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Abstract: This study shows the results of landslide susceptibility mapping for the 

southwest region of Quang Nam province using the Weights of Evidence (WoE) model. 

The input data consists of a landslide inventory and ten influencing factors, i.e., geology, 

distance to fault, elevation, relief amplitude, slope, aspect, rainfall, soil type, land use, and 

distance to road. The landslide inventory was constructed from three principal sources:  

fieldwork survey, legacy data from previous studies, and additional analytical data from 

high-resolution Google Earth satellite imagery. The landslide locations were randomly 

categorized into two parts in the ratio 70/30: 70% (811 landslides) for modeling and 30% 

(348 landslides) for verification. All input data are normalized and constructed into the 

GIS landslide database. The results of the multicollinearity test show that no collinearity 

existed between ten input variables. The computation of the weights for classes of 

influencing factors from 70% of the landslide data using the WoE model has allowed the 

establishment of the landslide susceptibility map. The model performance was evaluated 

by using the receiver operating characteristic (ROC) analysis. The area under the curve 

(AUC) was computed for the success rate curve (using 70% landslide data) and the 

prediction rate curve (using 30% landslide data) at 0.855 and 0.844, respectively. Thus, it 

can be confirmed that the landslide susceptibility mapping based on the WoE model was 

very reliable in the study area. 

Keywords: Landslide susceptibility; Weights of Evidence; GIS; Quang Nam province. 

 

1. Introduction 

Vietnam is heavily affected by the negative impacts of global climate change [1]. 

Heavy and irregular rainfall was one of the consequences of climate change that caused 

natural disasters to occur with increasing intensity and frequency. The estimated damage 

caused by natural disasters was about 1.5% of Vietnam's GDP per year [2]. Notably, 

landslides have been a dangerous type of natural disaster that has caused damage in the 

mountainous areas of North and Central Vietnam during the rainy season [3–7]. Landslides 
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and flash floods caused 46 deaths, 17 missing, and total economic losses of 11 trillion VND 

in Quang Nam province in 2020 [8].  

Nowadays, many solutions to prevent landslides have been implemented such as 

engineering, non-engineering, and adaptive solutions. Landslide susceptibility mapping is 

one of the necessary adaptive solutions for disaster damage reduction. Landslide 

susceptibility mapping methods have been developed widely with increasing accuracy, in 

which GIS-based landslide susceptibility mapping was an effective method for identifying 

and zoning landslide-prone areas [9] such as geomorphic and landslide inventory 

techniques, multi-criteria analysis, statistically based models, deterministic, and machine 

learning approaches [10]. Each method group had advantages and disadvantages and was 

suitable for different scales [11]. The statistical methods constructed based on the 

framework of statistical science have been widely used in landslide susceptibility 

assessment. They were divided into two main groups: bivariate statistical methods and 

multivariate statistical methods. The commonly used bivariate statistical methods were 

Frequency Ratio/Likelihood Ratio [12, 13], Weights of Evidence [14–16], and Information 

Value/Statistics Index [3, 17] methods. Multivariate statistical methods determine the 

weight of each input variable to the total landslide susceptibility instead of assessing the 

single relationship of each influencing factor to landslide occurrence as known in bivariate 

statistical approaches [10, 18]. Multivariate statistical methods have been used frequently as 

logistic regression [17, 19] and discriminant [20, 21] methods.  

Generally, the statistical methods give good predictive results. Their accuracy increases 

as past landslide events are investigated in more detail. Although statistical approaches 

have been used relatively commonly in the world in landslide susceptibility mapping, they 

are still quite limited in Vietnam. In this group of methods, selecting the appropriate 

research scale and level of data detail is very significant because it affects the accuracy of 

the research results. This study has specified a model suitable for applying landslide 

susceptibility mapping, which is the WoE model. The study area is the mountainous district 

of southwestern Quang Nam province, Vietnam, where landslides occur frequently, causing 

significant loss of life and property. 

2. Data used and methods  

2.1. Study area and data used 

2.1.1. The study area description 

The study area is the mountainous region of Quang Nam province with a total area of 

about 2838 km2 (Figure 1). This site includes poor districts but is home to unique cultural 

values of ethnic minorities such as Co Tu, Ca Dong, Xo Dang, etc. These are favorable 

conditions for the development of ethnic and cultural tourism. In addition, the natural 

conditions are suitable for forestry and hydropower development, notably the Song Tranh 

and Dak Mi terraced hydroelectric systems. However, the natural conditions here are also 

favorable for various natural disasters, including landslides and debris flows. 

The study area has a complex geological structure, thick weathered crust, intense 

destructive fault zones, and is located in a relatively strong earthquake zone. The terrain 

conditions are high mountainous, steep slopes, complex cleavage, and many large mountain 

systems with mountains over 2000 m in height. Notably, Ngoc Linh is the highest peak of 

the Truong Son range (2598 m) between Quang Nam and Kon Tum provinces. The study 

area belongs to the influence of one of the heavy rain centers in Vietnam. Monitoring data 

for the three years 2019, 2020, and 2021 shows that the total annual rainfalls are 3209 mm, 

5541 mm, and 5201 mm, respectively. The rainy season usually starts in September of the 

previous year and lasts until January of the following year. October 2020 was a period of 
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record heavy rain, especially when Typhoon Molave made landfall in Vietnam (October 28, 

2020). The total rainfall of this month measured at Tra My station was up to 1880mm 

(Figure 2). The landslides occurred widely in central Vietnam at that time. Many landslides 

have caused terrific damage to people and property. 

 

Figure 1. Study area and landslide locations. 

The above-mentioned natural 

conditions have strongly influenced the 

common occurrence of landslides. 

Besides, economic activities such as the 

development of roads, the operation of 

terraced hydropower reservoirs, 

infrastructure construction, residential 

development planning, rudimentary and 

backward agricultural practices on 

sloping land, and burning forests have 

directed to negatively affected land use, 

forest cover that caused landslides in 

the study area. 

