

**SYNTHESIS OF CeO₂/SiO₂ NANO MATERIALS AND APPLICATION
FOR STIMULANTING GROWTH OF BELL PEEPPER PLAN
(*Capsicum Annuum L.*)**

Đến toà soạn 10-05-2024

**Cao Văn Hoàng¹, Nguyễn Thị Diệu Cẩm¹, Nguyễn Vũ Ngọc Mai¹,
Nguyễn Văn Lượng¹, Nguyễn Đình Đốc¹, Đào Ngọc Nhiệm²**

¹*Faculty of natural sciences, Quy Nhon University,
170 An Duong Vuong, Quy Nhon, Binh Dinh*

²*Institute of Materials Science, Vietnam Academy of Science and Technology,
18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam*

TÓM TẮT

**TỔNG HỢP VẬT LIỆU NANO CeO₂/SiO₂ ỨNG DỤNG LÀM CHẤT KÍCH
THÍCH SINH TRƯỞNG CHO CÂY ỚT CHUÔNG (*Capsicum Annuum L.*)**

Trong nghiên cứu này, vật liệu CeO₂/SiO₂ được tổng hợp và ứng dụng làm chất kích thích sinh trưởng cây ớt chuông từ tiền chất Ce(NO₃)₄ và tro trấu bằng phương pháp chiết xạ gamma. Hình thái và cấu trúc vật liệu được xác nhận thông qua các phương pháp đặc trưng hóa lý bao gồm: đặc trưng XRD, EDX, IR và SEM. Kết quả khảo sát ảnh hưởng của vật liệu CeO₂/SiO₂ đến sự sinh trưởng phát triển của cây ớt chuông cho thấy, CeO₂/SiO₂ ảnh hưởng đáng kể đến sự sinh trưởng, phát triển của cây ớt chuông. Dữ liệu thực nghiệm thu được chỉ ra rằng năng suất ớt chuông tăng 22 tấn/ha, chiều dài rễ trung bình tăng 3,6 cm và thời gian thu hoạch ít hơn 11 ngày so với mẫu đối chứng. Ngoài ra, cây ớt chuông có bồ sung CeO₂/SiO₂ thì cứng cáp hơn và không có hiện tượng vàng lá. Điều này cho thấy CeO₂/SiO₂ có tác dụng kích thích sinh trưởng đối với cây ớt chuông.

Từ khoá: CeO₂, SiO₂, kích thích sinh trưởng thực vật, ớt chuông, năng suất.

1. INTRODUCTION

In agriculture, silicon is not considered an essential element (out of the 16 essential elements for crops), but it plays an important role for crops [1-4]. Most soils are naturally rich in silicon, constituting 60-70% depending on the soil type [4]. However, the crucial point is that silicon exists in the soil in a form that is structurally difficult for crops to absorb and utilize. Soils can become deficient in silicon, especially in tropical conditions where silicon can be continuously leached

away, and additionally, significant amounts of silicon are removed by crops each year. According to Miyake and Takahashi (1978), the improved resistance of plants to fungal invasion may also be attributed to the accumulation of Si in the epidermal cell layer [2-3]. Research across various crop types has shown that Si positively influences the plants' resilience by enhancing the Si content, thus protecting them from pest attacks [5-8]. Many studies suggest that plants uptake silicon in the form of SiO₃²⁻ passively through transpiration, with

selective absorption facilitated by metabolic processes through the plant root system [9-13]. It is evident that Rare earth elements increase nutrient uptake and accumulation, enhance synthesis rates, and boost the accumulation and transport of sugars in cereals [14-16]. Their presence also elevates sugar levels in sugarcane, sugar beets, and watermelons, increases fructose and vitamin C content in fruits, and enhances the spiciness and aroma of pepper seeds. These roles contribute to increased crop yields when using fertilizers containing rare earth elements. Additionally, bell peppers, also known as sweet peppers, are rich in essential nutrients. Currently, bell peppers come in common colors such as red, yellow, green, and orange. Each color variation signifies distinct nutritional compositions, offering valuable health benefits to consumers [17]. Lutein and zeaxanthin present in bell peppers help improve eye health, guarding against the harmful effects of blue light and oxidative damage to the macular region of the eye. Furthermore, they aid in visual improvement and limit oxidative reactions damaging the retina. Moreover, bell peppers contain iron, a prominent mineral that enhances blood quality, preventing anemia risks. Additionally, they are rich in vitamin C, polyphenols, and flavonoids, which combat harmful free radicals, enhance blood circulation, and effectively protect cardiovascular health [17-19]. Recently, bell peppers have been introduced for cultivation in Lam Dong province, and preliminary results indicate their adaptability to soil conditions, particularly suitable for greenhouse cultivation.

