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TÓM TẮT 

PHÁT TRIỂN CÁC DẪN XUẤT THIOSEMICARBAZONE TIỀM NĂNG TRONG 

VIỆC PHÂN TÍCH CÁC ION KIM LOẠI DỰA TRÊN MÔ HÌNH QSPR  

Trong nghiên cứu này, hai mươi phức chất mới của các phối tử mới thiosemicarbazone đã được phát triển 

dựa trên các mô hình định lượng quan hệ cấu trúc-tính chất (QSPR). Các mô hình QSPR được xây dựng từ 

87 giá trị hằng số bền (log12) của các phức chất thực nghiệm bằng cách hai phương pháp hồi quy tuyến 

tính đa biến (MLR-QSPR) và mạng thần kinh nhân tạo (ANN-QSPR). Ngoài ra, các mô hình đã được đánh 

giá ngoại trên một tập dữ liệu độc lập bao gồm 18 phức chất thực nghiệm. Cấu trúc của các phức chất đã 

được tối ưu hóa bằng kỹ thuật tính toán lượng tử bán thực nghiệm với phiên bản mới nhất PM7 và 

PM7/sparkle. Nghiên cứu này cũng áp dụng nguyên tắc “miền ứng dụng (AD) và giá trị ngoại biên 

(Outliers)” theo hướng dẫn của tổ chức OECD để thiết kế các ligand và phức hợp mới. Kết quả mô hình 

MLR-QSPR bao gồm sáu biến như 
6
S, xvp5, xvp7, surface, xvch9 và k0 đã được xây dựng thành công với 

các giá trị thống kê như R
2
train = 0,914; Q

2
LOO = 0,844; SE = 0,413 và Q

2
ext-MLR = 0,767. Hơn nữa, mô hình 

ANN-QSPR với kiến trúc I(6)-HL(5)-O(1) đã được tìm thấy với các giá trị thống kê: R
2
train = 0,978; Q

2
CV = 

0,975; Q
2
test = 0,976 và Q

2
ext-ANN = 0,867. Kết quả thu được từ các mô hình QSPR được sử dụng để phát 

triển các phức chất mới và các phức chất mới này có thể được ứng dụng trong lĩnh vực hóa học phân tích. 

Keywords. MLR, MLP-ANN, QSPR, Stability constant logβ12, Thiosemicarbazone. 

 

1. INTRODUCTION 

The structural features of 

thiosemicarbazone, which include thiol 

sulphur and azomethine nitrogen, allow it 

to form complexes with a variety of 

transition metal ions [1]. 

Thiosemicarbazones and their metal 

chelates are thus the subject of extensive 

research worldwide. Their application as 

analytical agents, antibacterial, antifungal, 

and anticancer agents are the main uses 

[2]. Stabilityconstants should be a major 

concern of the formation of complexes. It 

is closely related to the structural 

characteristics of the ligands and the 

metal ions. It is an indicator of how well 

the ligand interacts with the metal ions to 
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create various complexes. On the other 

hand, computer science has advanced, it 

has become very common to conduct 

theoretical research on applying 

computational chemistry in conjunction 

with chemical software to solve complex 

mathematical problems and appropriate 

mathematical methods in order to quickly 

orient experimental research [3]. 
Computational chemistry applications 

significantly reduce the time and cost 

associated with complexation research. 

Chemists can utilize computers to 

simulate and predict the properties of 

complexes rapidly and efficiently, 

eliminating the need for time-consuming 

and expensive experiments. 

The environment is becoming more 

and more contaminated nowadays as a 

result of the leakage of heavy metal ions 

into the environment from factories, 

industrial parks, and production facilities. 

To achieve the practical requirements, 

heavy metal ion control and analysis must 

be quick and affordable. AAS, ICP-AES, 

ICP-MS have all been used to analyze the 

presence of heavy metals in various parts 

of the world. However, the methods are 

quite expensive and strictly operating 

techniques. Meanwhile, 

spectrophotometry is quite popular, 

cheap, and easy to operate. It relies on the 

ability of metal ions and ligands to form 

complexes. Therefore, developing a new 

ligand and complex is a way to quantify 

metal ions that can be easily applied in 

practice [4]. Because of its high 

complexity and the numerous research 

that have been published on its use, we 

seek to characterize the 

thiosemicarbazone derivative in this study 

using a straightforward and affordable 

method called spectrophotometric 

analysis. 

