

STRUCTURE AND OPTICAL PROPERTIES OF Eu³⁺-DOPED AL₂O₃ NANOPARTICLES SYNTHESIZED BY COPRECIPITATION METHOD

Đến tòa soạn 15-05-2024

**Bui Hong Van¹, Nguyen Thi Dao¹, Tran Kim Anh², Pham Minh Chau²,
Nguyen Duc Ba², Nguyen Tien Dai^{2,3}, Dang Van Thai^{2,4*}**

1. VNU University of Science, Vietnam National University - Hanoi, Vietnam

2. Institute of Theoretical and Applied Research, Duy Tan University, Hanoi 100000,
Vietnam

3. Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam

4. Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang
550000, Vietnam

*Email: dangvanthai2@duytan.edu.vn

TÓM TẮT

CẤU TRÚC VÀ CÁC ĐẶC TÍNH QUANG CỦA CÁC HẠT NANO AL₂O₃ PHA TẠP Eu³⁺ TỔNG HỢP BẰNG PHƯƠNG PHÁP ĐỒNG KẾT TỦA

Các hạt nano (NPs) Al₂O₃ pha tạp ion Eu³⁺ (Al₂O₃:Eu³⁺) được chế tạo bằng phương pháp đồng kết tủa. Pha cấu trúc hỗn hợp α -Al₂O₃ và γ -Al₂O₃ của tinh thể được hình thành ở nhiệt độ ≈ 400 °C trong thời gian ≈ 2 h. Kích thước hạt tinh thể trung bình khoảng 12 - 15 nm. Độ rộng vùng cảm (E_g) của Al₂O₃ giảm từ 5.26 đến 4.72 eV do sự thay thế ion Eu³⁺. Phổ phát quang (PL) của Al₂O₃:Eu³⁺ với cực dài ở 614 nm đặc trưng cho chuyển đổi $^5D_0 \rightarrow ^7F_2$ của các ion Eu³⁺. Tỉ số bát đối xứng (R₂₁) giữa cường độ vạch $^5D_0 \rightarrow ^7F_2$ và $^5D_0 \rightarrow ^7F_1$ bằng 3.02 cho biết độ bát đối xứng cao của môi trường xung quanh các ion Eu³⁺ trong tinh thể. Đặc tính PL mạnh ở 614 nm của Al₂O₃:Eu³⁺ có tiềm năng cho các ứng dụng quang điện tử và y sinh.

Từ khóa: vật liệu α -Al₂O₃ và γ -Al₂O₃, hạt nano Al₂O₃:Eu³⁺, Al₂O₃ pha tạp Eu³⁺, phát xạ ion Eu³⁺, phát quang.

1. Introduction

Al₂O₃:Eu³⁺ nanomaterial is widely applied for optoelectronics [1], fingerprint identification [2], and transparent ceramics [3]. The Al₂O₃:Eu³⁺ can be synthesized by many different methods, such as hydrothermal method [4], sol-gel [5], combustion [6], slipcasting [3], and coprecipitation [7]. However, the Eu³⁺ radius (0.95 Å) is larger than the Al³⁺ radius (0.54 Å) [6], so the Eu³⁺ ion

replacement into the Al₂O₃ host lattice is not easy, requiring a suitable manufacturing process. The crystal structure phase can exist in different forms of α , β , γ , θ , and η , depending on the annealing temperature. At low annealing temperatures, the α and γ phases are major [1]. At high annealing temperatures, the structure phase changes to the α form [8]. The band gap energy (E_g) of Al₂O₃ ranges widely from 5.1 to 9.4 eV, depending on the crystal structure