The research and synthesis of $\text{CeO}_2/\text{SiO}_2$ nano-materials have been successfully conducted by numerous scientists, such as the research group led by J. Lin et al. [20],

utilizing the hydrothermal method at 523 K for 3 hours to obtain a $\text{CeO}_2/\text{SiO}_2$ nano-mixture, which was applied for fluoride ion treatment in water. In 2018, the research team led by Nguyen Thi Ha Chi from the Materials Institute, Vietnam Academy of Science and Technology, successfully synthesized CeO_2 nano-materials on SiO_2 substrate from precursors $\text{Ce}(\text{NO}_3)_3$ and 30 nm nano SiO_2 through the gel combustion method, applied in environmental treatment [21]. Christy E J S, Alagar R., Dhanu M, and Pius A. (2020), successful synthesis of $\text{CeO}_2/\text{SiO}_2$ bulk materials have been applied in treating organic compounds with high efficiency [22]. Nguyen Viet Bac and colleagues (2021) successfully synthesized $\text{CeO}_2/\text{SiO}_2$ dispersed in polyurethane, applied in paint technology [23]. Despite numerous studies on synthesizing the mentioned material systems, there hasn't been any research published on using waste materials in Viet Nam and gamma irradiation methods. This is a novel research direction utilizing waste materials to synthesize nano-silica with a porous structure along with nanoceria.

Therefore, in this study, $\text{CeO}_2/\text{SiO}_2$ materials were synthesized using the gamma irradiation method and applied as growth stimulants for bell pepper plants to contribute to increased productivity and nutritional quality.

2. EXPERIMENTAL

2.1. Materials, Chemicals, and Equipment

Materials: Bell pepper seedlings purchased from Dalat Hasfarm, rice husk ash obtained from Hoai An district, Binh Dinh province.

Chemicals: All chemicals and solvents met analytical standards: acetic acid (Sigma-Aldrich), $\text{Ce}(\text{NO}_3)_3 \cdot 6\text{H}_2\text{O}$

(Merck), KOH (Sigma-Aldrich), HCl (Merck), chitosan (Merck), urea fertilizer (VN), potassium fertilizer (VN), phosphate fertilizer (VN).

2.2 Material Synthesis

2.2.1 Synthesis of SiO_2 Material from Rice Husk Ash

Weigh 50 grams of rice husk ash treated with 1 M HCl acid into a Teflon beaker, add 150 mL of 6.5 M KOH solution. Proceed to heat the mixture (maintaining constant volume) using a magnetic stirrer with a reflux system for 120 minutes at 90 °C. Then continue stirring until the mixture cools completely. Filter to collect the K_2SiO_3 solution. Disperse the K_2SiO_3 solution in 5% chitosan solution at a 1:1 volume ratio. Adjust the pH to 6 with 4 M CH_3COOH acid solution, yielding a mixture of silica and CH_3COOK salt (mixture A). Mixture A is dissolved in 5 liters of distilled water and irradiated with a dose of 20 Kgray for 12 hours to obtain solution B.

2.2.2 Synthesis of $\text{CeO}_2/\text{SiO}_2$ Material

Dissolve 3.94 g of $\text{Ce}(\text{NO}_3)_3 \cdot 6\text{H}_2\text{O}$ in 50 mL of distilled water. Slowly add the $\text{Ce}(\text{NO}_3)_3$ solution dropwise into 75 mL of 5% chitosan solution contained in a glass beaker and stir continuously for 2 hours to obtain solution C. Gradually add solution C into solution B (with a $\text{CeO}_2/\text{SiO}_2$ volume ratio of 1/1) to obtain solution D. Subject solution D to gamma irradiation with a dose of 20 Kgray for 12 hours to obtain the $\text{CeO}_2/\text{SiO}_2$ nano-material system.

2.3 Material Characterization

The phase composition is determined using X-ray diffraction (D8-Advance 5005). Chemical bonding characteristics of the synthesized materials are determined using infrared spectroscopy (IR-Tensor-27, Bruker). The presence of

elements in the synthesized material samples is analyzed using energy-dispersive X-ray spectroscopy (Jeol 5410 equipment). Surface morphology is examined using scanning electron microscopy (JEOL JSM-6500F).

