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TOM TAT

PHAT TRIEN CAC DAN XUAT THIOSEMICARBAZONE TIEM NANG TRONG
VIEC PHAN TICH CAC ION KIM LOAI DUA TREN MO HINH QSPR

Trong nghién cizu ndy, hai mwoi phirc chdt méi cia cac phéi tir méi thiosemicarbazone da dwoc phét trién
dira trén cac mo hinh dinh heong quan hé cdu tric-tinh chdt (OSPR). Céc mé hinh OSPR diroc X8y dung tir
87 gi4 tri hang sé bén (logpi,) cua cac phitc chat thuc nghiém bang cdch hai phwong phdp hoi quy tuyén
tinh da biéen (MLR-QSPR) va mang than kinh nhan teo (ANN-QOSPR). Ngoai ra, cac mé hinh da dwoc danh
gia ngogi trén mgt tap di lieu doc lap bao gom 18 phuc chat thyc nghiém. Cdu tric cuia cac phic char da
dwoC 10i wu héa bang ky thudt tinh todn lwong tir ban thyc nghlem v6i phién ban méi nhdt PM7 va
PM7/sparkle. Nghién cizu ndy cing dp dung nguyén tic “mién #ng dung (AD) va gia tri ngogi bién
(Outliers)” theo huéng dan cua to chwc OECD dé thiét ké céc ligand va phirc hop méi. Két qua md hinh
MLR-QSPR bao gom sé&u blen nhu S, xvp5 xvp7, surface, xvch9 va k0 da dwoc xay dung thanh cbng vai
cac gia trj thdng ké nhur R ain = 0,914; Q°Loo = 0,844; SE = 0,413 va Q*eemir = 0, 767. Hon nira, mo hinh
ANN- QSPR véi kién trac |(6) HL(5)-O(1) da dwoc tim thdy véi cac gia tri thong ké: R%yain = 0,978; Q cv =
0,975; Q%eqt = 0,976 V& Q%any = 0,867. Két qua thu duwoc tir cdc mé hinh OSPR duwoc sir dung dé phét
trién cac phurc chat méi va cac phuic chdt méi ndy co thé diroc iing dung trong linh viec héa hoc phan tich.
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1. INTRODUCTION research worldwide. Their application as
analytical agents, antibacterial, antifungal,
and anticancer agents are the main uses
[2]. Stabilityconstants should be a major
concern of the formation of complexes. It
is closely related to the structural
characteristics of the ligands and the
metal ions. It is an indicator of how well
the ligand interacts with the metal ions to

The structural features of
thiosemicarbazone, which include thiol
sulphur and azomethine nitrogen, allow it
to form complexes with a variety of
transition metal ions [1].
Thiosemicarbazones and their metal
chelates are thus the subject of extensive
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create various complexes. On the other
hand, computer science has advanced, it
has become very common to conduct
theoretical ~ research  on  applying
computational chemistry in conjunction
with chemical software to solve complex
mathematical problems and appropriate
mathematical methods in order to quickly
orient  experimental  research  [3].
Computational chemistry applications
significantly reduce the time and cost
associated with complexation research.
Chemists can utilize computers to
simulate and predict the properties of
complexes rapidly and efficiently,
eliminating the need for time-consuming
and expensive experiments.

The environment is becoming more
and more contaminated nowadays as a
result of the leakage of heavy metal ions
into the environment from factories,
industrial parks, and production facilities.

To achieve the practical requirements,
heavy metal ion control and analysis must
be quick and affordable. AAS, ICP-AES,
ICP-MS have all been used to analyze the
presence of heavy metals in various parts
of the world. However, the methods are
quite expensive and strictly operating
techniques. Meanwhile,
spectrophotometry is quite popular,
cheap, and easy to operate. It relies on the
ability of metal ions and ligands to form
complexes. Therefore, developing a new
ligand and complex is a way to quantify
metal ions that can be easily applied in
practice [4]. Because of its high
complexity and the numerous research
that have been published on its use, we
seek to characterize the
thiosemicarbazone derivative in this study
using a straightforward and affordable
method called spectrophotometric
analysis.