phase [1, 9, 10]. The photoluminescence (PL) spectrum shows a broad band in the 350 – 500 nm range caused by defects [5]. When Eu³⁺ ions are incorporated into the Al₂O₃ crystal lattice, the PL spectrum of Al₂O₃:Eu³⁺ nanoparticles (NPs) consists of two bands. The PL band of defects has a fragile intensity and almost disappears completely [11]. The PL band of Eu³⁺ ions has a vigorous intensity, originating from six transitions ⁵D₀ – ⁷F_J (J = 0, 1, ..., 6). According to the Judd-Ofelt theory, the ⁵D₀ – ⁷F_{0,2,3,4,5,6} transitions are caused by the electric dipole, in which the PL intensity of the ⁵D₀ – ⁷F₂ transition is very sensitive to the Eu³⁺ ion surrounding environment. The ⁵D₀ – ⁷F₁ transition is due to the magnetic dipole and does not depend on the surrounding environment, so it is considered an internal standard to compare with the remaining transitions [12]. If the Eu³⁺ ions are occupied at the S₆ sites, the emission intensity of the ⁵D₀ – ⁷F₂ transition is weaker than that of the ⁵D₀ – ⁷F₁ transition. If the Eu³⁺ ions are occupied at the C₂ sites, the emission intensity of the ⁵D₀ – ⁷F₂ transition is stronger than that of the ⁵D₀ – ⁷F₁ transition [12]. The shape characteristic of the PL spectrum is related to the symmetry degree of the Eu³⁺ ion surrounding environment, and it can be recognized via the calculated value of the R₂₁ ratio [1]. The R₂₁ is equal to 1, indicating a symmetrical environment with the centrosymmetric S₆ site [13]. The R₂₁ is greater than 1, indicating an asymmetrical environment with the non-centrosymmetric C₂ site [14].

The study wants to synthesize Al₂O₃:Eu³⁺ NPs by a simple coprecipitation method. The strong PL ability of prepared Al₂O₃:Eu³⁺ NPs at 614 nm will be suited for applications in optoelectronic and biomedicine.

2. Experiment

Chemicals were purchased from Sigma-Aldrich Eu₂O₃ (99.999%), (NH₂)₂CO (purity ≥ 98%), Al(NO₃)₃.9H₂O (99.99%), and NaOH (98%). The synthesis process of Al₂O₃:Eu³⁺ (1 mol %) nanoparticles is carried out as follows: 0.018g of Eu₂O₃ was dissolved in 0.17 ml of HNO₃ solution to obtain an Eu(NO₃)₃ solution (A). 0.789 g (NH₂)₂CO, 3.712g Al(NO₃)₃.9H₂O, and 0.8g NaOH were sequentially dissolved in twice distilled water to get B, C, and D solutions, respectively. B, C, and D were added in the A to obtain a solution (F). The F was stirred at 100 °C for 1h and then kept overnight. The precipitate was filtered, washed several times, and dried at 80 °C for 15h. The obtained powder was calcined at 400 °C for 2h. Here, it is noted that in the case of Al₂O₃ synthesis, the Eu(NO₃)₃ solution was not used. The experimental steps are illustrated in **Figure 1**.

X-ray diffraction (XRD) patterns were recorded on a PANalytical Empyrean device with the Cu_K_α radiation ($\lambda = 1.54056 \text{ \AA}$, $2\theta = 15^\circ \square 70^\circ$). Transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HR-TEM), and selection area electron diffraction (SAED) images were performed on a JEOL - JEM 2100 device. The absorption spectra of the ultraviolet-visible (UV-Vis) region were recorded on the UV-2450 system. The photoluminescence (PL) spectra were recorded on a Spectra Pro2500i spectrophotometer under the 325 nm radiation of the He-Cd laser.

3. Result and Discussion

The crystal structure phase of Al₂O₃ and Al₂O₃:Eu³⁺ NPs is studied via the XRD pattern in **Figure 2**. For Al₂O₃ NPs (**Figure 2a**), three peaks of 25.71, 45.85, and 66.66° correspond to the planes of α -