Table 1. Experimentally determined stability constants for 87 metal-thiosemicarbazone complexes (n) 

with minimum (log12,min) and maximum (log12,max) values 

Ligand Metal 

ions 

Number of 

complexes, n logβ12,min logβ12,max Ref. 
R1 R2 R3 R4 

H H -CH3 -C10H12BrO Ni
2+

 1 6.5490 6.5490 [8] 

H H -C2H5 -C10H12BrO2 Ni
2+

 1 8.8070 8.8070 [9] 

H H -C2H5 -C10H12BrO2 Cd
2+

 1 6.9274 6.9274 [10] 

H H -C4H9 -C6H4BrO2 Co
2+

 1 10.4362 10.4362 [11] 

H -C6H5 -C6H5 -C5H4N Cu
2+

 16 11.0010 11.3050 [12] 

H -C6H5 -C6H5 -C5H4N Co
2+

 16 10.3280 10.4710 [12] 

H -C6H5 -C6H5 -C5H4N Zn
2+

 16 11.0610 11.2610 [12] 

H -C6H5 -C6H5 -C5H4N Ni
2+

 16 10.1230 10.2540 [12] 

-CH3 -CH3 -C5H4N -C5H4N Ni
2+

 1 11.2100 11.2100 [13] 

-CH3 -CH3 -C5H4N -C5H4N Fe
3+

 1 12.6700 12.6700 [14] 

H -C2H5 -C5H4N -C5H4N Mn
2+

 1 7.2000 7.2000 [13] 

H -C2H5 -C5H4N -C5H4N Ni
2+

 1 11.1300 11.1300 [13] 

-CH3 -CH3 -C5H4N -C5H4N Mn
2+

 1 7.7600 7.7600 [13] 

H -C6H5 -C5H4N -C5H4N Mn
2+

 1 7.4100 7.4100 [13] 

H -C6H5 -C5H4N -C5H4N Ni
2+

 1 11.3200 11.3200 [13] 

H -C6H5 -C5H4N -C5H4N Zn
2+

 1 10.2100 10.2100 [13] 

H -C4H7 -C5H4N -C5H4N Mn
2+

 1 7.3300 7.3300 [13] 

H -C4H7 -C5H4N -C5H4N Cu
2+

 1 12.5300 12.5300 [13] 

H -C4H7 -C5H4N -C5H4N Zn
2+

 1 10.2200 10.2200 [13] 

H H - -C10H7O4S Pr
3+

 7 6.8500 7.9300 [15] 

H H -C6H5O -C6H5O Cu
2+

 1 11.3570 11.3570 [16] 
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Additionally, the quantitative 

structure-property relationship (QSPR) 

modelling is widely employed in the field 

of chemistry [3]. Through experiments 

and knowledge of the molecular structure, 

this theoretical approach creates 

prediction models based on a method 

known as quantitative structure and 

property relationship. The outcomes of 

QSPR modelling offer numerous benefits. 

In line with the present trend, designing 

chemical processes towards green 

chemistry aids in the development of safe, 

efficient, and environmentally friendly 

compounds [3]. 

In this study, we build models based on 

the molecular descriptors and stability 

constants (log12) of complexes between 

metal ions and thiosemicarbazones using 

an in silico model of quantitative structure 

and property relationship. The electronic 

parameters are used in quantum chemistry 

with the semi-empirical approach of PM7 

and PM7/sparkle new version [5-6], and 

the 0D-3D topological descriptors are 

generated using graph theoretical methods 

[7]. Multivariate linear regression and 

artificial neural networks are used to 

create the MLR-QSPR and ANN-QSPR 

model series. With the test set, the models 

are also subjected to external evaluation 

methods. We also predict the stability 

constants log12 values of newly 

constructed complexes using the 

developed models. 

2. METHODOLOGY 

2.1. Structural selection and data set  

Thiosemicarbazones often interact with 

transition metal ions as bidentate ligands 

through bonds with the sulphur and 

azomethine nitrogen atoms. They can 

sometimes link through the sulphur, 

nitrogen, and potential donor atoms to 

function as tridentate or tetradentate 

ligands [1,2]. Thiosemicarbazone 

complexes are chosen for research in this 

work as bidentate ligands in association 

with the basic metal ions. The detailed 

structure of ligands and complexes are 

shown in Fig. 1; in which, the substituents 

of R1, R2, R3 and R4 can change in 

structure to form different ligands and 

complexes.  