2.1.2. Data used 

 The landslide inventory data was one of the necessary data inputs for the landslide 

susceptibility models. In this study, 1159 landslide locations (Figure 1) were collected from 

three principal sources: Field survey data from March to April 2021 (414) under the project 

code VAST05.03/21-22; additional analytical data from Google Earth satellite imagery 

Hoang Sa

Islands

Truong Sa

Islands

 
Figure 2. Distribution of total monthly rainfall at Tra 

My station for 2019, 2020 and 2021. 
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(250) using the visual interpretation method; and inherited data from previous studies 

related to the study area (495) [22–25]. The landslide data were randomly divided into two 

parts, of which 70% (811 landslides) were used for modeling and 30% (348 landslides) for 

validation. The field survey results show that landslides have widely occurred in the rainy 

seasons. In the rainy season of 2020, three typical landslides buried 18 houses and killed 32 

people in the Nam Tra My and Phuoc Son districts on October 28, 2020 (Figure 3). 

 

Figure 3. Some pictures of typical landslides: a) A landslide region in Phuoc Loc commune, Phuoc 

Son district (Google Earth image in October 2021); b) The landslide occurred in Tra Leng 

commune, Nam Tra My district; and c) The landslide occurred in Tra Van commune, Nam Tra My 

district. Photographs were taken in April 2021 by Tran Anh Tuan. 

 The landslide-related factors include natural factors and human activities. They are 

input-independent variables in landslide susceptibility models. Ten factors were selected 

and constructed into a GIS database from the primary data in the study area (Table 1). 

Table 1. Data used in the study. 

Factors Data source Scale 

Geology 
Geological and Mineral Resources maps 

1:200.000 

Distance to fault 

Elevation 

National topographic maps 

1:50.000 

Relief amplitude 

Slope 

Aspect 

Rainfall 
Precipitation data at rain gauges in the study area 

and nearby 

1:50.000 

Soil type Soil map of Quang Nam province 1:50.000 

Land use Land use map of Quang Nam province 1:50.000 

Distance to road National topographic maps 1:50.000 

The geological conditions that affect the landslide process are lithological composition 
and tectonic activity. Accordingly, two influencing factors were selected as geology 
showing stratigraphies with various types of lithology, and distances to faults. The 
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geological factor consists of fourteen geological units (Figure 4a), in which Kham Duc 
formation (PR2-3-Є1 kd) and Tac Po formation (PR1 tp) are the two units with the most 
extensive distribution in the study area, 35.767% and 29.412%, respectively. The distance 
to faults was classified into five classes (Figure 4b) from the fault system. Based on 
national topographic maps, a digital elevation model (DEM) with a spatial resolution of 
20x20m was generated. From the DEM, four geomorphometric factors were extracted, 
including elevation with ten classes (Figure 4c), relief amplitude with seven categories 
(Figure 4d), and slope and aspect were both classified into nine categories (Figures 4e, 4f). 

 

 

 

Figure 4. Landslide influencing factors: (a) Geology; (b) Distance to fault (m); (c) Elevation (m); 

(d) Relief amplitude (m); (e) Slope (o); (f) Aspect. 
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Figure 4. (continue): (g) rainfall (mm); h) Soil type; i) Land use; and j) Distance to road (m). 

Precipitation is a landslide-triggering factor. The rainfall factor was constructed using 
total precipitation data from September to November 2020, collected from rain gauges in 
the study area and nearby. It was classified into seven classes (Figure 4g). The soil type 
map consists of 13 various soil types (excluding water surface) (Figure 4h). The Acha.ar is 
a common soil type, accounting for 43.446% of the total area, followed by ACha.hu 
(18.363%), ACvt.sk (10.815%), and ACha.sk (10.159%). The remaining soil types have 
small areas (less than 5% for each type). 

Two factors related to human activities are land use and distance to roads. The land use 
factor was categorized into eight classes (Figure 4i). Forest types occupied most of the 
study area, of which productive forest and protected forest were the most extensive area, 
accounting for 37.458% and 35.281% of total area, respectively. Residential land had the 
smallest area, accounting for only 0.972%. The construction of the road system in 
mountainous areas has changed the slope leading to instability of the slope where the road 
crosses. The distance to road factor was constructed with five classes (Figure 4i) from a 
road system. However, only roads that cut through areas with slopes higher than five 
degrees were identified in this study, to avoid increasing the weight in flat areas where 
landslides rarely or not likely to occur. 

2.2. Methods 

2.2.1. Weights of Evidence 

The WoE method was first developed for mapping the mineral potential [26]. 
Afterward, this method was applied in several studies in landslide susceptibility mapping 
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[12, 14, 27–30]. In the WoE method, a pair of weights for each class of each related factor, 
W+ and W–, is defined as: 

𝑊+ = 𝑙𝑛
𝑃{𝑋|𝐿}

𝑃{𝑋|�̅�}
           (1)                            𝑊− = 𝑙𝑛

𝑃{�̅�|𝐿}

𝑃{�̅�|�̅�}
           (2) 

where P is the probability, X is the class in a landslide-related factor, L signifies the 
existence of landslides, and the dash above (¯) indicates the absence of variables under 
consideration. From there, the WoE can be written in numbers of pixels as follows: 

𝑊+ = 𝑙𝑛
𝑁{𝑋 ∩ 𝐿}/𝑁{𝐿}

𝑁{𝑋 ∩ �̅�}/𝑁{�̅�}
           (3)                 𝑊− = 𝑙𝑛

𝑁{�̅� ∩ 𝐿}/𝑁{𝐿}

𝑁{�̅� ∩ �̅�}/𝑁{�̅�}
           (4) 

where N{A} is the pixel number of A present on a map and ∩ is intersection math. 
Variances of weights (S2) can approximately be estimated as [31]: 

𝑆2(𝑊+) =
1

𝑁{𝑋 ∩ 𝐿}
+

1

𝑁{𝑋 ∩ �̅�}
      (5)         𝑆2(𝑊−) =

1

𝑁{�̅� ∩ 𝐿}
+

1

𝑁{�̅� ∩ �̅�}
      (6) 

The weight contrast value (C) presents the spatial relationship between the related 
factor and the occurrence of landslides [26]. C is positive for a favorable spatial relationship 
and negative for an unfavorable one [32]. The formula is as below: 

C = W+ − W−      (7) 
The standard deviation of contrast (S(C)) is given by the formula: 

S(C) = √S2(W+) + S2(W−)       (8) 
The standardized final weight (W) gives a measure of confidence [28]: 

W =
C

S(C)
                                           (9) 

In the WoE model, the natural logarithm (ln) of zero is not defined, so the weight value 
under consideration is assigned the minimum weight value. Finally, the calculating of 
landslide susceptibility index (LSI) was done by overlaying the weighting values of related 
factors together in GIS using the equation below:   

𝐿𝑆𝐼 = ∑ 𝑊𝑖𝑗
𝑛
𝑖=1      (10) 

where Wij is the final weight of the j-th class in the factor Xi (i = 1,2,…, n, n is the 
number of related factors). 

