum mechanics [4-5]. The two
kinds of QSPR models were used by using the
multiple linear regression (QSPRmir) and the
artificial neural network (QSPRann). These
QSPR models were internally and externally
evaluated on two independent datasets.
Besides, a new series of thiosemicarbazone
ligands and complexes were designed and
calculated the stability constant from the
results of the developed QSPR models.

2. COMPUTATIONAL METHODS

There are several steps to construct a QSPR
model. The process must comply with The
Organisation for Economic Cooperation and
Development (OECD) principles [6]. All are
presented in the following sections.

2.1. Structure of complex and dataset

The thiosemicarbazone ligands can form
several kinds of complexes with metal ions.
They are known as monodentate, bidentate and
tridentate ligands. This work chooses the
monodentate ligand type to form the ML
complex that reacted between a metal ion (M)
and a thiosemicarbazone ligand (L). The
structure of the selected complexes is shown in
Figure 1.

Figure 1. Structure of the thiosemicarbazone ligand (a) and the
metal-thiosemicarbazone complex (b)

The properties of complexes is characterized
by the stability constant (811) values and the
experimental values that used in this research
were published in the article. They are target
values in this research. So, the data mining is
the first step in QSPR modeling research [3].
Firstly, big data was mined from valuable data
sources [7-16], then the methods of cluster
division as k-means and agglomerative
hierarchical clustering (AHC) were used to
separate it into several data subsets [3] by
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using the XLSTAT?2016 package [17]. In this
study, a dataset including the 76 values logpi; of
metal-thiosemicarbazone ~ complexes  was
utilized to develop the QSPR models in Table 1.
2.2. Calculation of structural descriptors

The molecular descriptors are recognized as
the variables of the descriptive equations in the
QSPR modeling. They can be definited as
basic numerical characteristics regarding the
molecular structures. They have been formed
through years of development covering many



different theories and until now they are relatively
complete  [3]. The metal-thiosemicarbazone
complexes were sketched the structures by using
ChemBioDraw 130 [18] and calculated the
molecular descriptors from the QSARIS tool [19-
20] after they were optimized by using the semi-
empirical quantum method with new version PM7
on the MoPac2016 system [6].

2.3. Development of QSPR models

As a mentioned-above matter, the two
modeling methods were presented to develop
the QSPR regression models in this
investigation, which are MLR and ANN
methods. Attentively, the artificial neural
network models were deeply developed based
on the input variables of the QSPRmLr model.

In the QSPRmir modeling method, the values
logpi1 are confirmed that they are the endpoint
values, in this case, they are dependent
variables (Y) while the numerical values of
structural descriptors (X) are the independent
variables in the equation. When the values of X
variables correlate well with the values of the
Y targets, the equation of the QSPRmir model
is represented as follows: [20-21]

K
Y =h+) bX, @)
j=1
where by, is the constant of the model, bj is the
regression coefficients and k is the number of
variables in the regression equation.

Table 1. The 76 stability constants of complexes (n) in experimental dataset with minimal (logf11,min)
and maximal (logfi11,max) values

Thiosemicarbazone ligand Metal ~ Number of

No Ri R Rs3 R4 jons ~ complexes, n l0gh1emin  109frs.mex  Ref.
1 H H H -CeHsBrOH Cu? 1 5.633 5.633 [7]