(012), γ -(400), and γ -(440), showing a structural phase mixing of hexagonal α - Al_2O_3 and cubic γ - Al_2O_3 structures (PDF data N°: 96-901-3047). For $\text{Al}_2\text{O}_3:\text{Eu}^{3+}$ NPs, the XRD pattern still includes similar peaks. The structural parameters of the (012) planes were determined using a single peak fit tool of Origin software. The calculated values of 2θ angle and full width at half maximum (FWHM) are summarized as the insets in **Figure 2b**. The result shows that the FWHMs equal 0.194 and 0.177, meaning that the average

crystal size of Al_2O_3 NPs can be smaller than that of $\text{Al}_2\text{O}_3:\text{Eu}^{3+}$ NPs. The peak position of the (012) plane on the fitted line (solid line) for Al_2O_3 NPs is shifted towards the smaller 2θ angle of 25.38° for $\text{Al}_2\text{O}_3:\text{Eu}^{3+}$ NPs. The peak-position shift depends on the annealing temperature and dopant ion concentration [15]. The nature of the peak shift is due to the difference between the dopant ion radius and the host ion radius, leading to the deformation of the host crystal lattice [16].

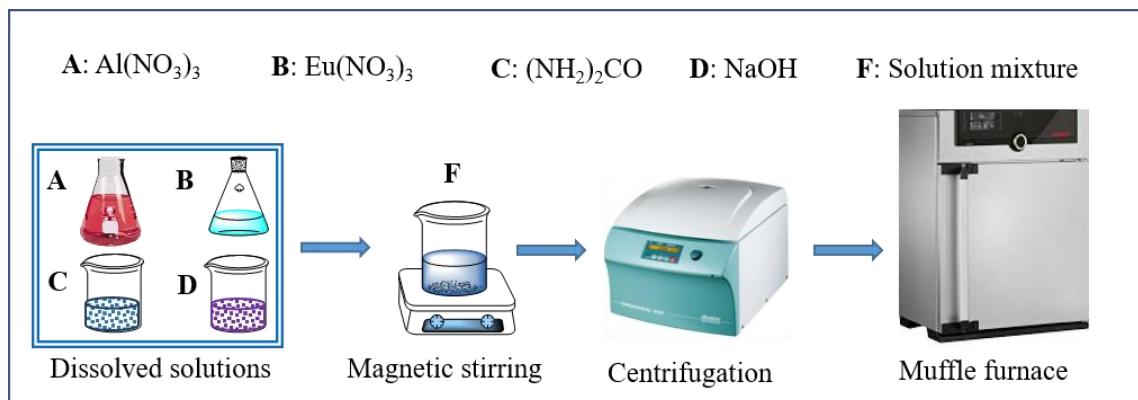


Figure 1. Schematic synthesis of Al_2O_3 and $\text{Al}_2\text{O}_3:\text{Eu}^{3+}$ NPs

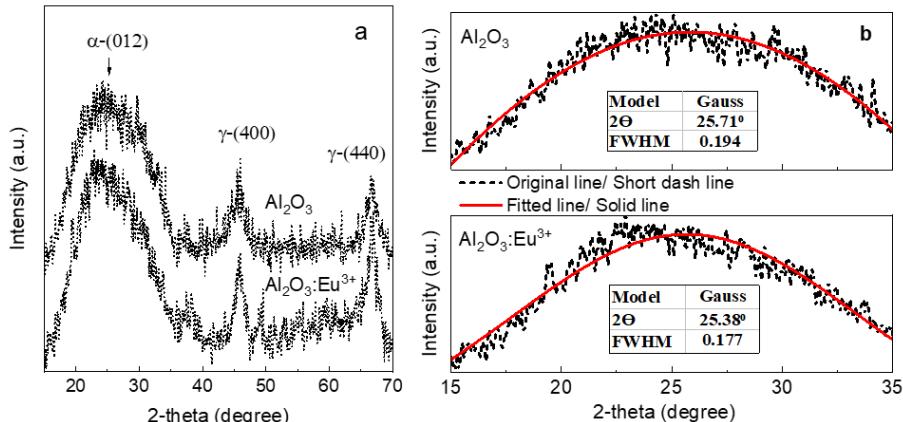


Figure 2. XRD pattern of Al_2O_3 and $\text{Al}_2\text{O}_3:\text{Eu}^{3+}$ NPs (a) and the structural parameters of (012) planes (b)

The appearance of diffraction peaks shows that the quality of synthesized samples is better than that of samples prepared by the other method at 1 mol% Eu^{3+} concentration and $400\text{ }^\circ\text{C}$ annealing temperature [8]. The observed characteristics from the XRD pattern are

consistent with the observation of the $\text{Al}_2\text{O}_3:\text{Eu}^{3+}$ (1 mol %) sample [1]. Hence, it can be considered that Eu^{3+} ions have been replaced in the Al_2O_3 crystal lattice.