2.2.2. Model verification 

The significance of the statistical model in the susceptibility analysis was confirmed by 
testing the model using the validating dataset. One of the popular methods is the ROC 
curve analysis to verify the performance and compare different models [17]. The ROC 
curve is generated by representing the true positive rate (on the Y-axis) based on the false 
positive rate (on the X-axis) at the threshold varies. The AUC is the area underneath the 
entire ROC curve and was used to estimate the accuracy of a model. The AUC value ranges 
from 0.5 to 1.0. When AUC is 0.5, it means the model has no sense in terms of application. 
An AUC value close to 1 would indicate a high-performance prediction model. 

3. Results and discussions  

3.1. Relationship between landslide occurrence and related factors 

In this study, the multicollinearity test method is performed to confirm that the input 
variables are independent of each other. The tolerance (TOL) index and the variance 
inflation factor (VIF) were used for multicollinearity checking. TOL is 1-R2 for the 
regression of one independent variable against all the other independents, while VIF is the 
reciprocal of TOL. The multicollinearity almost certainly occurs when TOL values are less 
than 0.1 or VIF values exceed 10 [33]. The results of the multicollinearity test show that the 
relief amplitude factor presents the minimum TOL and maximum VIF values are 0.435 and 
2.297, respectively (Table 2). It confirms that no collinearity was observed among the ten 
selected variables. 
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Table 2. The result of the multicollinearity test. 

Variables 
Collinearity Statistics 

Tolerance VIF 

Geology 0.708 1.413 

Distance to fault 0.805 1.242 

Elevation 0.633 1.580 

Relief amplitude 0.435 2.297 

Slope 0.441 2.266 

Aspect 0.982 1.019 

Rainfall 0.809 1.236 

Soil type 0.645 1.551 

Land use 0.679 1.473 

Distance to road 0.792 1.263 

The weighted values calculated using the WoE model indicated the importance of each 

influencing factor (Table 3). The higher values of the final weight showed a higher 

significance level for a factor class [27]. For the group of geological conditions factors, the 

highest weight value of 4.562 belongs to Tac Po formation (PR1 tp), followed by Tra Bong 

Complex (O-S tb) has a weight value of 3.280. These two geological units indicate a 

significant positive correlation with the landslides. Some geological units with positive 

weight values but smaller than the two above-mentioned geological units are Ba Na 

Complex (K- E bn), Kham Duc Formation (PR2-3-Є1 kd), Undivided Quaternary (edQ) and 

Ta Vi Complex (PR3 tv). The remaining units are all negatively weighted indicating a weak 

association for landslides. For the distance to fault, the weight value is inversely 

proportional to the distance to the fault. Within the distance < 1000 m from the fault 

location, all positive weights are given, in which the highest weight value belongs to the < 

200m class (3.667), followed by the 200-400 m class (3.277). Meanwhile, the distance 

>1000m gives a negative weight value (-5.434). 
The weighted value of the elevation factor shows the frequency of landslides is pretty 

high in the altitude range of < 453.7m, in which the weights for the 18.1-261.2 m and 
261.3-453.7 m classes are 8.276 and 6.372, respectively. The negative weight value for the 
elevation > 453.7 m indicates low landslide frequency. In the case of relief amplitude, the 
final weight is positive in the range between 43.04 m and 119.87, with the highest weight 
value being 3.945 obtained at the amplitude values from 58.41 m to 73.77 m. The negative 
weight values are for the relief amplitude < 43.04 m or > 119.87 m. For the slope factor, the 
weight value increases gradually for the slope between 0o and 36.49o and decreases when 
the slope value is higher than 36.49o. Positive weights are obtained from slopes >18.24o. 
The maximum value is 5.64o in the 31.77o - 36.49o class, while slopes from 0o to 18.24o 
give negative weight values. The results of the weight calculation for the aspect factor show 
that there is no significant difference. The correlation between aspect and landslide 
occurrence is positive for the aspect in North East, East, South East, South, and South West 
directions, while the North, West, and North West directions all give negative weights. The 
Flat class does not have landslides, so the weight is indeterminate. Thus, it gets the 
minimum value calculated from all factor classes (-14.646). 

For the rainfall factor, the weights are positive for classes with rainfall > 3105.0 mm 
and negative values for the rainfall classes ≤ 3105.0 mm, except for the smallest rainfall 
range (2529.1-2819.5 mm), the weights obtained are positive and higher than the weights of 
other classes (4.037). Perhaps this class is distributed at the edge of the study area with a 
small area. In the case of soil type, positive weights appear in soil units such as ACha.cr, 
ACha.fr, ACha.pf, ACvt.sk, FLha.ar, Frha.ro, and Lpha.sk and negative for remaining soil 
types. Notably, the high landslide probability occurs in the soil types of ACha.cr (5.101), 
ACha.pf (4.742), and ACvt.sk (8.007). Lpha.sk is the soil unit with the highest weight 
(1.803). The water surface class was assigned the minimum weight (-14.646) because no 
landslides occurred. 
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Assessment of land use showed high weights for annual crops (3.425), productive 
forest (4.567), residential land (9.694), and the highest for perennial crops (13.618). 
Meanwhile, low (negative) weight values were protected forest (-9.162), special-use forest 
(-7.018), and rice land (-2.402). The water surface class has a weighted value of -14.646. 
For the distance to the road, the weight value decreases as the distance are further away 
from the position of the road. The weighted values are positive within a distance < 200 m, 
and negative for classes with a distance > 200 m. Notably, the maximum landslide 
probability with calculated weight is 26.849 within the distance < 100 m from the position 
of the road, and the minimum value (-14.646) when the distance is > 500 m. All influencing 
factors were stored in raster format (4367 columns, 3456 rows) with a pixel size of 20x20 
meters.  