2 H H CHs; -CH=N-NHCsHs Co? 4 9.900 10.220 [8-9]
3 H H CHs; -CH=N-NHCgHs Mn?2* 3 9.600 9.870 [9]

4 H H H -CsH3(OH)OCH3 Cré* 1 4.842 4.842 [10]
5 H H H -CyHsNOH Zn% 1 6.680 6.680 [11]
6 H H H -CgH3(OH)OCH3 Mn?2* 3 4.120 5.280 [12]
7 H H H -CsH3(OH)OCH3 Pb?* 4 6.530 7.100 [12]
8 H H H -CsH3(OH)OCH3 Fe?* 4 7.690 8.150 [12]
9 H H H -CsH3(OH)OCH3 Co? 4 7.860 8.470 [12]
10 H H H -CsH3(OH)OCH3 Ni* 4 8.110 8.650 [12]
1 H H -CHs; -CsHsOH Cu? 3 5.810 6.840 [13]
12 H H -CHs -C¢H4OH Ni2* 2 5.140 5.310 [13]
13 W H H -C1oHsOH Mg?* 2 3.310 3.250 [14]
14 H H -C1oHsOH Cd* 4 5.930 6.560 [14]
15 H H H -C1oHsOH Pb? 1 6.570 6.570 [14]
16 H H H -C1oHsOH Zn% 1 7.170 7.170 [14]
17 H H - -CyHsNO Pb?* 7 7.307 8.109 [15]
18 H H - -CoHsNO Zn% 8 7.039 8.160 [15]
19 R H R -CyHsNO Cd? 7 6.611 7.889 [15]
20 H H - -CyHsNO Mn?* 8 5.439 6.041 [15]
21 H H H -CsHaNO, Cr¥* 2 10.150 11.250 [16]
22 H H H -CsH4NO; Fed* 2 11.100 11.630 [16]
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In addition, an artificial neural network (ANN)
is a non-linear regression method that is known
as the deep learning method. Nowadays, this
method is used widely in many fields like
information  technology, drug  designs,
chemistry and several other fields [22-23]. In
this study, we developed the QSPRann models
with the multilayer perceptron (MLP) type by
using an error back-propagation algorithm
[24]. The architecture of the MLP-ANN type
has the formation I(k)-HL(m)-O(n). It includes
three layers: the input layer (k), the hidden
layer (m) and the output layer (n). Therein, the
input layer is the variables of the resulted MLR
model, the number of hidden neurons is
determined by neurons on the input and output
layer and the output layer is the stability
constant logpgi1 values. The construction of the
ANN model takes place in two stages. Firstly,
the m values of hidden neurons are prematurely
screened by using Neural Designer tools [25],
then the best ANN model is excommunicated
through external validation on a data set. The
second step is run on the Matlab 2016a [26]
with Neural Network tool (nntool) toolbox and
the process of ANN model training uses two
major transfer functions in the neural network
research: the hyperbolic sigmoid tangent and
log-sigmoid transfer function. Two transfer
functions are defined in the following
equations: [24-27]
2

a=tansig(n) = (1+ o )_1

@

a=logsig(n) = 3)

1+e™

2.4. Validation of QSPR models

According to OECD principles [6], the QSPR
models have to meet the requests of statistics,
so it is essential to validate internally and
externally on two different datasets and the
good models must be received the acceptance
criteria of Tropsha’s. The indices consist of the
values R?%yin and Q200 for an internal set or
Q% for an external-validation set [20-21].
These standard criteria are calibrated by the
same formula (4):
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where Y;, ¥i and Y are the experiment,
calculated and average values, respectively.
The root means square error (RMSE)
determined by the equation 5, is the square root
of the mean squared error (MSE). [20-21].
Meanwhile, the ANN models are trained until
the mean square error (MSEann) is minimized
followed by a difference of the output and real
values [24-27]. Consequently, MSEann is the
average squared error between the network
outputs (0) and the target outputs (t). It is
calculated by the equation (6):

N

Z(Yi_?i)2
RMSE = lN—T (%)
1 n
MSE s =EZ(ti —q,)’
! (6)

where N is the number of variables in the
training dataset and k is the number of
variables in the models.