Table 1. Experimentally determined stability constants for 87 metal-thiosemicarbazone complexes (n)
with minimum (log B2 min) @nd maximum (109 B2 max) Values

Ligand Number of
R. R gR3 R, o complexes,n  '09izmin 1081z R
H H -CH;  -CyH,Bro Ni?* 1 6.5490 6.5490 [8]
H H -C,Hs  -CyoH1,Bro, Ni?* 1 8.8070 8.8070 [9]
H H -C,Hs  -CyoH1,Bro, Cd* 1 6.9274 6.9274 [10]
H H -C,Hy  -CsH4Bro, Co?* 1 10.4362 10.4362 [11]
H -C¢Hs  -CgHs -CsH4N cu? 16 11.0010 11.3050 [12]
H  -CeHs -CeHs -CsHyN Co? 16 10.3280 10.4710 [12]
H  -CeHs -CeHs -CsHyN zZn* 16 11.0610 11.2610 [12]
H  -CeHs -CeHs -CsHyN Ni%* 16 10.1230 10.2540 [12]
-CH; -CH; -CsHuN -CsHyN Ni?* 1 11.2100 11.2100 [13]
-CH; -CH; -CsHuN -CsHyN Fe* 1 12.6700 12.6700 [14]
H  -CHs -CsHuN -CsHyN Mn®* 1 7.2000 7.2000 [13]
H  -CHs -CsHuN -CsHyN Ni%* 1 11.1300 11.1300 [13]
-CH; -CH; -CsHuN -CsHyN Mn?* 1 7.7600 7.7600 [13]
H  -CgHs -CsHuN -CsHyN Mn?* 1 7.4100 7.4100 [13]
H  -CeHs -CsHuN -CsHyN Ni%* 1 11.3200 11.3200 [13]
H  -CeHs -CsHuN -CsHyN zZn* 1 10.2100 10.2100 [13]
H -CsH; -CsHuN -CsHN Mn** 1 7.3300 7.3300 [13]
H -CsH; -CsHuN -CsHN cu® 1 12.5300 12.5300 [13]
H  -CH;, -CsHuN -CsHyN zZn* 1 10.2200 10.2200 [13]
H H - -C1oH;0,S Prét 7 6.8500 7.9300 [15]
H H  -C¢HsO -CgHsO Ccu** 1 11.3570 11.3570 [16]
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Additionally, the quantitative
structure-property relationship (QSPR)
modelling is widely employed in the field
of chemistry [3]. Through experiments
and knowledge of the molecular structure,
this  theoretical  approach  creates
prediction models based on a method
known as quantitative structure and
property relationship. The outcomes of
QSPR modelling offer numerous benefits.
In line with the present trend, designing
chemical processes towards green
chemistry aids in the development of safe,
efficient, and environmentally friendly
compounds [3].

In this study, we build models based on
the molecular descriptors and stability
constants (logfi2) of complexes between
metal ions and thiosemicarbazones using
an in silico model of quantitative structure
and property relationship. The electronic
parameters are used in quantum chemistry
with the semi-empirical approach of PM7
and PM7/sparkle new version [5-6], and
the 0D-3D topological descriptors are
generated using graph theoretical methods
[7]. Multivariate linear regression and
artificial neural networks are used to
create the MLR-QSPR and ANN-QSPR
model series. With the test set, the models
are also subjected to external evaluation
methods. We also predict the stability
constants  logBi, values of newly
constructed  complexes using  the
developed models.

2. METHODOLOGY
2.1. Structural selection and data set

Thiosemicarbazones often interact with
transition metal ions as bidentate ligands
through bonds with the sulphur and
azomethine nitrogen atoms. They can
sometimes link through the sulphur,
nitrogen, and potential donor atoms to
function as tridentate or tetradentate
ligands [1,2]. Thiosemicarbazone
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complexes are chosen for research in this
work as bidentate ligands in association
with the basic metal ions. The detailed
structure of ligands and complexes are
shown in Fig. 1; in which, the substituents
of R;, Ry, Rz and R4 can change in
structure to form different ligands and
complexes.