Table 3. Computed weights for classes of influencing factors using the WoE model. 

Classes of 

influencing 

factors 

No. of 

landslide  

pixels 

% of 

landslide 

No. of  

pixels in 

class 

% of 

class 

Weights of Evidence (WoE) 

Wij
+ Wij

- C S2(W+) S2(W-) S(C) Wij 

Geology            

A Vuong 3 0.370 223212 3.146 -2.141 0.028 -2.169 0.333 0.001 0.578 -3.750 

Ba Na 27 3.329 206784 2.915 0.133 -0.004 0.137 0.037 0.001 0.196 0.702 

Ben Giang 5 0.617 96947 1.366 -0.796 0.008 -0.803 0.200 0.001 0.449 -1.791 

Chu Lai 67 8.261 744722 10.497 -0.239 0.025 -0.264 0.015 0.001 0.128 -2.071 

Dai Nga 7 0.863 99041 1.396 -0.481 0.005 -0.486 0.143 0.001 0.380 -1.281 

Dak Long 1 0.123 22295 0.314 -0.936 0.002 -0.937 1.000 0.001 1.001 -0.937 

Deo Ca 1 0.123 164373 2.317 -2.966 0.022 -2.988 1.000 0.001 1.001 -2.986 

Kham Duc 301 37.115 2537624 35.767 0.037 -0.021 0.058 0.003 0.002 0.073 0.801 

Other complex 27 3.329 308289 4.345 -0.266 0.011 -0.277 0.037 0.001 0.196 -1.415 

Quaternary 6 0.740 27954 0.394 0.630 -0.003 0.634 0.167 0.001 0.410 1.546 

Song Re 17 2.096 291974 4.115 -0.675 0.021 -0.695 0.059 0.001 0.245 -2.837 

Ta Vi 7 0.863 48365 0.682 0.236 -0.002 0.238 0.143 0.001 0.380 0.627 

Tac Po 298 36.745 2086743 29.412 0.223 -0.110 0.332 0.003 0.002 0.073 4.562 

Tra Bong 44 5.425 236632 3.335 0.487 -0.022 0.508 0.023 0.001 0.155 3.280 

Distance to fault (m)           

0-200 111 13.687 697477 9.831 0.331 -0.044 0.375 0.009 0.001 0.102 3.667 

200-400 103 12.700 662378 9.336 0.308 -0.038 0.346 0.010 0.001 0.105 3.277 

400-700 120 14.797 913547 12.876 0.139 -0.022 0.161 0.008 0.001 0.099 1.631 

700-1000 94 11.591 796158 11.221 0.032 -0.004 0.037 0.011 0.001 0.110 0.333 

>1000 383 47.226 4025395 56.736 -0.183 0.199 -0.382 0.003 0.002 0.070 -5.434 

Elevation (m)            

18.1 - 261.2 227 27.990 1199533 16.907 0.504 -0.143 0.647 0.004 0.002 0.078 8.276 

261.3 - 453.7 253 31.196 1550869 21.859 0.356 -0.127 0.483 0.004 0.002 0.076 6.372 

453.8 - 636.1 128 15.783 1271616 17.923 -0.127 0.026 -0.153 0.008 0.001 0.096 -1.587 

636.2 - 818.5 95 11.714 997247 14.056 -0.182 0.027 -0.209 0.011 0.001 0.109 -1.915 

818.6 - 1000.8 38 4.686 744981 10.500 -0.807 0.063 -0.870 0.026 0.001 0.166 -5.235 

1000.9 - 1193.3 37 4.562 534790 7.538 -0.502 0.032 -0.534 0.027 0.001 0.168 -3.172 

1193.4 - 1406.1 20 2.466 359063 5.061 -0.719 0.027 -0.746 0.050 0.001 0.226 -3.294 

1406.2 - 1659.4 10 1.233 247113 3.483 -1.038 0.023 -1.062 0.100 0.001 0.318 -3.336 

1659.5 - 1993.7 2 0.247 127751 1.801 -1.988 0.016 -2.004 0.500 0.001 0.708 -2.830 

1993.8 - 2601.6 1 0.123 61992 0.874 -1.958 -0.001 -1.957 1.000 0.001 1.001 -1.956 

Relief amplitude (m)           

0 - 24.59 73 9.001 1133248 15.973 -0.574 0.080 -0.653 0.014 0.001 0.123 -5.324 

24.6 - 43.03 195 24.044 1928529 27.182 -0.123 0.042 -0.165 0.005 0.002 0.082 -2.006 

43.04 - 58.4 220 27.127 1795134 25.302 0.070 -0.025 0.094 0.005 0.002 0.079 1.195 

58.41 - 73.77 187 23.058 1258840 17.743 0.262 -0.067 0.329 0.005 0.002 0.083 3.945 

73.78 - 92.21 94 11.591 692509 9.761 0.172 -0.020 0.192 0.011 0.001 0.110 1.753 

92.22 - 119.87 38 4.686 249199 3.512 0.288 -0.012 0.300 0.026 0.001 0.166 1.808 

119.88 - 783.77 4 0.493 37496 0.528 -0.069 0.000 -0.069 0.250 0.001 0.501 -0.139 

Slope (º)            

0-5.74 44 5.425 810704 11.426 -0.745 0.066 -0.810 0.023 0.001 0.155 -5.228 

5.75-12.84 57 7.028 896153 12.631 -0.586 0.062 -0.648 0.018 0.001 0.137 -4.720 

12.85-18.24 106 13.070 1203263 16.959 -0.261 0.046 -0.306 0.009 0.001 0.104 -2.940 
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Classes of 

influencing 

factors 

No. of 

landslide  

pixels 

% of 

landslide 

No. of  

pixels in 

class 

% of 

class 

Weights of Evidence (WoE) 