(a)  

(b)  

Figure 1. Structure of ligand (a) and complex (b) 

in the work 

According to the general equilibrium 

equation, the complex formation in an 

aqueous solution can be explained as 

follows: 

pM
n+

 + qL
n-

 ⇌ [MpLq]         (1) 

The following formula is used to compute 

the overall stability constants (12) when 

the complex ML2 is formed in two phases 

with p = 1 and q = 2: 

12 2

[M L ]

[M ][L ]

p q

n n


 


                   

(2) 

From the published literature [8-16], the 

stability constants (log12) of the 

complexes ML2 of some metal ions (M = 

Ni
2+

, Cd
2+

, Cu
2+

, Co
2+

, Mn
2+

, Zn
2+

, Fe
3+

, 

and Pr
3+

) with various thiosemicarbazones 

(L) in aqueous solution at various 
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experimental conditions (temperature, pH, 

and ionic strength) were selected.2.2. 

Descriptors  

Quantum, 0D-3D molecular descriptors 

are all used in QSPR modelling. Using 

BIOVIA Draw 2017 R2, the structures of 

experimental complexes were recreated 

[17]. The complexes were then optimized 

using the MoPac2016 software with the 

method of quantum mechanics QM [6]. 

On QSARIS tools [7,18], the 0D-3D 

molecular parameters of 230 descriptors 

were calculated using the ideal structures. 

The MoPac2016 system was used to 

determine the quantum parameters using 

the semi-empirical quantum method PM7 

and PM7/sparkle [5]. The QSPR models 

were constructed using the descriptors 

and stability constants (log12) as a data 

set [3]. 

2.3. Estimation of QSPR models 

2.3.1. Multivariate linear regression 

The statistical technique of multivariate 

linear regression (MLR) is a well-liked 

one for QSPR modelling. The equation 

(3) describes the relationship between 

independent and dependent variables 

[3,19]. 

0

1

k

i i

i

Y b b x


   (3) 

where Y is the dependent variable, b0 

represents the intercept of models, bi 

represents a slope, xi represents an 

independent variable, and k represents the 

number of variables in the equation. In 

this case, Y is the logarithm of the 

stability constant and xi is the descriptor. 

In this study, MLR is used to establish 

a connection between the descriptor 

parameters and the log-transformed 

stability constants (log12). The data set 

must be randomly divided into a training 

set and a test set, with the training set 

containing roughly 80% of the total data 

set, in order to generate the MLR-QSPR 

models. The statistical parameters such as 

k number of molecular descriptors, R
2

train, 

Q
2

LOO, SE, Fstat (Fischer’s value), and 

PRESS were utilized in these MLR-QSPR 

models to assess the fitness of models 

[3,19]. 

2.3.2. Artificial neural network  

In specialized domains of mathematics, 

electrical and electronic research, 

medicine, chemistry, and several other 

real-world applications, artificial neural 

networks (ANN) are successfully used 

[20]. Generally, an input layer, one or 

more hidden layers, and an output layer 

are typically included in an ANN model. 

Each layer contains neurons as well as the 

weights that link them to one another. 

There are numerous alternative ANN 

architectures utilized in studies for 

various purposes, but multi-layer 

perceptron (MLP) networks are the most 

widely used for building models [20-21]. 

The MLP-ANN type is used with an error 

back-propagation technique in this work. 

There are three layers including the input 

layer I(k), the hidden layer H(m) and the 

output layer O(n) in the ANN architecture 

I(k)-HL(m)-O(n). The variables of MLR-

QSPR models make up the input layer. 

The stability constant log12, which is to 

be anticipated, is a component of the 

output layer. The input and output layer 

neurons calculate the hidden neurons. 

ANN-QSPR models are trained using the 

hyperbolic sigmoid tangent, log-sigmoid 

and exponential transfer function [21].  