Figure 3 shows the morphology of Al_2O_3 and $\text{Al}_2\text{O}_3:\text{Eu}^{3+}$ NPs. Al_2O_3 NPs are agglomerated into large clusters with

crystal particle sizes of 12 - 15 nm (**Figure 3**). The HR-TEM image shows some areas with regular fringes, proving the crystalline structure, but there are also amorphous areas or imperfect crystals (**Figure 3b**) [17]. The SAED image consists of concentric bright circles representing the electron diffraction on the Al_2O_3 crystal planes (**Figure 3c**). These bright circles are consistent with the appearance of (012), (400), and (440) planes in the XRD pattern. A blurry bright circle corresponds to the broadband of the (012) plane, showing that the crystal is imperfect. When there is a replacement of Eu^{3+} ions in the Al_2O_3 lattice, the morphological and structural characteristics of $\text{Al}_2\text{O}_3:\text{Eu}^{3+}$ NPs are almost unchanged (**Figure 3d**, **3e**, and **3f**), as discussed for Al_2O_3 NPs.

Figure 4 presents the UV-Vis absorption spectra of Al_2O_3 and $\text{Al}_2\text{O}_3:\text{Eu}^{3+}$ NPs. The absorption-peak position is located at 202 nm, characterizing to $2\text{p}(\text{O}^{2-}) \rightarrow 4\text{f}(\text{Eu}^{3+})$

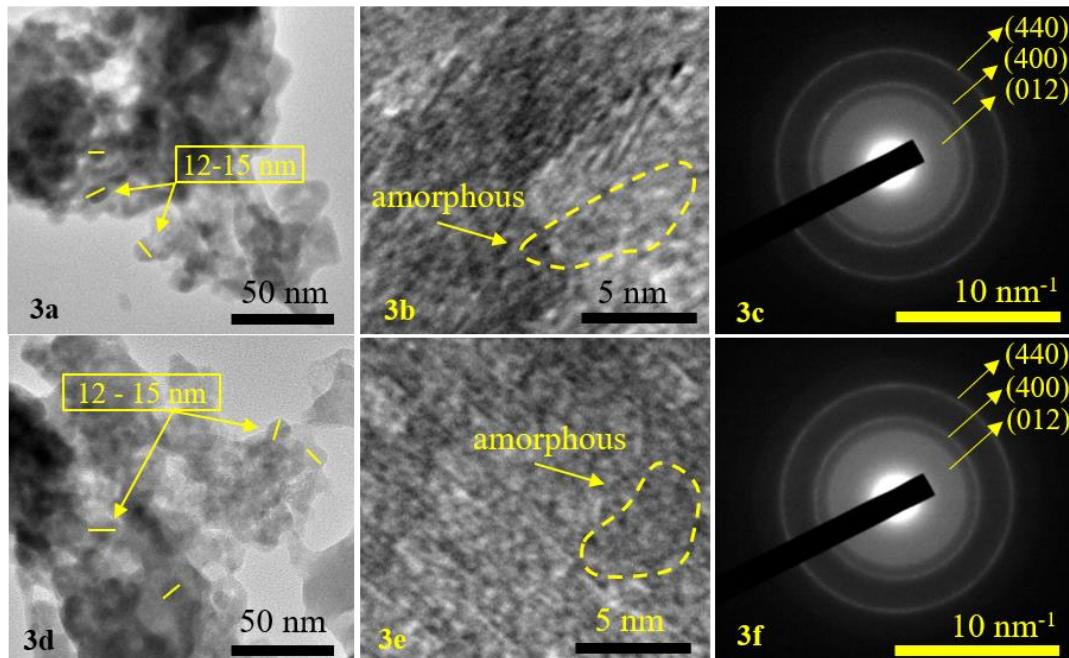


Figure 3. TEM, HRTEM, and SAED images of Al_2O_3 (**3a**, **3b**, and **3c**) and $\text{Al}_2\text{O}_3:\text{Eu}^{3+}$ (**3d**, **3e**, and **3f**) NPs.