Wij
+ Wij

- C S2(W+) S2(W-) S(C) Wij 

18.25-22.97 148 18.249 1209946 17.054 0.068 -0.015 0.082 0.007 0.002 0.091 0.905 

22.98-27.36 138 17.016 1055878 14.882 0.134 -0.025 0.159 0.007 0.001 0.093 1.706 

27.37-31.76 133 16.400 852734 12.019 0.311 -0.051 0.362 0.008 0.001 0.095 3.816 

31.77-36.49 115 14.180 607596 8.564 0.504 -0.063 0.568 0.009 0.001 0.101 5.640 

36.50-42.57 55 6.782 353686 4.985 0.308 -0.019 0.327 0.018 0.001 0.140 2.341 

42.58-86.15 15 1.850 104995 1.480 0.223 -0.004 0.227 0.067 0.001 0.261 0.870 

Aspect            

Flat 0 0.000 68966 0.972 NA 0.010 NA NA 0.001 NA -14.646 

Noth 101 12.454 985860 13.895 -0.110 0.017 -0.126 0.010 0.001 0.106 -1.186 

North East 133 16.400 1039771 14.655 0.112 -0.021 0.133 0.008 0.001 0.095 1.404 

East 116 14.303 892796 12.584 0.128 -0.020 0.148 0.009 0.001 0.100 1.475 

South East 94 11.591 803074 11.319 0.024 -0.003 0.027 0.011 0.001 0.110 0.244 

South 109 13.440 831475 11.719 0.137 -0.020 0.157 0.009 0.001 0.103 1.522 

South West 101 12.454 865449 12.198 0.021 -0.003 0.024 0.010 0.001 0.106 0.222 

West 77 9.494 808365 11.394 -0.182 0.021 -0.204 0.013 0.001 0.120 -1.699 

North West 80 9.864 799199 11.264 -0.133 0.016 -0.148 0.013 0.001 0.118 -1.260 

Rainfall (mm)            

2529.1 - 2819.5 75 9.248 417156 5.880 0.453 -0.036 0.489 0.013 0.001 0.121 4.037 

2819.6 - 2994.8 62 7.645 880229 12.406 -0.484 0.053 -0.537 0.016 0.001 0.132 -4.065 

2994.9 - 3105.0 204 25.154 2444094 34.448 -0.314 0.133 -0.447 0.005 0.002 0.081 -5.524 

3105.1 - 3240.2 204 25.154 1612013 22.721 0.102 -0.032 0.134 0.005 0.002 0.081 1.653 

3240.3 - 3415.5 107 13.194 710273 10.011 0.276 -0.036 0.312 0.009 0.001 0.104 3.008 

3415.6 - 3610.8 87 10.727 530396 7.476 0.361 -0.036 0.397 0.011 0.001 0.113 3.498 

3610.9 - 3806.1 72 8.878 500794 7.058 0.229 -0.020 0.249 0.014 0.001 0.123 2.018 

Soil type            

ACha.ar 238 29.346 3082502 43.446 -0.392 0.223 -0.615 0.004 0.002 0.077 -7.975 

ACha.cr 73 9.001 356473 5.024 0.583 -0.043 0.626 0.014 0.001 0.123 5.101 

ACha.dyh 3 0.370 39701 0.560 -0.414 0.002 -0.416 0.333 0.001 0.578 -0.719 

ACha.fr 4 0.493 20119 0.284 0.554 -0.002 0.556 0.250 0.001 0.501 1.109 

ACha.hu 87 10.727 1302826 18.363 -0.538 0.089 -0.627 0.011 0.001 0.113 -5.525 

ACha.pf 55 6.782 256568 3.616 0.629 -0.033 0.662 0.018 0.001 0.140 4.742 

ACha.sk 51 6.289 720747 10.159 -0.480 0.042 -0.522 0.020 0.001 0.145 -3.607 

ACvt.sk 160 19.729 767292 10.815 0.601 -0.105 0.707 0.006 0.002 0.088 8.007 

FLha.ar 10 1.233 50502 0.712 0.550 -0.005 0.555 0.100 0.001 0.318 1.743 

FLha.dy 1 0.123 26005 0.367 -1.089 0.002 -1.092 1.000 0.001 1.001 -1.091 

Frha.ro 19 2.343 74645 1.052 0.801 -0.013 0.814 0.053 0.001 0.232 3.505 

LPha.sk 108 13.317 252436 3.558 1.320 -0.107 1.427 0.009 0.001 0.103 13.803 

RGst.dy 2 0.247 36446 0.514 -0.734 0.003 -0.737 0.500 0.001 0.708 -1.040 

Water surface 0 0.000 108693 1.532 NA 0.015 NA NA 0.001 NA -14.646 

Land use            

Annual crops 37 4.562 185598 2.616 0.556 -0.020 0.576 0.027 0.001 0.168 3.425 

Perennial crops 198 24.414 680688 9.594 0.934 -0.179 1.113 0.005 0.002 0.082 13.618 

Productive forest 367 45.253 2657640 37.458 0.189 -0.133 0.322 0.003 0.002 0.071 4.567 

Protected forest 158 19.482 2503186 35.281 -0.594 0.218 -0.812 0.006 0.002 0.089 -9.162 

Special-use forest 8 0.986 763352 10.759 -2.390 0.104 -2.493 0.125 0.001 0.355 -7.018 

Residential land 38 4.686 68988 0.972 1.573 -0.038 1.611 0.026 0.001 0.166 9.694 

Rice land 5 0.617 126961 1.789 -1.066 0.012 -1.078 0.200 0.001 0.449 -2.402 

Water surface 0 0.000 108542 1.530 NA 0.015 NA NA 0.001 NA -14.646 

Distance to road (m)           

0-100 300 36.991 545541 7.689 1.571 -0.382 1.953 0.003 0.002 0.073 26.849 

100-200 61 7.522 482483 6.800 0.101 -0.008 0.109 0.016 0.001 0.133 0.815 

200-300 27 3.329 431201 6.078 -0.602 0.029 -0.631 0.037 0.001 0.196 -3.222 

300-400 41 5.055 382875 5.396 -0.065 0.004 -0.069 0.024 0.001 0.160 -0.430 

400-500 22 2.713 342878 4.833 -0.578 0.022 -0.600 0.045 0.001 0.216 -2.774 

>500 360 44.390 4909977 69.204 -0.444 0.591 -1.035 0.003 0.002 0.071 -14.646 
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3.2. Validation of the model 