Furthermore, this work uses the average
absolute values of the relative errors MARE
(%) to compare the quality of the models.
MARE (%) is presented as follows [20]

||Og ﬂll,exp - |Og ﬂll,cal 100

Iog ﬂn,exp (7)

n
where n is the number of observations; i1 e
and fiica are the experimental and calculated
stability constants, respectively,
Finally, MPx; (%) quantity is the average
contribution percentage [20] which is proposed
to find the important variables that have a great
influence on the models. It is determined
according to formula (8)

VP, %= L i100.|bk’i.xmyi|

N k
m=1
Z\bk,,--xm,,-\
i

MARE, % =
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where N is the number of observations; m is
the number of compounds used to calculate
Pxki value; by, are the parameters of the model.
3. RESULTS AND DISCUSSION

3.1. QSPRmLr modeling

The modeling of the multiple linear regression
method was operated on MS-EXCEL [28-29]
with the Regress system [21] as an add-in
program by using the forward and backward
elimination regression technique. The method
for internally validating the QSPR models in
this study is cross-validation (CV) and the
process of CV for QSPR models were carried
out by the leave-one-out (LOO) method using
the statistic Q% co. [20-21].

The full dataset to build the QSPRmLr models
including the 76 stability constants values of
complexes is separated into the training set and
the test set, in which, the test one is randomly
selected 20 percent of the original data one. In
addition, the criteria of statistical values such

descriptors of models are chosen according to
the changing tendency of the RZrin, Q%Lo0,
RMSE and Fga values and the number of
variables k that the models reach the goal of
the statistical standards. The data from Table 2
presented that when k values increased to 5,
the QSPR model met the statistical
requirements. Although when the k value is 6,
the statistical indexes are better, this variation
is negligible and it is not recommended to
build the model. So the selection of the model
with the k of 5 is the best QSPR model.
Besides, the variables from x; to Xs were
closely monitored on the basis of the p-value

(< 0.05) and t-student characterized the
variables [3,6].
The MLR regression model is found as

following equation with the statistical values:
logfi1 = -29.585 + 0.310-x1 -0.120-x; -
0.896-x3 + 0.249-x4 - 1.342-Xs

N = 76; R%in = 0.821; Q%00 = 0.789; RMSE =

as Fswa (Fischer’s value), RMSE and PRESS 0.745; Fya = 64.3644 9)

are used to evaluate the quality of models

[3,6]. The results of QSPRmir models and the

statistical values are indicated in Table 2.

The selection of the best QSPR model is based

on the results of Table 2 and Fig 2a. The

Table 2. Selected models QSPRwmir (k of 1 to 6) and statistical values

k Variables RMSE R24ain Q%00 Fstat PRESS
1 X1 1.576 0.154 0.118 13.4636 191.60
2 X1/X2 1.452 0.292 0.248 15.0196 163.24
3 X1/X2/X3 1.062 0.626 0.578 40.2067 91.73
4 X1/X2/XalXa 0.886 0.744 0.708 51.4509 63.41
5 X1/X2/X3/XalX5 0.745 0.821 0.789 64.3644 45,92
6 X1/Xa2/X3lXal X5/ X6 0.709 0.848 0.799 64.5886 43.59

Notation of molecular descriptors

cosmo area X1 SHBa Xa

cosmo volume X2 Gmin X5

ko X3 S6 X6

As a consequence, the training data set used to
develop the MLR is completely qualified; also,
the results showed that the predictive ability of
the QSPRmir model is very suitable for this
complex group. Therefore, this model can be
used to predict new complexes of the same
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type group based on the Applicability Domain
(AD) and Outliers rules [3,6].

On the flip side, GMPx; values (GMPX; is the
average value of MPx;) are used to evaluate
the affected level of the variables in the models
by using three neighboring models. The