2.4 Experimental Investigation of the Effects of $\text{CeO}_2/\text{SiO}_2$ on Bell Pepper Growth

A 300 m² planting area is divided into 6 experimental plots, with 3 control plots and 3 experimental plots supplemented with $\text{CeO}_2/\text{SiO}_2$ (1000 ppm) to stimulate plant growth. The $\text{CeO}_2/\text{SiO}_2$ material is mixed in appropriate ratios for each growth stimulation period and sprayed onto the leaves. During the stage of the plant having 5-7 true leaves, spray once a month. When bell pepper plants begin to flower, spray twice a month.

The control plots are planted following the bell pepper cultivation technique outlined by the Agricultural Institute [24] as follows: Planting is done on November 5, 2023, with a spacing of 30 x 20 cm; fertilizer application per hectare includes 20 tons of compost, 200 kg of urea, 500 kg of superphosphate, and 300 kg of potassium fertilizer (K_2O).

For the experimental plots supplemented with $\text{CeO}_2/\text{SiO}_2$: 1 liter of Stripping process.

3. RESULTS AND DISCUSSION

3.1 Material Characteristics

To determine the compositions of CeO_2 , SiO_2 , and $\text{CeO}_2/\text{SiO}_2$ materials, the synthesized materials were characterized using the X-ray diffraction (XRD) method, and the results are presented in Figure 1. On the X-ray diffraction pattern of SiO_2 , a broad diffraction peak with a large full width at half maximum (FWHM) appears at around 23° 2-theta [21, 23]. Meanwhile, the XRD pattern of

CeO_2 exhibits strong diffraction peaks observed at 27, 28, 39, and 48° 2-theta corresponding to the (220), (300), (400), and (622) planes, respectively (according to JCPDS standard 04 - 0856) [23]. In contrast, the X-ray diffraction pattern of $\text{CeO}_2/\text{SiO}_2$ materials shows sharp characteristics.

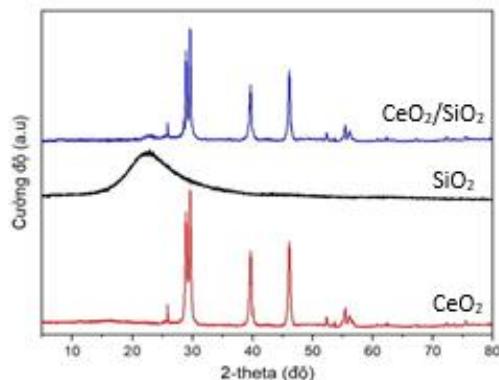


Figure 1. XRD patterns of CeO_2 , SiO_2 , and $\text{CeO}_2/\text{SiO}_2$ materials

To determine the elemental composition present in the $\text{CeO}_2/\text{SiO}_2$ materials, the materials were characterized using energy-dispersive X-ray spectroscopy (EDX). The results are presented in Figure 2. The energy-dispersive X-ray spectra of CeO_2 , SiO_2 , and $\text{CeO}_2/\text{SiO}_2$ materials in Figure 2 indicate that characteristic peaks with strong intensities for Si, O, and Ce appear at energy levels of 1.88, 0.50, and 4.62 KeV, respectively. The EDX spectra show the presence of characteristic peaks for both SiO_2 and CeO_2 components in the $\text{CeO}_2/\text{SiO}_2$ materials, with no presence of foreign elements [23].

The bonding characteristics in CeO_2 , SiO_2 , and $\text{CeO}_2/\text{SiO}_2$ materials reveal spectral bands at 649 cm^{-1} corresponding to the stretching vibrations of Ce-O bonds in CeO_2 [21] and a sharp and intense band at 3625 cm^{-1} attributed to the stretching and bending vibrations of O-H in the Ce-O-H group [21]. In contrast, the infrared spectrum of SiO_2 exhibits an intense

absorption band at 1115 cm^{-1} characteristic of the stretching vibrations of O-Si-O (siloxane), at 1594.73 cm^{-1} corresponding to the bending vibration of the -OH group, vibrations around 800 cm^{-1} may be attributed to the vibrations of Si-OH groups (silanol) and vibrations at around 475 cm^{-1} are attributed to Si-O stretching [22-23]. The spectral bands at 3421 cm^{-1} and $1625 - 1490\text{ cm}^{-1}$ could be assigned to the O-H vibrations of water absorbed on the material surface [23]. Meanwhile, in the infrared spectrum of $\text{CeO}_2/\text{SiO}_2$ material, characteristic peaks for both SiO_2 and CeO_2 components are fully observed.