The LSI was computed by summed 
final weights of factor classes, as shown in 
Eq. (10). Then, the WoE model 
performance was validated using the ROC 
curve and AUC (Figure 5). In this study, 
the landslides in the training dataset (811 
landslides) were used to compute the 
success rate, and the landslides (348 
landslides) in the test dataset to calculate 
the prediction rate. The results for the 
success rate indicated that an AUC of 
0.855 showed the fitness of the WoE model 
because the training dataset was used in 
building the model. However, the success 
rate curve is not meaningful in evaluating 
the performance of prediction models [34]. 
Meanwhile, the prediction rate curve 
showed a value of 0.844, which proves 
well predictive power of the model. 

3.3. Landslide susceptibility mapping 

The LSI of the study area ranges from -81.65 to 81.24. LSI values represent different 
levels of susceptibility to landslides [32]. The landslide susceptibility map (Figure 6) shows 
five susceptibility levels as very low with the LSI values between -81.65 and -34.38, low (-
34.38 to -19.50), moderate (-19.50 to -2.44), high (-2.44 to 17.36) and very high (17.36 to 
81.24) using Jenks Natural Breaks method. This method is based on the division into natural 
groups inherent in the data set such that the variance within each class and between classes are 
minimum and maximum, respectively [35]. 

 

Figure 6. Landslide susceptibility map of the study area. 

 

Figure 5. Model validation with success rate and 

prediction rate. 
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To determine landslides that occur in 
each susceptibility class, the landslide 
inventory and susceptibility index maps 
were overlaid together, then the 
percentage of landslides in each 
susceptibility level was calculated. The 
result of assessing the reliability is shown 
in Figure 7. Accordingly, the very high 
class with only 5.27% of the study area 
has 49.96 % landslide occurrence, while 
only 2.16% of the landslide location 
occurs in the very low class, with 22.13% 
area. The other susceptibility levels were 
high class with 31.76% of the total area, 
moderate class (24.46%), and low class (16.38%) with percentages of landslide occurrences 
of 6.90%, 16.74%, and 24.25%, respectively. This result once again confirms that the 
landslide susceptibility mapping using the WoE model is very reliable. 

3.4. Discussions 

The review assessment of landslide susceptibility models shows that the group of 
bivariate statistical methods was only appropriate for research scales from medium 
(1:250.000–1:25.000) to detailed (>1:5000) and is not suitable for small scale (<1:250.000) 
[11]. In addition, bivariate statistical methods depended on the detail of inventory landslide 
data. According to the map generalization rule, the smaller the map scale, the lower the 
level of data detail, so it can be confirmed that the more the map scale decreases, the lower 
the model performance is. A landslide susceptibility mapping study for Quang Nam 
province using the WoE model [16] indicated that with a smaller map scale and a lower 
level of data detail, the model performance was significantly reduced to only 0.735 for 
success rate and 0.707 for prediction rate. Thus, the results of verifying the WoE model 
performance and assessing the reliability of the landslide susceptibility map in this study 
show that selecting a research method appropriate to the scale of the study area has 
delivered better research results. 

4. Conclusions  

Based on the research results, some conclusions are delineated as follows: 
 - Ten influencing factors were checked for multicollinearity showing independence from 

each other to landslide. All of these factors contributed to the landslide process in the study 
area, among which human activities were the intensely dominant factors such as land use and 
distance to road. Following were natural factors like slope and soil type. 

 - The results of testing the model performance using the ROC curve and AUC confirmed 
that the model capacity for landslide susceptibility mapping was very satisfactory. The AUC 
for the success rate curve and prediction rate curve were 0.855 and 0.844, respectively.     

- The landslide susceptibility map showed 49.96 % of landslides occurred in the very high 
susceptibility class, 24.25% of landslides in the high class, the medium level contains 16.74% 
of landslides, the low and very low categories accounting for 6.90% and 2.16% of landslides, 
respectively. It is confirmed that the landslide susceptibility map generated from the Weights of 
Evidence model ensures reliability in land use planning and prevention and mitigation of 
landslide damage in the study area. 

- Although the WoE method is quantitative, this method needs to be carefully selected to 
appropriate the research scale. Besides, due to the nature of a statistical method, the accuracy 
of the research results depends on the detailed landslide inventory data. The accuracy achieved 
from this study shows that the WoE method is suitable for landslide susceptibility mapping at a 
scale of 1:50.000. 

 

 

Figure 7. The results of assessing the reliability of 

the landslide susceptibility map. 



J. Hydro-Meteorol. 2023, 17, 31-45; doi:10.36335/VNJHM.2023(17).31-45 43 

Contributions of authors: Methodology,  Investigation, Data analysis, Manuscript 

preparation, Manuscript editing: T.A.T.; Data analysis,  Manuscript preparation: T.T.T.; 

Investigation, Data analysis: P.V.H.; Methodology,  Data analysis: N.T.A.N. All authors 

have read and agreed to the published version of the manuscript. 

Acknowledgement: This research was financially supported by the Vietnam Academy of 

Science and Technology (VAST), the grant project code is VAST05.03/21-22. 

Declaration of competing interest: The authors declare that this article was the work of 

the authors, has not been published elsewhere, and has not been copied from previous 

research; there was no conflict of interest within the author group. 

References 

1. World Bank Group. Climate-resilient development in Vietnam: strategic directions 

for the World Bank. Washington, D.C, 2011. Available online: 

http://documents.worldbank.org/curated/en/348491468128389806/Climate-

resilient-development-in-Vietnam-strategic-directions-for-the-World-Bank 

(accessed on 12 May 2023). 