Rs R:

Figure 1. Structure of ligand (a) and complex (b)
in the work

According to the general equilibrium
equation, the complex formation in an

aqueous solution can be explained as
follows:

pM™ + gL™ = [MpLq] (1)

The following formula is used to compute
the overall stability constants (f£12) when
the complex ML, is formed in two phases
withp=1andq=2:
[M,L,]

ML T
From the published literature [8-16], the
stability constants (logpz) of the
complexes ML, of some metal ions (M =
Ni**, Cd®*, Cu®*, Co*, Mn*", Zn*, Fe**,

and Pr**) with various thiosemicarbazones
(L) in aqueous solution at various

1812 = 2)



experimental conditions (temperature, pH,
and ionic strength) were selected.2.2.
Descriptors

Quantum, 0D-3D molecular descriptors
are all used in QSPR modelling. Using
BIOVIA Draw 2017 R2, the structures of
experimental complexes were recreated
[17]. The complexes were then optimized
using the MoPac2016 software with the
method of quantum mechanics QM [6].
On QSARIS tools [7,18], the 0D-3D
molecular parameters of 230 descriptors
were calculated using the ideal structures.
The MoPac2016 system was used to
determine the quantum parameters using
the semi-empirical quantum method PM7
and PM7/sparkle [5]. The QSPR models
were constructed using the descriptors
and stability constants (logfi,) as a data
set [3].

2.3. Estimation of QSPR models
2.3.1. Multivariate linear regression

The statistical technique of multivariate
linear regression (MLR) is a well-liked
one for QSPR modelling. The equation
(3) describes the relationship between
independent and dependent variables
[3,19].

Kk
Y => by +bx

i=1
where Y is the dependent variable, bg
represents the intercept of models, b;
represents a slope, X; represents an
independent variable, and k represents the
number of variables in the equation. In
this case, Y is the logarithm of the
stability constant and x; is the descriptor.

In this study, MLR is used to establish
a connection between the descriptor
parameters and the log-transformed
stability constants (logpi2). The data set
must be randomly divided into a training
set and a test set, with the training set
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containing roughly 80% of the total data
set, in order to generate the MLR-QSPR
models. The statistical parameters such as
k number of molecular descriptors, Ryain,
QZLOO, SE, Fsar (Fischer’s value), and
PRESS were utilized in these MLR-QSPR
models to assess the fitness of models
[3,19].

2.3.2. Artificial neural network

In specialized domains of mathematics,
electrical and electronic  research,
medicine, chemistry, and several other
real-world applications, artificial neural
networks (ANN) are successfully used
[20]. Generally, an input layer, one or
more hidden layers, and an output layer
are typically included in an ANN model.
Each layer contains neurons as well as the
weights that link them to one another.
There are numerous alternative ANN
architectures utilized in studies for
various  purposes, but  multi-layer
perceptron (MLP) networks are the most
widely used for building models [20-21].

The MLP-ANN type is used with an error
back-propagation technique in this work.
There are three layers including the input
layer I(k), the hidden layer H(m) and the
output layer O(n) in the ANN architecture
k)-HL(m)-O(n). The variables of MLR-
( SPR models make up the input layer.
The stability constant logfi,, which is to
be anticipated, is a component of the
output layer. The input and output layer
neurons calculate the hidden neurons.
ANN-QSPR models are trained using the
hyperbolic sigmoid tangent, log-sigmoid
and exponential transfer function [21].