2.4. Validation of QSPR models 

It is crucial to use validation techniques to 

strengthen a prediction of models when 

analyzing data sets and to help determine 

the number of the regression equation of 

test data. In this study, we employ data 

sets for both internal and external 
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methods that aid in the development of 

ideal QSPR models. To make sure that the 

models are good, statistical indicators are 

employed. For the training set, they 

contain the values R
2

train and Q
2

LOO, and 

for the external-validation set, Q
2

ext 

[3,19]. The Q
2

ext value should be greater 

than 0.5 and the R
2

train and Q
2

LOO values 

should be greater than 0.6. Additionally, 

the gap between the R
2

train and Q
2

LOO 

values should not be greater than 0.3 

[3,22]. The same formula (4) was used to 

generate these results. 

2

2 1

2

1

ˆ( )

1

( )







 







n

i i

i

n

i

i

Y Y

R

Y Y

 (4) 

where Yi, Ŷi, and Ȳ  values are the 

experimental, calculated and average 

values, respectively. 

Additionally, fundamental statistics like 

PRESS, Fstat, and SE (standard error) are 

used to assess the MLR-QSPR models. In 

the case of ANN-QSPR models, 

modelling is carried out until the mean 

square error (MSE) is reduced, and then 

the network output is compared to the real 

values of the output acquired from 

experimental results [3,20]. Between the 

network outputs (o) and the target outputs 

(t), MSE is the average squared error. The 

following is written [21]: 

 
2

1

1
 

n

i iMSE t o
n

  (5) 

We employed the single factor ANOVA 

to assess the differences between the 

experimental and the anticipated log12 

values from the models. Besides, the 

average absolute values of the relative 

error, MARE(%) are used to evaluate the 

overall error of the QSPR models. Error 

analysis is also an important component 

of QSPR study to evaluate the predictive 

performance of the created models. It is 

determined using the formula (6) [18]: 

12, 12,pred

12,

log log1
,% 100

log

 






real

real

MARE
n

 (6) 

here n is the number of test substances; 

β12,real and β12,pred are the experimental 

and calculated stability constants. 

3. RESULTS AND DISCUSSION 

3.1. MLR models 

The MLR-QSPR models are based on 

statistical mathematics, which is 

supported by software tools, and careful 

evaluation of statistical indices. First, we 

screened the variables in the models using 

XLSTAT2016 [23]; Later, utilizing the 

variable group, we created MLR-QSPR 

models by using back-elimination and 

forward regression on Excel platform 

with add-in Regression [19]. The leave-

one-out (LOO) method was used for the 

cross-validation (CV) of the MLR-QSPR 

models. The construction of the 11 MLR-

QSPR models is shown in Table 2. The 

difference between the 11 models is a few 

different variables, but the regression 

indices are still satisfactory. It is 

explained that the training data set 

represents structural diversification in 

building the QSPR model. This will 

facilitate the selection of models and 

variables for developing new ligands and 

complexes. 

As a results, the study verified the 11 

MLR-QSPR models as being optimum 

and statistically significant based on the 

aforementioned analyses [3,19]. The 

outcomes demonstrated the high R
2

train, 

Q
2

LOO, and Fstat values and the extremely 

low SE and PRESS values of these six-

variable MLR-QSPR models, which are 

very good quality models. To develop 

complete models, however, the external 

evaluation of the MLR-QSPR models is 

required [3,22]. The next step of this 
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investigation will be completed and 

presented this validation.  

3.2. ANN models 

The six variables that make up the input 

values of ANN models are the outcomes 

of the construction of MLR-QSPR 

models. Table 2 provides an overview 

results of the built models from the 

training set of 87 log12 values. The 

Matlab program is used to advance ANN-

QSPR models [21]. The dataset is divided 

into three sections at random. These are 

divided as follows: 60% for the training 

set; 20% for cross-validation; and the 

remaining 20% for the test set. 

Table 2. Statistical values of MLR-QSPR models and the best models are shown in bold. 