transitions (**Figure 4a**). According to Tauc's formula, the E_g is expressed as [15]:

$$(\alpha h\nu) = A(h\nu - E_g)^n$$

where α is the absorption coefficient, A is the constant, h is Planck's constant, E_g is the band gap energy, ν is the absorption frequency, and $n = 1/2$ corresponds to the allowed direct transition [6]. Therefore, the E_g of Al_2O_3 NPs is calculated to be 5.26 eV, as shown in the inset in **Figure 4a**.

In the case of $\text{Al}_2\text{O}_3:\text{Eu}^{3+}$ NPs, the absorption-peak position is shifted towards the larger wavelength of 220 nm (**Figure 4b**), so the E_g is also decreased to 4.72 eV (the inset of **Figure 4b**). The E_g values are consistent with the results for doped Al_2O_3 NPs of α , and γ structure phase. The absorption-peak shift and the E_g decrease were also shown in $\text{Al}_2\text{O}_3:\text{Eu}^{3+}$ ceramics [6] or the other doped semiconductors [18].

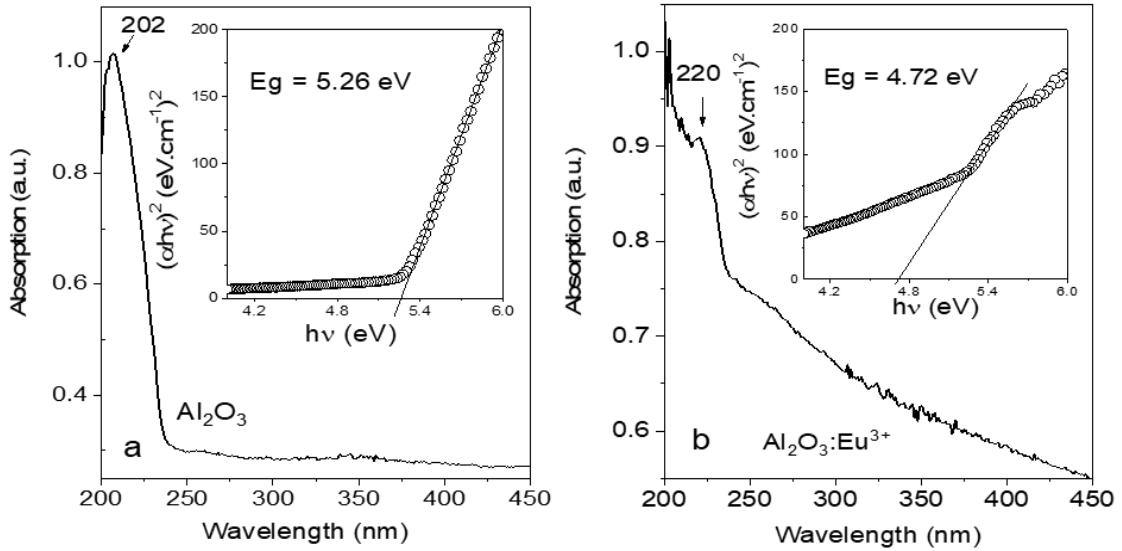
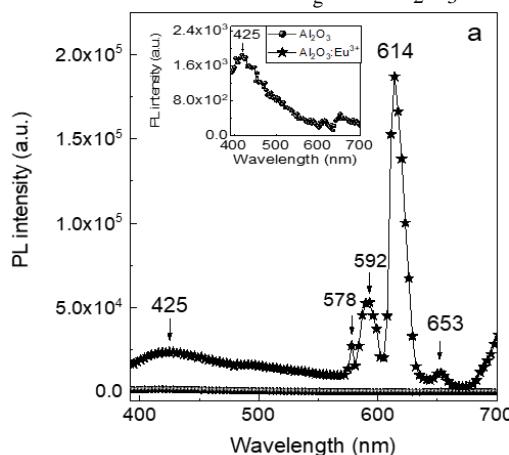