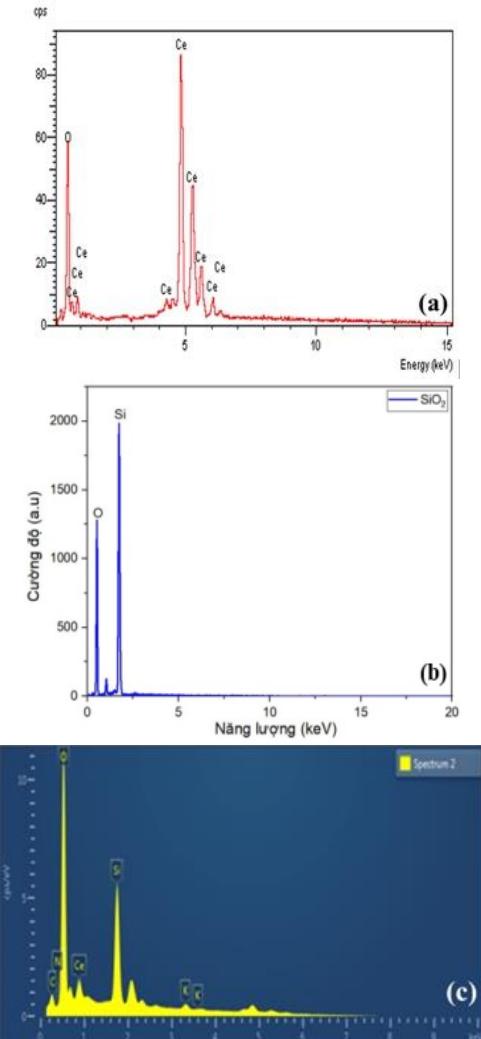


Figure 2. EDX spectra of CeO_2 (a), SiO_2 (b), and $\text{CeO}_2/\text{SiO}_2$ (c) materials

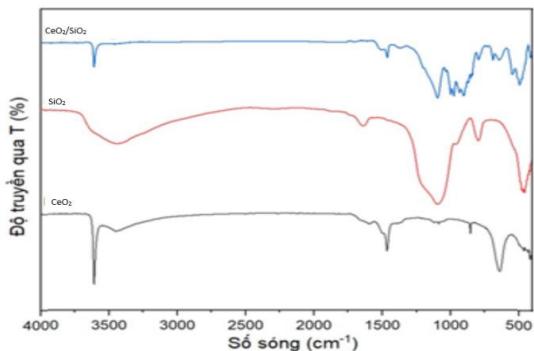


Figure 3. Infrared spectra of CeO_2 , SiO_2 and $\text{CeO}_2/\text{SiO}_2$ materials.

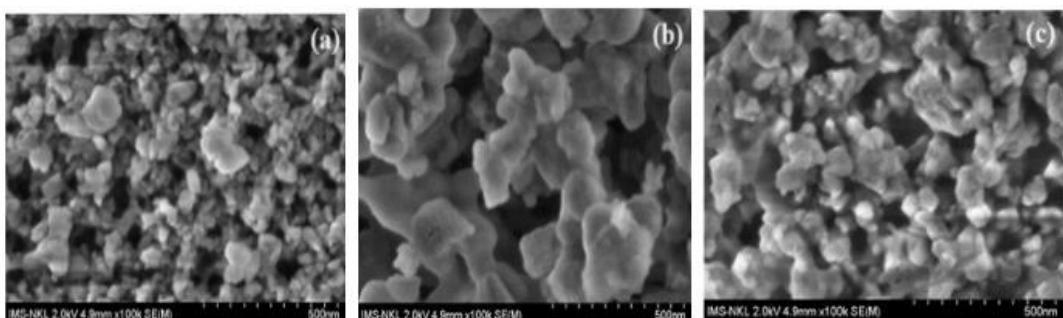


Figure 4. SEM images of CeO_2 (a), SiO_2 (b), and $\text{CeO}_2/\text{SiO}_2$ (c) materials

3.2 Impact of $\text{CeO}_2/\text{SiO}_2$ on the Growth of Bell Pepper Plants

Table 1. Parameters related to the growth and development of bell pepper plants when using $\text{CeO}_2/\text{SiO}_2$ materials

Parameter	Control (n=50)	$\text{CeO}_2/\text{SiO}_2$ (n=50)
Planting time	05/10/2023	05/10/2023
Harvest time	(8/1/2024)	(30/12/2023)
Average main root length (cm)	$25,6 \pm 0,3$	$31,2 \pm 0,5$
The achieved performance compared to the theoretical (%)	$97,9 \pm 0,2$	$138,6 \pm 0,2$
Leaf color	Green with yellow and wilted leaves	Dark blue