2.4. Validation of QSPR models

It is crucial to use validation techniques to
strengthen a prediction of models when
analyzing data sets and to help determine
the number of the regression equation of
test data. In this study, we employ data
sets for both internal and external



methods that aid in the development of
ideal QSPR models. To make sure that the
models are good, statistical indicators are
employed. For the training set, they
contain the values R?%in and Q?.0o, and
for the external-validation set, Q%
[3,19]. The Q% value should be greater
than 0.5 and the R%in and Q% oo values
should be greater than 0.6. Additionally,
the gap between the R%ain and Q% oo
values should not be greater than 0.3
[3,22]. The same formula (4) was used to
generate these results.

n

DY, -Y,)?
R2 =1 — =L

>0 -7y

where Y;, Y, and Y values are the
experimental, calculated and average
values, respectively.

Additionally, fundamental statistics like
PRESS, Fg, and SE (standard error) are
used to assess the MLR-QSPR models. In
the case of ANN-QSPR models,
modelling is carried out until the mean
square error (MSE) is reduced, and then
the network output is compared to the real
values of the output acquired from
experimental results [3,20]. Between the
network outputs (0) and the target outputs
(t), MSE is the average squared error. The
following is written [21]:

n

MSE :%le(ti —o,)’
We employed the single factor ANOVA
to assess the differences between the
experimental and the anticipated log/pi,
values from the models. Besides, the
average absolute values of the relative
error, MARE(%) are used to evaluate the
overall error of the QSPR models. Error
analysis is also an important component
of QSPR study to evaluate the predictive
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performance of the created models. It is
determined using the formula (6) [18]:

|I09 ﬂlz,real - |Og ﬂlz,pred
Iog ﬁlz,real

here n is the number of test substances;
Piorear @Nd Propred are the experimental
and calculated stability constants.

3. RESULTS AND DISCUSSION
3.1. MLR models

The MLR-QSPR models are based on
statistical ~ mathematics, which s
supported by software tools, and careful
(Baluation of statistical indices. First, we
screened the variables in the models using
XLSTAT2016 [23]; Later, utilizing the
variable group, we created MLR-QSPR
models by using back-elimination and
forward regression on Excel platform
with add-in Regression [19]. The leave-
one-out (LOO) method was used for the
cross-validation (CV) of the MLR-QSPR
models. The construction of the 11 MLR-
QSPR models is shown in Table 2. The
difference between the 11 models is a few
different variables, but the regression
indices are still satisfactory. It is
explained that the training data set
represents structural diversification in
building the QSPR model. This will
facilitate the selection of models and
variables for developing new ligands and

omplexes.
&

As a results, the study verified the 11
MLR-QSPR models as being optimum
and statistically significant based on the
aforementioned analyses [3,19]. The
outcomes demonstrated the high R%rain,
QZLOO, and Fg; values and the extremely
low SE and PRESS values of these six-
variable MLR-QSPR models, which are
very good quality models. To develop
complete models, however, the external
evaluation of the MLR-QSPR models is
required [3,22]. The next step of this

MARE, % = 100 (6)

1
n



investigation will be completed and
presented this validation.

3.2. ANN models

The six variables that make up the input
values of ANN models are the outcomes
of the construction of MLR-QSPR
models. Table 2 provides an overview

results of the built models from the
training set of 87 logp, values. The
Matlab program is used to advance ANN-
QSPR models [21]. The dataset is divided
into three sections at random. These are
divided as follows: 60% for the training
set; 20% for cross-validation; and the
remaining 20% for the test set.

Table 2. Statistical values of MLR-QSPR models and the best models are shown in bold.

No Symbol

The models

1 MLR-QSPR1

logfi, = 2.000 — 2.528*xvp9 + 0.457*xvp5 + 0.036*SaaCH + 2.328*1onization
potential + 2.255*xvp10 + 2.023*HOMO. R?i, = 0.928, R%; = 0.923, Q% o0 =
0.887, SE = 0.377, Fyu = 172.54, PRESS = 17.94

2 MLR-QSPR2

logf, = -3.183 — 0.233*logP — 0.898*xvp9 + 0.468*xvp5 + 0.077*SaaCH + 0.313*
lonization potential + 0.239*SdsN. R?i, = 0.920, R%; = 0.914, Q% oo = 0.842, SE
=0.399, Fyy = 152.53, PRESS = 25.03