No Symbol The models 

1 MLR-QSPR1 
log12 = 2.000 – 2.528*xvp9 + 0.457*xvp5 + 0.036*SaaCH + 2.328*Ionization 

potential + 2.255*xvp10 + 2.023*HOMO. R
2
train = 0.928, R

2
adj = 0.923, Q

2
LOO = 

0.887, SE = 0.377, Fstat = 172.54, PRESS = 17.94 

2 MLR-QSPR2 
log12 = -3.183 – 0.233*logP – 0.898*xvp9 + 0.468*xvp5 + 0.077*SaaCH + 0.313* 

Ionization potential + 0.239*SdsN. R
2
train = 0.920, R

2
adj = 0.914, Q

2
LOO = 0.842, SE 

= 0.399, Fstat = 152.53, PRESS = 25.03  

3 MLR-QSPR3 
log12 = 18.600 – 0.457*LOMO + 0.709*xvp5 – 0.880*xvp7 + 

0.053*SpcPolarizability – 2.722*S’6 – 1.621*Hmin. R
2

train = 0.915, R
2
adj = 0.909, 

Q
2

LOO = 0.869, SE = 0.410, Fstat = 144.03, PRESS = 20.85  

4 MLR-QSPR4 
log12 = 3.218 – 0.042*Cosmo volume – 1.210*ka1 + 1.411*xvp5 – 1.616*xvp6 + 

114.37*xvch9 + 80.45*xch8. R
2

train = 0.921, R
2

adj = 0.915, Q
2
LOO = 0.885, SE = 

0.396, Fstat = 155.83, PRESS = 18.19  

5 MLR-QSPR5 
log12 = -3.788 – 1.342*knotpv – 0.994*SaasC – 0.427*xvp9 + 35.992*xvch6 – 

2.011*xS’6 – 12.092*N3. R
2

train = 0.911, R
2
adj = 0.905, Q

2
LOO = 0.852, SE = 0.420, 

Fstat = 136.78, PRESS = 23.46  

6 MLR-QSPR6 
log12 = -0.478 – 31.827*N3 + 4.943*Hmin – 72.381*xch8 – 0.012*Molecular 

Weight + 0.296*xvp5 – 1.184*xvpc4. R
2
train = 0.922, R

2
adj = 0.916, Q

2
LOO = 0.841, 

SE = 0.394, Fstat = 157.56, PRESS = 25.25  

7 MLR-QSPR7 
log12 = -9.003 – 0.599*logP + 0.842*xvp5 – 0.983*xvp7 + 0.026*Surface + 

0.347*SdsN – 1.511*xpc4. R
2
train = 0.914, R

2
adj = 0.908, Q

2
LOO = 0.827, SE = 0.413, 

Fstat = 142.17, PRESS = 27.49  

8 
MLR-

QSPR8 

log12 = -15.223 – 1.534*S6 + 0.876*xvp5 – 1.240*xvp7 + 0.041*Surface + 

100.286*xvch9 – 0.057*k0. R
2
train = 0.914, R

2
adj = 0.908, Q

2
LOO = 0.844, SE = 

0.413, Fstat = 141.75, PRESS = 24.82  

9 MLR-QSPR9 
log12 = -1.029 + 0.0001*Core-Core Repulsion – 3.062*knotpv – 1.271*xvp9 + 

1.055*Gmax + 0.042*SpcPolarization + 3.217*N’4. R
2
train = 0.906, R

2
adj = 0.899, 

Q
2

LOO = 0.849, SE = 0.432, Fstat = 128.48, PRESS = 23.97  

10 
MLR-

QSPR10 

log12 = -2.015 – 0.593*Me7 – 3.241*S’6 + 0.432*xvp5 – 0.614*xvp8 + 0.022* 

Volume – 0.007*Molecular Weight. R
2

train = 0.918, R
2

adj = 0.911, Q
2
LOO = 0.884, SE 

= 0.405, Fstat = 148.31, PRESS = 18.44  

11 
MLR-

QSPR11 

log12 = -6.761 + 0.009*Hf + 1.009*xvp5 - 1.060*xvp6 + 0.590*SdssC + 

0.691*Gmax – 4.700*N’3. R
2

train = 0.908, R
2

adj = 0.902, Q
2
LOO = 0.858, SE = 0.426, 

Fstat = 132.24, PRESS = 22.49  

Utilizing the Levenberg-Marquardt 

optimization technique and the back-

propagation error approach, the ANN 

architectures I(6)-HL(m)-O(1) are created. 

The ANN-QSPR models are trained using 

the log-sigmoid, exponential and 
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hyperbolic tangent transfer function [21]. 

As shown in Table 3, the m neurons in 

hidden layer HL(m) are initially assessed. 

On an external data set, the predictability 

of ANN-QSPR models is 

comprehensively assessed. With the Q
2
train 

value of 0.978, the Q
2

test value of 0.976 

and the Q
2

CV value of 0.975, the survey 

findings revealed that the ANN-QSPR 

model with the architecture I(6)-HL(7)-

O(1) in bold, as shown in Table 3 and 

Figure 2, had the best predictability. 