(Use Minitab 18 statistical software)

The results of the investigation into the effect of $\text{CeO}_2/\text{SiO}_2$ on the growth and development of bell pepper plants are presented in Table 1. The phenomenon of leaf yellowing in bell pepper plants without the addition of $\text{CeO}_2/\text{SiO}_2$

SEM images of Figure 4 showing that the CeO_2 material consists of particles with diverse shapes, with an average size of about 40 - 50 nm, but tends to agglomerate. Meanwhile, the SiO_2 material also consists of aggregated particles, creating a rough, uneven surface with sizes ranging from 50 - 100 nm. As for the $\text{CeO}_2/\text{SiO}_2$ material, there is a dispersion of CeO_2 particles on SiO_2 , resulting in a rough, uneven surface with sizes ranging from 50 - 80 nm.

material (control group) is shown in Figure 5.

Figure 5. Bell pepper plant without (control) and with the addition of $\text{CeO}_2/\text{SiO}_2$ material (b)

Experimental results from growing bell pepper plants with the addition of $\text{CeO}_2/\text{SiO}_2$ material show that in the control group, the fruit yield reached 57 tons/ha, with the main roots averaging 25.6 cm in length, and the growth period until harvest was 94 days. Meanwhile, in the group supplemented with $\text{CeO}_2/\text{SiO}_2$ material, the fruit yield reached 79 tons/ha (an increase of 38.60% compared to the

control group), with the main roots averaging 31.2 cm in length and the growth period until harvest was 86 days. Additionally, the main roots exhibited uniform size, deep green leaves, and no symptoms of leaf yellowing compared to the control group. This can be explained by the influence of Si on lignin synthesis; a deficiency in Si significantly reduces lignin content. Si acts as a nutrient that enhances plant growth, rigidity, improves crop yield, and produce quality. Furthermore, silica and ceria compounds stimulate the growth and development of plant roots, promote photosynthesis, enhance absorption of both macro and micronutrients and exhibit good resilience in adverse weather conditions. Therefore, the addition of $\text{CeO}_2/\text{SiO}_2$ to bell pepper plants has made them sturdier, with stronger root development, resulting in increased bell pepper yield.

4. CONCLUSION

Successful synthesis of $\text{CeO}_2/\text{SiO}_2$ material using the gamma irradiation method has been achieved. Investigation into the impact of $\text{CeO}_2/\text{SiO}_2$ material on the growth of bell pepper plants indicates that growth, development, and yield increase with the addition of $\text{CeO}_2/\text{SiO}_2$ nano fertilizers compared to the control sample.

ACKNOWLEDGEMENT

We are grateful for funding support from Vietnam National Foundation of Science and Technology Development (NAFOSTED) under the grant number NCUD.01-2019.58

REFERENCES

- [1] Suriyaprabha R, Karunakaran G, Yuvakkumar R, Rajendran V, Kannan N, (2012). Silica Nanoparticles for Increased Silica Availability in Maize (*Zea mays* L) Seeds Under Hydroponic Conditions. *Current Nanoscience*, **8**(6), 902-8.
- [2] Miyake Y, Takahashi E, (1978). Silicon Deficiency of Tomato Plant. *Soil Science and Plant Nutrition*, **24**(2), 175-89.
- [3] Dobermann A. Rice: Nutrient disorders & nutrient management. Int. Rice Res. Inst.; 2000.
- [4] Matichenkov VV, Calvert DV, (2002). Silicon as a beneficial element for sugarcane. *Journal American Society of Sugarcane Technologists*, **22**(2), 21-30.
- [5] Rovani S, Santos JJ, Corio P, Fungaro DA, (2018). Highly Pure Silica Nanoparticles with High Adsorption Capacity Obtained from Sugarcane Waste Ash. *ACS Omega*, **3**(3), 2618-27.
- [6] Takahashi E, (1995). Uptake mode and physiological functions of silica. *Sci. Rice Plant*, **2**, 58-71.
- [7] Le VH, Thuc CN, Thuc HH, (2013). Synthesis of silica nanoparticles from Vietnamese rice husk by sol-gel method. *Nanoscale research letters*, **8**, 1-0.
- [8] Artyszak A, (2018). Effect of silicon fertilization on crop yield quantity and quality—A literature review in Europe. *Plants*, **7**, 54.
- [9] Wu Z, Tang X, Tsui C, (1983). Studies on the effect of rare earth elements on the increase of yield in agriculture. *J Chin Rare Earth Soc*, **1**(1), 70-5.
- [10] Ning JB, Xiao SL, (1989). Effect of rare earth elements on day lily. *J Chin Rare Earth Soc*, **5**, 52.
- [11] Xin Y, Wang Z, Qi Y, Zhang Z, Zhang S, (2010). Synthesis of rare earth (Pr, Nd, Sm, Eu and Gd) hydroxide and oxide nanorods (nanobundles) by a widely applicable precipitation route. *Journal of alloys and compounds*, **507**(1), 105-11.
- [12] Liu J, Li G, Chen L, Gu J, Wu H, Li Z, (2021). Cerium oxide nanoparticles improve cotton salt tolerance by enabling better ability to maintain cytosolic K^+/Na^+ ratio. *Journal of Nanobiotechnology*, **19**(1), 153.
- [13] Wu H, Shabala L, Shabala S, Giraldo JP, (2018). Hydroxyl radical scavenging by