Figure 4. UV-Vis absorption spectra of Al_2O_3 NPs (a) and $\text{Al}_2\text{O}_3:\text{Eu}^{3+}$ NPs (b)

Figure 5 presents the spectral properties of Al_2O_3 NPs and $\text{Al}_2\text{O}_3:\text{Eu}^{3+}$ NPs. The PL spectrum of Al_2O_3 NPs shows an emission band with a 425 nm peak originating from defects [6], as inserted in **Figure 5a**. When the Eu^{3+} ions substitute in the crystal lattice, the PL spectrum of $\text{Al}_2\text{O}_3:\text{Eu}^{3+}$ NPs is utterly superior to that of Al_2O_3 NPs (**Figure 5a**). However, the PL spectrum of $\text{Al}_2\text{O}_3:\text{Eu}^{3+}$ NPs still has a 425 nm band with weak intensity, possibly due to the presence of defects of Al^{3+} ions or the transition $4\text{f}^65\text{d}^1 \rightarrow 4\text{f}^7(8\text{S}^{7/2})$, belonging to Eu^{2+} ions on the surface of $\text{Al}_2\text{O}_3:\text{Eu}^{3+}$ NPs [5].

The main PL band has a strong intensity representing transitions ($^5\text{D}_0 - ^7\text{F}_J$) ($J = 0, 1, 2, 3$ due to the limit of the spectroscopy system) in the 4f electron shell of Eu^{3+} ions. The pre-eminent PL intensity of the $^5\text{D}_0 - ^7\text{F}_J$ transition band compared with the PL intensity of the 425 nm band has been observed previously [11]. The $^5\text{D}_0 - ^7\text{F}_J$ transitions are caused by electric and magnetic dipoles corresponding to the 578 nm ($^5\text{D}_0 - ^7\text{F}_0$), 614 nm ($^5\text{D}_0 - ^7\text{F}_2$), and 653 nm ($^5\text{D}_0 - ^7\text{F}_3$), and 592 nm ($^5\text{D}_0 - ^7\text{F}_1$) [1]. The ($^5\text{D}_0 - ^7\text{F}_0$) and ($^5\text{D}_0 - ^7\text{F}_3$) transitions are forbidden but are still


observed due to J-mixing or wave function mixing of the 4f⁶ electron configuration. The $^5\text{D}_0 - ^7\text{F}_1$ transition is not dependent on the Eu^{3+} ion surrounding environment, whereas the $^5\text{D}_0 - ^7\text{F}_2$ transition is very sensitive [12]. The R_{21} between the emission line intensity I_{02} of the ($^5\text{D}_0 - ^7\text{F}_2$) transition and the emission line intensity I_{01} of the ($^5\text{D}_0 - ^7\text{F}_1$) transition is

$$R_{21} = \frac{I_{02}(^5\text{D}_0 \rightarrow ^7\text{F}_2)}{I_{01}(^5\text{D}_0 \rightarrow ^7\text{F}_1)} \quad [13], \text{ in which } I_{01}$$

$= 902364$ (a.u.) and $I_{02} = 2724817.5$ (a.u) are calculated by integrating the emission bands, respectively. As a result, $R_{21} = 3.02 > 1$, so this value shows that the Eu^{3+} ion surrounding environment has a high asymmetry. The appearance of the PL band of ($^5\text{D}_0 - ^7\text{F}_J$) transitions reaffirmed that Eu^{3+} ions have been replaced in the Al_2O_3 lattice. Even though $\text{Al}_2\text{O}_3:\text{Eu}^{3+}$ NPs are only annealed at 400 °C for 2h, the 425 nm band has almost disappeared. This result of the coprecipitation method is similar to that of the sol-gel method [5]. The emission-absorption process in $\text{Al}_2\text{O}_3:\text{Eu}^{3+}$ NPs is illustrated in **Figure 5b**.