outcome of data in Table 3 showed that the
main contribution of the descriptors in
sequential order of cosmo area (x1) > cosmo
volume (x2) > ko (xs) with corresponding
values of 57.1460, 26.8409 and 11.0105. The
cosmo area and cosmo volume parameter are
the sums of surface area and volume of
molecules that are calculated by COSMO
methods [19]. The ko is Kappa zero index or
Shannon information index based on atom
classes. The Kappa zero index is the
information content (IC) index that supplies
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information as the number of graph vertices,
hydride groups, or non-hydrogen atoms [19].
The parameters such as cosmo area, cosmo
volume and ko indicate the important role of
the structural size of the complexes and the
subsistence of the atoms and groups types in
the complexes. The two remaining variables
(SHBA and Gmin) affect insignificantly the
model. These key parameters will be used for
the design and search of new ligands and
complexes.
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Figure 2. a) Changing tendency of the values RMSE, R%rain and Q% oo according to k descriptors; b)
Correlation of experimental vs. predicted values logf11 of the training compounds using the QSPRmir
model (with k = 5)

Table 3. The full data for calculation of MPxx; and GMPx; contribution in models QSPRwir with k of 4 to 6

L. . QSPRmLR MPxy i, %
Statistical values and variables =2 oo =6 =2 s T GMPx;, %
Rain 0.744 0.821 0.848 - - - -
R2adj 0.729 0.809 0.827 - - - -
Q%00 0.708 0.789  0.799 - - - -
RMSE 0.886 0.745 0.709 - - - -
constant -19.4629 -29.5855 -33.1463 - - - -
X1 0.3066  0.3105 0.3292 55.9339 57.4241 58.0801 57.1460
X2 -0.1688 -0.1203 -0.1236 33.1196 23.9355 23.4675 26.8409
X3 -0.5249 -0.8968 -0.9282 7.4385 12.8762 12.7167 11.0105
Xa 0.2172  0.2490 0.2427 35081 4.0782 3.7920  3.7928
Xs - -1.3426  -1.4183 - 1.6860 1.6993  1.1284
X6 - - -1.0643 - - 0.2443  0.0814

3.2. QSPRann modeling
Firstly, the ANN models are screened to find
the architecture of ANN models from the same

dataset of the MLR model and the resulting
variables of the MLR model. Thereupon, the
models are developed upon five-variables
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QSPRmr model and the architecture of the external evaluation for the multivariate linear

neural network consist of three layers 1(5)- regression model by the external-validation
HL(m)-O(1), in which the input layer 1(5) technique through the Q2% index. The results
includes five neurons: cosmo area, COSMO are found the QSPRann model with
volume, ko, SHBa and Gmin; the output layer architecture 1(5)-HL(10)-O(1) with the best
O(1) includes 1 neuron it is the stability predictability associated with the Q%cy value of
constant logfi1 values; the number of the 0.896 as in Figure 3b. Consequently, the
hidden layer (m) will be scanned to look for hyperbolic tangent function is used for the
several good models. The results of the m search of the best network training with the
neurons are given in Table 5. optimum ANN parameters such as the learning
In the next step, an external data set is used to rate of 0.01, the momentum constant of 0.05
train the best ANN model combined with and the convergent goal of 107

Table 4. The screening of QSPRann model 1(5)-HL(m)-O(1) with statistical parameters

Training Test  Validation

error Error Error Transfer Function

No QSPRANN model thrain taest szalidation

1 1(5)-HL(11)-O(1) 0.9677 0.9753 0.9831  0.0753 0.1214  0.0634 hyperbolic tangent
2 1(5)-HL(8)-O(1) 0.9655 0.9651 0.9823 0.0825 0.1940 0.1418 log-sigmoid

3 1(5)-HL(6)-O(1) 0.9785 0.9768 0.9836  0.0505 0.1303  0.0622 hyperbolic tangent
4 1(5)-HL(10)-O(1) 0.9567 0.9823 0.9841 0.1012 0.0820 0.0587 hyperbolic tangent
5 1(5)-HL(6)-O(1) 0.9645 0.9795 0.9846  0.0834 0.1000 0.0742 log-sigmoid