cerium oxide nanoparticles improves *Arabidopsis* salinity tolerance by enhancing leaf mesophyll potassium retention. *Environmental Science: Nano*, **5**(7), 1567-83.

[14] Rossi L, Zhang W, Lombardini L, Ma X, (2016). The impact of cerium oxide nanoparticles on the salt stress responses of *Brassica napus* L. *Environmental Pollution*, **219**, 28-36.

[15] Djanaguiraman M, Nair R, Giraldo JP, Prasad PV, (2018). Cerium oxide nanoparticles decrease drought-induced oxidative damage in sorghum leading to higher photosynthesis and grain yield. *ACS omega*, **3**(10), 14406-16.

[16] Wu H, Tito N, Giraldo JP, (2017). Anionic cerium oxide nanoparticles protect plant photosynthesis from abiotic stress by scavenging reactive oxygen species. *ACS nano*, **11**(11), 11283-97.

[17] Pugliese A, Loizzo MR, Tundis R, O'Callaghan Y, Galvin K, Menichini F, O'Brien N, (2013). The effect of domestic processing on the content and bioaccessibility of carotenoids from chili peppers (*Capsicum* species). *Food Chemistry*, **141**(3), 2606-13.

[18] Deli J, Molnár P, Matus Z, Tóth G, (2001). Carotenoid composition in the fruits of red paprika (*Capsicum annuum* var. *lycopersiciforme rubrum*) during ripening; biosynthesis of carotenoids in red paprika. *Journal of agricultural and food chemistry*, **49**(3), 1517-23.

[19] Tundis R, Loizzo MR, Menichini F, Bonesi M, Conforti F, De Luca D, Menichini F, (2012). Air-dried *capsicum annuum* var.

acuminatum medium and big: Determination of bioactive constituents, antioxidant activity and carbohydrate-hydrolyzing enzymes inhibition. *Food Research International*, **45**(1), 170-6.

[20] Lin J, Wu Y, Khayambashi A, Wang X, Wei Y, (2018). Preparation of a novel CeO₂/SiO₂ adsorbent and its adsorption behavior for fluoride ion. *Adsorption Science & Technology*, **36**(1-2), 743-61.

[21] Chi NT, Dũng ĐT, Chúc PN, Lịm DT, Nhiệm ĐN, (2018). Tổng hợp vật liệu CeO₂ kích thước nanomet trên nền SiO₂ và nghiên cứu khả năng quang xúc tác của chúng. *Vietnam Journal of Chemistry*, **56**(1), 117-21.

[22] Christy EJ, Alagar R, Dhanu M, Pius A, (2020). Porous nonhierarchical CeO₂/SiO₂ monolith for effective degradation of organic pollutants Environ. *Environmental Nanotechnology, Monitoring & Management*, **14**, 100365

[23] Bac NQ, Chuc PN, Chi NTH, Dung T, Lim DT, Nghia PN, Mai NVN, Hoang CV, Lam TD, Nghiem DN, (2021). The impact of cerium oxide nanoparticles on the salt stress responses of *Brassica napus* L. *Materials Research Express*, **8**, 056405.

[24] Ngo Thi hanh, Hoang Minh Chau, (2022). Handbook of technical instructions for growing hot peppers. AFACI-VEG project developing vegetable varieties in Asia, Agricultural Hanoi.

[25] Tang XK, Tong Z, (1988). Effects of rare earth elements on plant root growth and activity. *Chinese Rare Metal*, **5**, 22-4.