4. Conclusion

$\text{Al}_2\text{O}_3:\text{Eu}^{3+}$ NPs were successfully synthesized by the coprecipitation method. The α and γ mixed structural phase is formed at 400°C annealing temperature. The crystal particle size is about 12 - 15 nm. The E_g of Al_2O_3 is

decreased from 5.26 to 4.72 eV after doping with 1 mol % Eu^{3+} ion. The $\text{Al}_2\text{O}_3:\text{Eu}^{3+}$ NPs have a strong PL intensity with an emission maximum of 614 nm, characterizing the $^5\text{D}_0 \rightarrow ^7\text{F}_2$ transition of Eu^{3+} ions in Al_2O_3 crystal.

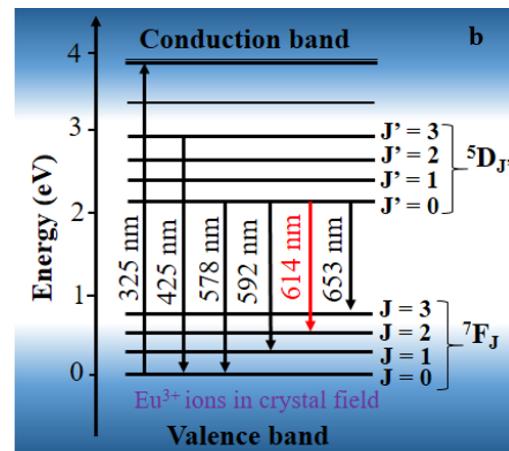


Figure 5. PL spectra of Al_2O_3 and $\text{Al}_2\text{O}_3:\text{Eu}^{3+}$ NPs (a) and the energy diagram of the emission-absorption process (b)

5. Acknowledgment

This paper has been funded by the NAFOSTED project (Number code: 103.03-2020.08) due to the support of the Vietnam National Foundation for Science and Technology Development.

6. References

- [1] Daiane H.S. Reis, Juliana M.M. Buarque, Marco A. Schiavon, Edison Pecoraro, Sidney José L. Ribeiro, Jefferson L. Ferrari, (2015). Simple and cost-effective method to obtain RE^{3+} -doped Al_2O_3 for possible photonic applications. *Ceramics International*, **41**, 10406–10414.
- [2] Amrita Das, Vishal Shama, (2016). Synthesis And Characterization Of Eu^{3+} -Doped α - Al_2O_3 Nanocrystalline Powder For Novel Application In Latent Fingerprint Development. *Advanced Materials Letters*, **7(4)**, 302-306.
- [3] R. Klement, K. Drdlíkova, M. Kachlík, D. Drdlík, D. Galusek, K. Maca, (2021). Photoluminescence and optical properties of Eu^{3+} /Eu²⁺-doped transparent Al_2O_3 ceramics. *Journal of the European Ceramic Society*, **41(9)**, 4896 - 4906.
- [4] Min Zhang, Yibo Wu, Lin Zhang, Haoran Zhang, Boyang Cui & Zongxu Sun, (2017). Photoluminescence properties of Eu^{3+} -doped stalk-like Al_2O_3 via a hydrothermal route followed by heat treatment. *Advances in Applied Ceramics*, **117(5)**, ISSN: 1743-6753 (Print) 1743-6761.
- [5] J. Wrzyszcz, W. Mista, D. Hreniak, W. Strek, M. Zawadzki, H. Grabowska, (2002). Preparation and optical properties of nanostructured europium-doped. *Journal of Alloys and Compounds*, **341(1-2)**, 358–361.
- [6] Nikifor Rakov, Francisco E. Ramos, Gustavo Hirata, and Mufei Xiao, (2003). Strong photoluminescence and cathodoluminescence due to f - f transitions in Eu^{3+} -doped Al_2O_3 powders prepared by direct combustion synthesis and thin films deposited by laser ablation. *Applied Physics Letters*, **83(2)**, 272-274.
- [7] R. Bharthasaradhi & L.C. Nehru, (2016). Structural and phase transition of α - Al_2O_3

powders obtained by coprecipitation method. *Phase Transitions*, **89**(1), 77-83.