3 MLR-QSPR3

log:, = 18.600 — 0.457*LOMO + 0.709*xvp5 — 0.880*xvp7 +
0.053*SpcPolarizability — 2.722%5°6 — 1.621*Hmin. R%i, = 0.915, R% = 0.909,
Q%00 = 0.869, SE = 0.410, Fyy = 144.03, PRESS = 20.85

4 MLR-QSPR4

logf, = 3.218 — 0.042*Cosmo volume — 1.210*kal + 1.411*xvp5 — 1.616*xvp6 +
114.37*xvch9 + 80.45*xch8. R, = 0.921, R%q; = 0.915, Q% o0 = 0.885, SE =
0.396, Fg, = 155.83, PRESS = 18.19

5 MLR-QSPR5

logp, = -3.788 — 1.342*knotpv — 0.994*SaasC — 0.427*xvp9 + 35.992*xvch6 —
2.011*xS°6 — 12.092*N3. R%,in = 0.911, R%q; = 0.905, Q% 00 = 0.852, SE = 0.420,
Fsat = 136.78, PRESS = 23.46

6 MLR-QSPR6

log, = -0.478 — 31.827*N3 + 4.943*Hmin — 72.381*xch8 — 0.012*Molecular
Weight + 0.296*xvp5 — 1.184*xvpc4. R’y = 0.922, R%; = 0.916, Q% o0 = 0.841,
SE = 0.394, Fyy = 157.56, PRESS = 25.25

7  MLR-QSPR7

logB1, = -9.003 — 0.599*logP + 0.842*xvp5 — 0.983*xvp7 + 0.026*Surface +
0.347*SdsN — 1.511*xpc4. Ryaip = 0.914, R%g; = 0.908, Q°Loo = 0.827, SE = 0.413,
Fsat = 142.17, PRESS = 27.49

MLR-
QSPRS

logfy, = -15.223 — 1.534*S6 + 0.876*xvp5 — 1.240*xvp7 + 0.041*Surface +
100.286*xvch9 — 0.057*K0. R%4in = 0.914, R%; = 0.908, Q% oo = 0.844, SE =
0.413, Fyy = 141.75, PRESS = 24.82

9 MLR-QSPR9

logf, = -1.029 + 0.0001*Core-Core Repulsion — 3.062*knotpv — 1.271*xvp9 +
1.055*Gmax + 0.042*SpcPolarization + 3.217*N 4. R%yi, = 0.906, R%,g; = 0.899,
Q%00 = 0.849, SE = 0.432, Fy, = 128.48, PRESS = 23.97

logpi, = -2.015 — 0.593*Me7 — 3.241*S°6 + 0.432*xvp5 — 0.614*xvp8 + 0.022*

10 Q'\élIID_ISiO Volume — 0.007*Molecular Weight. Ry = 0.918, Résg = 0.911, Q% o0 = 0.884, SE
= 0.405, Fyy = 148.31, PRESS = 18.44
MLR- logfi, = -6.761 + 0.009* AH; + 1.009*xvp5 - 1.060*xvp6 + 0.590*SdssC +
11 ogpRryy  0691*CGmax - 4.700*N’3. RPyain = 0.908, R%g; = 0.902, Qo0 = 0.858, SE = 0.426,
Fya = 132.24, PRESS = 22.49
Utilizing  the  Levenberg-Marquardt architectures 1(6)-HL(m)-O(1) are created.

optimization technique and the back-
propagation error approach, the ANN

The ANN-QSPR models are trained using
the  log-sigmoid, exponential and
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hyperbolic tangent transfer function [21].
As shown in Table 3, the m neurons in
hidden layer HL(m) are initially assessed.

On an external data set, the predictability
of ANN-QSPR models IS
comprehensively assessed. With the Q%ain

value of 0.978, the Q% value of 0.976
and the Q%cv value of 0.975, the survey
findings revealed that the ANN-QSPR
model with the architecture 1(6)-HL(7)-
O(1) in bold, as shown in Table 3 and
Figure 2, had the best predictability.