Table 3. The trained ANN models I(6)-HL(m)-O(1) with statistical parameters 

Code ANN models R
2
train Q

2
test Q

2
cv 

Training 

algorithm 

Transfer  

function 

ANN1 I(6)-HL(6)-O(1) 0.976 0.985 0.964 BFGS 33 Hyperbolic tangent 

ANN2 I(6)-HL(8)-O(1) 0.958 0.985 0.976 BFGS 31 Log-sigmoid 

ANN3 I(6)-HL(7)-O(1) 0.978 0.976 0.975 BFGS 13 Exponential 

ANN4 I(6)-HL(7)-O(1) 0.886 0.926 0.949 BFGS 12 Log-sigmoid 

ANN5 I(6)-HL(7)-O(1) 0.986 0.998 0.943 BFGS 63 Hyperbolic tangent 

 

Figure 2. The architecture I(6)-HL(7)-O(1) of 

ANN model 

Through the parameter Q
2

ext (>0.5) [22] 

and the MARE(%) values as the formula 

(6), the assessment outcomes are strictly 

monitored and are both to select the best 

MLR-QSPR model of 11 models in Table 

2 and to train also the best ANN-QSPR 

model of 5 models in Table 3. The models 

that satisfied the statistical requirements 

were found in the findings (shown in bold 

in Table 2 and 3) [3,22,24]. Results of 

calculation of the Q
2

ext and MARE(%) 

values have been calculated as Figure 3. 

Based on the calculated values, it is 

possible to assert that the MLR-QSPR8 

and ANN3-QSPR models were the good 

ones selected in this study, corresponding 

to the Q
2

ext values of 0.767 and 0.793, 

respectively. The values show the 

predictive power of the models is 

acceptable (> 0.5) [22].As another issue, 

the MARE(%) values of MLR-QSPR8 and 

ANN3-QSPR models are 8.772 and 

7.136, respectively. The results indicate 

that the ANN3-QSPR model have the 

better predictive power than the MLR-

QSPR8 model. It means that the models 

built on intelligent machine-learning 

techniques meet real-world applications. 

 

Figure 3. The MARE(%) and Q
2
ext values of QSPR 

models 
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Table 4. The 18 experimental log12,exp values in the external data set 

Code 
Thiosemicarbazone Metal  

ions 
logβ12.exp Ref. 

R1 R2 R3 R4 

thio1 H H -C2H5 -C10H12BrO2 Fe
2+

 7.086 [25] 

thio2 -CH3 -CH3 -C5H4N -C5H4N Fe
3+

 10.250 [14] 

thio3 -CH3 -CH3 -C5H4N -C5H4N Ni
2+

 11.680 [14] 

thio4 -CH3 -CH3 -C5H4N -C5H4N Cu
2+

 12.490 [13] 

thio5 H H -C5H4N -C5H4N Ni
2+

 11.290 [13] 

thio6 H -CH3 -C5H4N -C5H4N Mn
2+

 7.0000 [13] 

thio7 H -CH3 -C5H4N -C5H4N Ni
2+

 11.110 [13] 

thio8 H -C2H5 -C5H4N -C5H4N Cu
2+

 12.580 [13] 

thio9 H -C2H5 -C5H4N -C5H4N Zn
2+

 10.270 [13] 

thio10 H -C6H5 -C5H4N -C5H4N Cu
2+

 12.410 [13] 

thio11 H -C4H7 -C5H4N -C5H4N Ni
2+

 11.140 [13] 

thio12 H H - -C10H7O4S La
3+

 6.9000 [15] 

thio13 H H - -C10H7O Pr
3+

 12.940 [26] 

thio14 H H - -C10H7O Nd
3+

 13.500 [26] 

thio15 H H -CH3 -C6H5O Cd
2+

 9.7900 [27] 

thio16 H H -CH3 -C6H5O Ni
2+

 10.380 [27] 

thio17 H H -CH3 -C6H5O Cu
2+

 11.960 [27] 

thio18 H H -C6H5O -C6H5O Co
2+

 12.215 [16] 

The one-way ANOVA method is also 

used to investigate the discrepancy 

between the calculated values (logβ12,cal) 

and the initial values (logβ12,exp) on the 

EV dataset of both two models. The 

results indicate that the difference 

between these results is insignificant (F = 

0.1522 < F-crit (0.05) = 4.1300). 