2. Ministry of Natural Resources and Environment of The Socialist Republic of 

Vietnam. National Disaster Risk in Viet Nam in the Period 2006-2016 and 

Forecasting and Warning System. 11th Emergency Preparedness Working Group 

Meeting Nha Trang, Viet Nam, 2017. Available online: https://www.apec-

epwg.org/media/2309/f15e3a390421e8a5719bb2c859049604.pdf (accessed on 12 

May 2023). 

3. Meinhardt, M.; Fink, M.; Tünschel, H. Landslide susceptibility analysis in central 

Vietnam based on an incomplete landslide inventory: Comparison of a new method 

to calculate weighting factors by means of bivariate statistics. Geomorphology 

2015, 234, 80-97. https://doi.org/10.1016/j.geomorph.2014.12.042. 

4. Tien Bui, D.; Tuan, T.A.; Klempe, H.; Pradhan, B.; Revhaug, I. Spatial prediction 

models for shallow landslide hazards: a comparative assessment of the efficacy of 

support vector machines, artificial neural networks, kernel logistic regression, and 

logistic model tree. Landslides 2016, 13, 361–378. https://doi.org/10.1007/s10346-

015-0557-6. 

5. Tien Bui, D.; Tuan, T.A.; Hoang, N.D.; Thanh, N.Q.; Nguyen, D.B.; Van Liem, N.; 

Pradhan, B. Spatial prediction of rainfall-induced landslides for the Lao Cai area 

(Vietnam) using a hybrid intelligent approach of least squares support vector 

machines inference model and artificial bee colony optimization. Landslides 2017,  

14, 447–458. https://doi.org/10.1007/s10346-016-0711-9. 

6. Tuan, T.A.; Dan, N.T. Research the landslide susceptibility and zoning in the Son 

La hydroelectricity area by the Saaty's Analytical Hiearchy Process (AHP). J. Sci. 

Earth 2012, 3, 223–232. https://doi.org/10.15625/0866-7187/34/3/2538. 

7. Tuan, T.A.; Pha, P.D.; Tam, T.T.; Dui, D.T. A New Approach Based on Balancing 

Composite Motion Optimization and Deep Neural Networks for Spatial Prediction 

of Landslides at Tropical Cyclone Areas. IEEE Access. 2023, 11, 69495-69511. 

https://doi.org/10.1109/ACCESS.2023.3291411. 

8. Provincial People's Committee of Quang Nam. The report of plans responds to 

natural hazards according to risk levels in the context of the COVID-19 epidemic in 

Quang Nam province (in Vietnamese), 2021. Available online:  

https://quangnam.gov.vn/webcenter/portal/ubnd/pages_tin-tuc/chi-

tiet?dDocName=PORTAL174284 (accessed on 22 May 2023). 

9. Merghadi, A.; Yunus, A.P.; Dou, J.; Whiteley, J.; Thai Pham, B.; Bui, D.T.; Avtar, 

R.; Abderrahmane, B. Machine learning methods for landslide susceptibility 

https://doi.org/10.1016/j.geomorph.2014.12.042
https://doi.org/10.15625/0866-7187/34/3/2538


J. Hydro-Meteorol. 2023, 17, 31-45; doi:10.36335/VNJHM.2023(17).31-45 44 

studies: A comparative overview of algorithm performance. Earth-Science Rev. 

2020, 207, 103225. https://doi.org/10.1016/j.earscirev.2020.103225. 

10. Shano, L.; Raghuvanshi, T.K.; Meten, M. Landslide susceptibility evaluation and 

hazard zonation techniques–a review. Geoenviron. Disasters 2020, 7(1), 1-19. 

https://doi.org/10.1186/s40677-020-00152-0. 

11. Yong, C.; Jinlong, D.; Fei, G.; Bin, T.; Tao, Z.; Hao, F.; Li, W.; Qinghua, Z. 

Review of landslide susceptibility assessment based on knowledge mapping. 

Stochastic Environ. Res. Risk Assess. 2022, 36, 2399–2417. 

https://doi.org/10.1007/s00477-021-02165-z. 

12. Saro, L.; Min, K. Statistical analysis of landslide susceptibility at Yongin, Korea. 

Environ. Geology 2001, 40(9), 1095–1113. https://doi.org/10.1007/s002540100310. 

13. Mind’je, R.; Li, L.; Nsengiyumva, J.B.; Mupenzi, C.; Nyesheja, E.M.; Kayumba, P. 

M.; Gasirabo, A.; Hakorimana, E. Landslide susceptibility and influencing factors 

analysis in Rwanda. Environ. Dev. Sustainability 2020, 22(8), 7985–8012. 

https://doi.org/10.1007/s10668-019-00557-4. 

14. Dahal, R.K.; Hasegawa, S.; Nonomura, A.; Yamanaka, M.; Dhakal, S.; Paudyal, P. 

Predictive modeling of rainfall-induced landslide hazard in the Lesser Himalaya of 

Nepal based on weights-of evidence. Geomorphology 2008, 102(3–4), 496–510. 

https://doi.org/10.1016/j.geomorph.2008.05.041.  

15. Pradhan, B.; Oh, H.J.; Buchroithner, M. Weights-of-evidence model applied to 

landslide susceptibility mapping in a tropical hilly area. Geomat. Nat. Hazards Risk 

2010, 1, 199–223. https://doi.org/10.1080/19475705.2010.498151. 

16. Thanh, D.C.; Binh, P.T.; Dam, N.D. Using weights of evidence (WOE) for 

landslide susceptibility mapping in Quang Nam province. J. Sci. Technol.  Civil 

Eng. 2022, 16(2V), 139–152. https://doi.org/10.31814/stce.huce(nuce)2022-

16(2V)-12. 

17. Bui, D.T.; Lofman, O.; Revhaug, I.; Dick, O. Landslide susceptibility analysis in 

the Hoa Binh province of Vietnam using statistical index and logistic 

regression. Nat. Hazards 2011, 59, 1413–1444. https://doi.org/10.1007/s11069-

011-9844-2. 

18. Schicker, R.; Moon, V. Comparison of bivariate and multivariate statistical 

approaches in landslide susceptibility mapping at a regional scale. Geomorphology 

2012, 161, 40–57. https://doi.org/10.1016/j.geomorph.2012.03.036.  