Table 3. The trained ANN models I1(6)-HL(m)-O(1) with statistical parameters

ot ANNmOWE R Qu Qu  gone

ANN1 1(6)-HL(6)-0(1) 0.976 0.985 0.964 BFGS 33 Hyperbolic tangent
ANN2  1(6)-HL(8)-O(1) 0.958 0.985 0.976 BFGS 31 Log-sigmoid
ANN3  1(6)-HL(7)-O(1) 0.978 0.976 0.975 BEGS 13 Exponential
ANN4  1(6)-HL(7)-O(1) 0.886 0.926  0.949 BEGS 12 Log-sigmoid
ANN5  1(6)-HL(7)-0(1) 0.986 0.998 0.943 BEGS 63 Hyperbolic tangent

S6

xvpS

xvp7

Surface

Figure 2. The architecture 1(6)-HL(7)-O(1) of
ANN model

Through the parameter Q% (>0.5) [22]
and the MARE(%) values as the formula
(6), the assessment outcomes are strictly
monitored and are both to select the best
MLR-QSPR model of 11 models in Table
2 and to train also the best ANN-QSPR
model of 5 models in Table 3. The models
that satisfied the statistical requirements
were found in the findings (shown in bold
in Table 2 and 3) [3,22,24]. Results of
calculation of the Q% and MARE(%)
values have been calculated as Figure 3.
Based on the calculated values, it is
possible to assert that the MLR-QSPR8
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and ANN3-QSPR models were the good
ones selected in this study, corresponding
to the Q% values of 0.767 and 0.793,
respectively. The values show the
predictive power of the models is
acceptable (> 0.5) [22].As another issue,
the MARE(%) values of MLR-QSPR8 and
ANN3-QSPR models are 8.772 and
7.136, respectively. The results indicate
that the ANN3-QSPR model have the
better predictive power than the MLR-
QSPR8 model. It means that the models
built on intelligent machine-learning
techniques meet real-world applications.
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Figure 3. The MARE(%) and Q% values of QSPR
models



Table 4. The 18 experimental l0gS;, e, values in the external data set

Thiosemicarbazone Metal
Code . 100812.exp Ref.
R; R» Rs R4 ions
thiol H H -C,Hs -CyoH1,Bro, Fe? 7.086 [25]
thio2 -CHj -CH; -CsHyN -CsHyN Fe** 10.250 [14]
thio3 -CH; -CH; -CsH4N -CsHyN Ni%* 11.680 [14]
thio4 -CH; -CH; -CsHyN -CsHyN cu®* 12.490 [13]
thio5 H H -CsH4N -CsHyN Ni%* 11.290 [13]
thio6 H -CH; -CsH4N -CsHyN Mn?* 7.0000 [13]
thio7 H -CH; -CsH4N -CsHyN NiZ* 11.110 [13]
thio8 H -C,Hs  -CsHuN -CsHyN cu®* 12.580 [13]
thio9 H -C,Hs -CsH4N -CsH4N zZn* 10.270 [13]
thio10 H -CsHs -CsH4N -CsH4N cu* 12.410 [13]
thiol1 H -CiH;  -CsHuN -CsHyN Ni?* 11.140 [13]
thio12 H - -C1oH70,S La® 6.9000 [15]
thio13 H H - -C1H/0 Pré 12.940 [26]
thiol4 H H - -CyoH;0 Nd** 13.500 [26]
thiol5 H H -CH; -CgHsO Cd* 9.7900 [27]
thiol6 H H -CH; -CgHsO Ni%* 10.380 [27]
thiol7 H H -CH; -CgHsO cu®* 11.960 [27]
thiol8 H H -CgHsO -CgHsO Co* 12.215 [16]

The one-way ANOVA method is also
used to investigate the discrepancy
between the calculated values (10gf12,cal)
and the initial values (logfizexp) ON the
EV dataset of both two models. The
results indicate that the difference
between these results is insignificant (F =
0.1522 < F-crit (0.05) = 4.1300).