In the next step, an external data set is used to predictability associated with the Q% value of
train the best ANN model combined with 0.896 as in Figure 3b. Consequently, the
external evaluation for the multivariate linear hyperbolic tangent function is used for the
regression model by the external-validation search of the best network training with the
technique through the Q%v index. The results optimum ANN parameters such as the learning
are found the QSPRann model with rate of 0.01, the momentum constant of 0.05
architecture 1(5)-HL(10)-O(1) with the best and the convergent goal of 10°7.

a) b)
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IogB“vmed
Figure 3. (a) Architecture of neural network 1(5)-HL(10)-O(1); (b) The correlation between
experimental vs. predicted values of external data set of QSPR models

3.3. The external validation of QSPR models The calculable data from Table 5 indicated that
The external validation is the last step of the the MARE values of QSPRmir and QSPRann
model building technique. An external data set 1(5)-HL(10)-O(1) models are 10.478 % and
including seventeen complexes from the 7.343 %, respectively. As a result, the ANN
experiment is used for the validation on both model with architecture 1(5)-HL(10)-O(1) has
QSPRwmir and QSPRann models. The results of better predictability than the MLR model and
the evaluation are featured in Table 6. the predicted logfiica Vvalues of the ANN
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model are close to the experimental 10gf11,exp
values. Based on the results of data analysis in
Table 5 and Figure 3b, it can conclude that the
prediction of the two models turn out to be in a
good agreement with the experimental data

[20]. The QSPRann and QSPRmir models
represent the significant correlation between
the predicted values and the experimental
values with Q%cv values of 0.804 and 0.896,
respectively [3,6].

Table 5. The experimental logfi1,exp and external predicted logfiica values from the QSPR models

Thiosemicarbazone ligand Metal 100611 cal
R R R R jons1°%P11e0 QSPRwLr QSPRan ref
H H H  -CsHaN Mn2+ 4.320 3.651 3.512 [30]
H H H -CeHOH cu? 4.920 4.903 4.924 [31]
H H -C13H16NO3 Fe?* 12.240 14.397 11.107 [32]
H H -C4H30 Co? 5.099 3.832 3.718 [33]
H H  CHs -CH=N-NHCeHs Ni%* 10.790 11.684 9.977 6]
H CHs CHs -CH=N-NHCeHs  Co* 10.590 8.422 9.891 [
H CHs CHs -CH=N-NHCeHs Ni%* 11.030 12.187 10.821 6]
H H H  -CiuHiN Cd?* 5.860 5.833 6.450 [34]
H H H -CHsOH)OCHs  Cd? 7.340 8.681 8.480 [12]
H H H  -CoHs(OH)OCH;  zn* 7.470 7.903 8.037 [12]
H H H  -CeHs(OH)OCHs  Cu® 9.030 8.026 8.083 [12]
H H -CH; -CsHiOH Mg?* 3.300 3.917 3.628 [13]
H H -CHs -CeHsOH Mn?* 4.320 4.292 4.001 [13]
H H -CHs -CoHiOH co 5.590 6.355 6.043 [13]
H H H  -CioHeOH Mn?* 4.660 4.665 4517 [14]
H H - -CoHgNO Co?* 7.591 7.218 7.651 [15]
H H H  -CHNO, Al 11.240 12.015 11.482 [16]
MARE, % 10.478 7.343

The calculable data from Table 5 indicated that
the MARE values of QSPRmir and QSPRann
1(5)-HL(10)-O(1) models are 10.478 % and
7.343 %, respectively. As a result, the ANN
model with architecture 1(5)-HL(10)-O(1) has
better predictability than the MLR model and
the predicted logfiica values of the ANN
model are close to the experimental 10gf11exp
values. Based on the results of data analysis in
Table 5 and Figure 3b, it can conclude that the
prediction of the two models turn out to be in a
good agreement with the experimental data
[20]. The QSPRann and QSPRmir models
represent the significant correlation between
the predicted values and the experimental
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values with Q?%y values of 0.804 and 0.896,
respectively [3,6].

Furthermore, the one-way ANOVA method is used
to evaluate the difference between the experimental
and predictive values of both models, accordingly,
the differences between the QSPR models are
insignificant (F = 0.0711 < Fogs = 3.1788).