19. Ayalew, L.; Yamagishi, H. The application of GIS-based logistic regression for 

landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central 

Japan. Geomorphology 2005, 65(1-2), 15–31. 

20. Baeza, C.; Corominas, J. Assessment of shallow landslide susceptibility by means 

of multivariate statistical techniques. Earth Surface Processes and Landforms: The 

Journal of the British Geomorphological Research Group 2001, 26(12), 1251–

1263. https://doi.org/10.1002/esp.263.   

21. Pham, B.T.; Prakash, I. Evaluation and comparison of LogitBoost Ensemble, 

Fisher’s Linear Discriminant Analysis, logistic regression and support vector 

machines methods for landslide susceptibility mapping. Geocarto Int. 2019, 34(3), 

316–333. https://doi.org/10.1080/10106049.2017.1404141. 

22. Duc, D.M.; Lieu, T.M.; Binh, T.Q.; Hang, V.T.; Van, H.P.; Vinh, H.D.; Tan, T.D.; 

Anh, G.Q.; Ngoc, D.M.; Duc, D.M. Landslide hazard prediction along the 

mountainous transport arteries in Quang Nam province and the adaptation measures 

(Vietnamese). Hanoi University of Science, Vietnam National University, Hanoi, 

Hanoi, Rep. ĐTĐL.CN-23/17, 2020. 

23. Hung, L.Q.; Van, N.T.H.; Van, S.P.; Ninh, N.H.; Tam, N.; Huyen, N.T. Landslide 

inventory mapping in the fourteen Northern provinces of Vietnam: Achievements 

https://doi.org/10.1016/j.earscirev.2020.103225
https://doi.org/10.1016/j.geomorph.2012.03.036
https://doi.org/10.1002/esp.263
https://doi.org/10.1080/10106049.2017.1404141


J. Hydro-Meteorol. 2023, 17, 31-45; doi:10.36335/VNJHM.2023(17).31-45 45 

and difficulties. In Advancing Culture of Living With Landslides, Sassa, K.; Mikoš, 

M.; Yin, Y.  Eds.; Springer: Cham, Switzerland, 2017, pp. 501–510. 

https://doi.org/10.1007/978-3-319-59469-9_44. 

24. Tan, M.T.; Van, H.V.; Tan, N.T.; Vinh, H.Q.; Van, L.N.; Luong, L.D.; Ha, T.T.; 

Van, T.N.; Thuy, H. L.Th.; Anh, L.T.; Van, T.T.T. Landslide hazard assessment by 

geological and geomorphological methods integrated with the GIS optimal 

weighting model in river basins in Thua Thien Hue, Quang Nam, and Da Nang 

areas, proposing solutions prevent (Vietnamese). Inst. Geol. Sci. Vietnam Acad. Sci. 

Technol. Hanoi, Vietnam, Rep. VAST 09.01/11-12, 2014, 2014. 

25. Thanh, N. Q.; Yem, N. T.; Anh, T. T.; Phuong, N. T.; Cau, N. T.; Ngu, N. D.; Hieu, 

N. T.; Dai, H. Van; Thái, T. H.; Cong, N. T.; Minh, N. Le; Hoang, N. Van; Lien, V. 

T. H.; Tien, N. V.; Tuan, T. A.; Tai, N. T.; Kien, N. T.; Hung, N. Van; Thom, B. 

Van; Hau, D. T. To study, supplement and develop a map of natural disasters in 

Vietnam’s mainland based on research results from 2000 up to now (Vietnamese). 

Inst. Geological Sci., Vietnam Acad. Sci. Technol., Hanoi, Vietnam, Rep. 

KC.08.28/11-15, 2015. 

26. Bonham-Carter, G.F.; Agterberg, F.P.; Wright, D.F. Weights of evidence modeling: 

a new approach to mapping mineral potential. In Statistical Applications in the 

Earth Sciences, Agterberg, F.P., Bonham-Carter G.F., Eds.; Geol. Survey Canada 

Paper, 1989, 89-9, pp. 171–183. 

27. Kayastha, P.; Dhital. MR.; De Smedt, F. Landslide susceptibility mapping using the 

weight of evidence method in the Tinau watershed, Nepal. Nat. Hazards 2012, 63, 

479–498. https://doi.org/10.1007/s11069-012-0163-z. 

28. Neuhäuser, B.; Terhorst, B. Landslide susceptibility assessment using “weights-of-

evidence” applied to a study area at the Jurassic Escarpment (SW-Germany). 

Geomorphology 2007, 86, 12–24. https://doi.org/10.1016/j.geomorph.2006.08.002. 

29. Polykretis, C.; Chalkias, C. Comparison and evaluation of landslide susceptibility 

maps obtained from weight of evidence, logistic regression, and artificial neural 

network models. Nat. Hazards 2018, 93, 249–274. https://doi.org/10.1007/s11069-

018-3299-7. 

30. van Westen, C.J.; Rengers, N.; Soeters, R. Use of Geomorphological Information in 

Indirect Landslide Susceptibility Assessment. Nat. Hazards 2003, 30, 399–419. 

https://doi.org/10.1023/B:NHAZ.0000007097.42735.9e.  

31. Bonham-Carter, G.F. Geographic information systems for geoscientists, modeling 

with GIS, Pergamon, Press, Ontario, 1994, pp. 398.  

32. Lee, S.; Choi, J.; Min, K. Landslide susceptibility analysis and verification using 

the Bayesian probability model. Env. Geol. 2002, 43, 120–131. 

https://doi.org/10.1007/s00254-002-0616-x. 

33. Menard, S. Applied Logistic Regression Analysis (Sage University Paper Series on 

Quantitative Applications in the Social Sciences), series no. 106, 2nd ed.; 

ThousandOaks, CA: Sage, 1995. 

34. Brenning, A. Spatial prediction models for landslide hazards: review, comparison 

and evaluation. Nat. Hazards Earth Syst. Sci. 2005, 5(6), 853–862. 

https://doi.org/10.5194/nhess-5-853-2005. 

35. Jenks, G.F. The data model concept in statistical mapping. Int. Yearb Carto 1967, 

7, 186–190. 

https://doi.org/10.1016/j.geomorph.2006.08.002