3.4. Design and calculation of new
complexes

The biological activity of phenothiazine
derivatives is very high, just like that of
thiosemicarbazone and its complexes
[28]. We have previously produced
certain thiosemicarbazones derivatives
that contain phenothiazine and their
compounds [28,29]. In this investigation,
eight novel thiosemicarbazone ligands
with substituted derivatives at the R, site
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were created. The hydrogen atoms are
substituted at the positions R1, R,, and R
of the ligands (Figure 1a).

The designing principle of phenothiazine
groups is based on the descriptors of the
developed models such as S6, xvp5, xvp7,
Surface, xvch9 and kO, and the derivatives
were explored as a result of the predictive
model results. The novel-designed
thiosemicarbazones containing metal ions
such as Ag*, Cu*, zn®*, Ni**, and Cd**
are the building blocks for the 20 new
complexes.

Similar calculations to those used to build
the complexes of the training and external
data set were applied to create the data set
for the new complexes. Using PM7 and
PM7/sparkle semi-experimental quantum
calculations on  MoPac2016, the



complexation is defined by the overall
energy values and structural morphology.
Table 5 lists the new complexes with the

predicted 109512 preg-new Values.

By integrating the data set for the new
complexes into the initial training data set
and computing the Cook distance

indicator (D¢ook), the new complexes were
evaluated for the application domain
(AD) (|Dcook| < 1.0) [24,30] and outliers
in order to test the calculated 1092 preg-
new Values from the MLR-QSPR8 and
ANN3-QSPR models.

Table 5. Twenty new complexes with the predicted 10912 pred-new Values from the QSPR models

IOgﬁlZ,Pred-new

IOQﬂlz,Pred-new

. Meta . Metal
R, site i R, site .
NS MLRS  ANN NS MLR8  ANN
~ Ag" 12714 11.880 @/ Ag"  11.840 9.604
/@D Cu®*  10.977 10.278 { Ni®* 11778 11.047
N "~
- : Ni?*  11.171 10.330 @D Cd* 9.961  10.243
@5 Cd* 8790  9.314 Cp Ag" 13244  12.202
L(o cu®* 9615 9451 1% cd* 10236 10.595
COC Zn® 11297 10.898 00 Zn® 13789 12.144
Cu®* 8492 8271 /"j@YO Cu®* 12523 11425
cd* 10.178 10.386 @[@ Ni?*  11.673 10.713
o 2
J [ NiZ*  11.884 11.072 ; ,V@ Zn*  10.165  9.668
F = JE
200¢
s N 2
Zn®* 11945 11.133 Qﬁ )}Q Ag® 9653  8.004
The outcomes demonstrated that the Cook  complexation between metal ions and

distance values of 20 novel complexes
satisfied the prediction criteria.

Additionally, the projected 109512 pred-new
values generated from the MLR-QSPR8
and ANN3-QSPR models were also
compared using the one-way ANOVA
technique (F = 2.6033 < Fgos = 4.0982)
showed that there is no difference between
them.

4. CONCLUSION

The development of MLR-QSPR and
ANN-QSPR models to validate the
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thiosemicarbazones with logp;, values in
an agueous solution has been successful in
this work. The techniques of multivariate
linear regression are used to create the
MLR-QSPR models. The six descriptors
such as S6, xvp5, xvp7, Surface, xvch9, and
kO of the best MLR-QSPR8 model were
found. The six variables were used as the
input for effectively constructing the 1(6)-
HL(7)-O(1) ANN3-QSPR model. The
developed QSPR models were statistically
fit-valid. To assess the importance of the
descriptors in the created model, the



predicted logBi, values of 20 novel
complexes have been checked for
applicability domain and outliers using the
indicators of OECD instructions. More
than that, the 20 newly created metal-
thiosemicarbazone complexes have
successfully been designed and calculated
the logPi» values. Results of potential
QSPR models could be used to identify
various thiosemicarbazones and their
complexes for application in the field of
metal analysis.
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