3.4. Development of new complexes

We selected two kinds of derivatives, namely
the phenothiazine and carbazole to design new
thiosemicarbazone and the complexes between
the new ligands with some metal ions as Ag™,
Ni%*, Cd*, Cu? and Zn?. The derivatives
were synthesized and published in the
literature [35-38]. The selection is based on the



five descriptors: Cosmo area, Cosmo volume,
ko, SHBa and Gmin form the results of the
QSPR models. The new thiosemicarbazones
are designed by means of adding phenothiazine
and carbazole groups at the R, site on the
structure of the thiosemicarbazones and the
other positions as Ri, Rz and Rs are hydrogen
atoms. A series of new complexes are sketched
and calculated the structural descriptors. Then
they were carefully screened and put into the
spatial data of the training set to validate by
AD and Outlier [3,6]. As a matter of course,

the thirty-one new complexes meet the
standards of AD and they are predicted the
stability constant from the two built QSPrmir
and QSPRann models. The prediction of new
complexes (logBiinew) is given in Table 6.
Using the single-factor ANOVA to compare
the predicted logpfioprea Values resulted from
the QSPRmir and QSPRann  models, it
indicated that the difference is insignificant
between the two models (F = 0.1335 < Fogs =
4.0012).

Table 6. The thirty-one new predicted logfi1 new values of metal-thiosemicarbazone complexes from the
developed QSPR models

. metal 10gf11,pred . metal 10gf11,new
R4 site . R4 site .
ions  MLR  ANN ions  MLR  ANN
| Agt  7.4741 7.4863 _ ="~ Cd?* 87000 9.2852
K\/\ OYNQJCN
/@j@ Ni2* 104742 9.2753 @ Ni2*  9.8782 9.2888
o s Cu?* 10.1601 9.2732 s Zn** 85015 9.2764
‘ Agt  9.9575 9.1703 «  Agt  9.8744 9.2879
"~ Cd?* 9.2782 9.0967 o Q;q/g Cd?* 89198 9.2876
J Cu?* 7.9016 8.7918 ;( ’ Cu?* 8.6660 9.2874
@[]@ Ni2*  8.5959 8.9287 | Ni2*  8.6097 9.2875
s Zn**  7.6084 8.7115 C(j@ Zn**  8.9877 9.2874
/jQY Cu?* 10.9610 9.3018 Cd?* 10.2095 9.1353
@]@ Zn*  10.7333  9.3023 - Zn*  9.4431 8.6861
B . Ag" 10.6217 9.2910 « Cd?*  10.9209 9.3612
/T Cu 88434 9.2886 Q Q Cu?* 8.3245 9.3022
@[j@ Ni2*  10.1772 9.2907 a \ Ni2*  8.7107 9.3080
’ Zn?*  8.7257 9.2883 Zn*  9.7639 9.3655
‘ .
ﬂ Cd?* 7.8791 9.2452 gf Cd?* 9.3364 9.2880
s “ 0 Cd* 77389  9.3041

4. CONCLUSION
In this investigation, two popular methods such
as the multivariate linear regression and
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artificial neural network were used to build
successfully the quantitative structure-property
relationship (QSPR) models and the QSPR



models were developed by using the dataset of
structural descriptors and the stability constant
values of metal-thiosemicarbazone complexes.
The study was a combination of semi-
empirical quantum mechanics calculations
with new version PM7 and statistics
techniques. Moreover, the in silico method was
studied on big data through design, screening,
and mining data techniques. The QSPR models
were fully built based on OECD principles and
the model acceptance criteria of Golbraikh and
Tropsha’s as RZ%pin, Q%*.0o, MARE, %, and
ANOVA. The results from the new models
allowed us to develop thirty-one new
complexes with the predicted stability
constant values. As a result, the built QSPR
models can be useful to explore new
complexes.
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