3.4. Design and calculation of new 

complexes  

The biological activity of phenothiazine 

derivatives is very high, just like that of 

thiosemicarbazone and its complexes 

[28]. We have previously produced 

certain thiosemicarbazones derivatives 

that contain phenothiazine and their 

compounds [28,29]. In this investigation, 

eight novel thiosemicarbazone ligands 

with substituted derivatives at the R4 site 

were created. The hydrogen atoms are 

substituted at the positions R1, R2, and R3 

of the ligands (Figure 1a). 

The designing principle of phenothiazine 

groups is based on the descriptors of the 

developed models such as S6, xvp5, xvp7, 

Surface, xvch9 and k0, and the derivatives 

were explored as a result of the predictive 

model results. The novel-designed 

thiosemicarbazones containing metal ions 

such as Ag
+
, Cu

2+
, Zn

2+
, Ni

2+
, and Cd

2+
 

are the building blocks for the 20 new 

complexes. 

Similar calculations to those used to build 

the complexes of the training and external 

data set were applied to create the data set 

for the new complexes. Using PM7 and 

PM7/sparkle semi-experimental quantum 

calculations on MoPac2016, the 
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complexation is defined by the overall 

energy values and structural morphology. 

Table 5 lists the new complexes with the 

predicted log12,Pred-new values. 

By integrating the data set for the new 

complexes into the initial training data set 

and computing the Cook distance 

indicator (Dcook), the new complexes were 

evaluated for the application domain 

(AD) (|DCook| < 1.0) [24,30] and outliers 

in order to test the calculated log12,Pred-

new values from the MLR-QSPR8 and 

ANN3-QSPR models. 

Table 5. Twenty new complexes with the predicted log12,pred-new values from the QSPR models 

R4 site 
Meta

l ions 

logβ12,Pred-new 
R4 site 

Metal 

ions 

logβ12,Pred-new 

MLR8 ANN MLR8 ANN 

 

Ag
+
 12.714 11.880 

 

Ag
+
 11.840 9.604 

Cu
2+

 10.977 10.278 Ni
2+

 11.778 11.047 

Ni
2+

 11.171 10.330 Cd
2+

 9.961 10.243 

 

Cd
2+

 8.790 9.314 

 

Ag
+
 13.244 12.202 

Cu
2+

 9.615 9.451 Cd
2+

 10.236 10.595 

Zn
2+

 11.297 10.898 Zn
2+

 13.789 12.144 

 

Cu
2+

 8.492 8.271 

 

Cu
2+

 12.523 11.425 

Cd
2+

 10.178 10.386 Ni
2+

 11.673 10.713 

Ni
2+

 11.884 11.072 

 

Zn
2+

 10.165 9.668 

Zn
2+

 11.945 11.133 

 

Ag
+
 9.653 8.004 

The outcomes demonstrated that the Cook 

distance values of 20 novel complexes 

satisfied the prediction criteria. 

Additionally, the projected log12,Pred-new 

values generated from the MLR-QSPR8 

and ANN3-QSPR models were also 

compared using the one-way ANOVA 

technique (F = 2.6033 < F0.05 = 4.0982) 

showed that there is no difference between 

them. 

4. CONCLUSION 

The development of MLR-QSPR and 

ANN-QSPR models to validate the 

complexation between metal ions and 

thiosemicarbazones with log12 values in 

an aqueous solution has been successful in 

this work. The techniques of multivariate 

linear regression are used to create the 

MLR-QSPR models. The six descriptors 

such as S6, xvp5, xvp7, Surface, xvch9, and 

k0 of the best MLR-QSPR8 model were 

found. The six variables were used as the 

input for effectively constructing the I(6)-

HL(7)-O(1) ANN3-QSPR model. The 

developed QSPR models were statistically 

fit-valid. To assess the importance of the 

descriptors in the created model, the 
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predicted log12 values of 20 novel 

complexes have been checked for 

applicability domain and outliers using the 

indicators of OECD instructions. More 

than that, the 20 newly created metal-

thiosemicarbazone complexes have 

successfully been designed and calculated 

the log12 values. Results of potential 

QSPR models could be used to identify 

various thiosemicarbazones and their 

complexes for application in the field of 

metal analysis. 
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