[8] M.A.F. Monteiro, H.F. Brito, M.C.F.C.M. Felinto, G.E.S. Brito, E.E.S. Teotonio, F.M. Vichi, R. Stefani, (2008). Photoluminescence behavior of Eu³⁺ ion doped into c- and a-alumina systems prepared by combustion, ceramic, and Pechini methods. *Microporous and Mesoporous Materials*, **108**(1-3), 237-246.

[9] S.Toyoda, T. Shinohara, H. Kumigashira, M. Oshima, and Y. Kato, (2012). Significant increase in conduction band discontinuity due to solid phase epitaxy of Al₂O₃ gate insulator films on GaN semiconductor. *Applied Physics Letters*, **101**(23), 231607.

[10] Elena O. Filatova and Aleksei S. Konashuk, (2015). Interpretation of the Changing the Band Gap of Al₂O₃ Depending on Its Crystalline Form: Connection with Different Local Symmetries. *The Journal of Physical Chemistry C*, **119**(35), 20755-20761.

[11] E.F. Huerta, I. Padilla, R. Martinez-Martinez, J.L. Hernandez-Pozos, U. Caldiño, C. Falcony, (2012). Extended decay times for the photoluminescence of Eu³⁺ ions in aluminum oxide films through interaction with localized states. *Optical Materials*, **34**(7), 1137-1142.

[12] K. Binnemans, (2015). Interpretation of europium (III) spectra. *Coordination Chemistry Reviews*, **295**, 1-45.

[13] Dianguang Liu, and Zhenfeng Zhu, (2014). Photoluminescence properties of the Eu-doped alpha- Al₂O₃ microspheres. *Journal of Alloys and Compounds*, **583**, 291-294.

[14] Nikifor Rakov, Glauco S. Maciel, Whualkuer Lozano B., and Cid B. de Araújo, (2007). Europium luminescence enhancement in Al₂O₃:Eu³⁺ powders prepared by direct combustion synthesis. *Journal of Applied Physics*, **101**(3), 036102-036102-3.

[15] Chuc Ngoc Pham, Quyen Van Trinh, Dang Van Thai, Nghiem Ngoc Dao, Bac Quang Nguyen, Dung Trung Doan, Hung Bao Le, Vinh Van Nguyen, Lim Thi Duong, Lam Dai Tran, (2022). Synthesis of CeO₂-Fe₂O₃ Mixed Oxides for Low-Temperature Carbon Monoxide Oxidation. *Adsorption Science & Technology*, Article ID 5945169, 12 pages.

[16] Sandeep Kumar, Ram Prakash, Vinay Kumar, G.M. Bhalerao, R.J. Choudhary, D.M., (2015). Surface and spectral studies of Eu³⁺-doped α -Al₂O₃ synthesized via solution combustion synthesis. *Advanced Powder Technology*, **26**(4), 1263-1268.

[17] Wei-Ning Wang, W. Widiyastuti, Takashi Ogi, I. Wuled Lenggoro, and Kikuo Okuyama, (2007). Correlations between Crystallite/Particle Size and Photoluminescence Properties of Submicrometer Phosphors. *Chemistry of Materials*, **19**(7), 1723-1730.

[18] Hong Van Bui, Dang Van Thai, Tien Dai Nguyen, Van Nang Lam, Huu Toan Tran, Van Manh Nguyen, Nguyen Duc Nui, Nguyen Manh Hung, (2023). Mn-doped ZnS nanoparticle photoanodes: Synthesis, structural, optical, and photoelectrochemical characteristics. *Materials Chemistry and Physics*, **307**, 128081.