
Advances in Natural Sciences, Vol. 7, No. 1& 2 (2006) (13– 19)

Physics

ANHARMONIC EFFECTIVE POTENTIAL, LOCAL FORCE
CONSTANT AND CORRELATION EFFECTS IN XAFS OF

BCC CRYSTALS
Nguyen Van Hung∗ and Nguyen Bao Trung

Department of Physics, Hanoi University of Science, 334 Nguyen Trai, Hanoi
∗E-mail: hungnv@vnu.edu.vn

Le Hai Hung

Institute of Engineering Physics,

Hanoi University of Technology, 1 Dai Co Viet, Hanoi

Abstract. Analytical expressions for the anharmonic effective potential, local force constant,
Displacement-displacement Correlation Function (DCF) CR and Debye-Waller factor described
by the Mean Square Relative Displacement (MSRD) σ2 and by the Mean Square Displacement
(MSD) u2of bcc crystals in the X-ray Absorption Fine Structure (XAFS) have been derived.
The effective interatomic potential of the system has been considered by taking into account the
influences of nearest atomic neighbors, and it contains the Morse potential characterizing the
interaction of each pair of atoms. Numerical results for u2, σ2 and CR of Fe and W are found to
be in good agreement with experiment. The ratios CR/u2 and CR/σ2 approach constant values
at high temperatures showing the same properties obtained by the Debye model.

1. INTRODUCTION

In XAFS process the emitted photoelectron is transferred and scattered in the vi-
brating atomic environment before interfering with the out going photoelectron. At any
temperature the positions Rj of the atoms are smeared by thermal vibrations. Therefore,
in all treatments of XAFS the effect of this vibrational smearing has been included in the
XAFS function [1]

χ = χ0

〈
e2ik∆j

〉
; ∆j = R̂0

j · (uj − u0) , R̂ = R/ |R| , (1)

where uj and u0 are the jth atom and the central-atom displacement, respectively.
This Eq. (1) contains a thermally averaging

〈
ei2k∆j

〉
of the photoelectron function

leading to the Debye-Waller factor DWF = e−2k2σ2
j where k is the wave number. Since

this factor is meant to account for the thermal vibrations of the atoms about their equi-
librium sites R0

j , someone assume that the quantity σ2
j is identical with the MSD [1]. But

the oscillatory motion of nearby atoms is relative so that including correlation effect is
necessary [2-6]. In this case σ2

j is the MSRD containing the MSD and DCF. Anharmonic
interatomic potential has been studied intensively in XAFS but mostly by experiment
[3, 6]. The correlation effects of fcc crystal have been studied [9] using the anharmonic
correlated Einstein model [4].
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The purpose of this work is to develop a new procedure for calculation and analysis
of the anharmonic effective potential and local force constant, the DCF (CR) for the atomic
vibration of bcc crystals in XAFS based on quantum statistical theory with the anharmonic
correlated Einstein model [4]. Expression for the MSD (u2) has been derived. Using it
and the MSRD (σ2) we derive CR. The anharmonic effective interaction potential of the
system has been considered by taking into account the influences of the nearest atomic
neighbors. It contains Morse potential characterizing the interaction of each pair of atoms.
Numerical calculations have been carried out for bcc crystals Fe and W. The calculated
results for u2, σ2, CR, CR/u2, CR/σ2 of these crystals are compared to their experimental
values deducted from the measured Morse potential parameters [7].

2. FORMALISM

For perfect crystals with using Eq. (1) the MSRD is given by

σ2
j =

〈
∆2

j

〉
= 2u2

j − CR. (2)

Here the MSD function has been defined as

u2
j =

〈(
u0 · R̂0

j

)2
〉

=
〈(

uj · R̂0
j

)2
〉

(3)

so that the DCF is given by

CR = 2
〈(

u0 · R̂0
j

) (
uj · R̂0

j

)〉
= 2u2

j − σ2
j . (4)

It is clear that all atoms vibrate under influence of the neighboring environment.
Taking into account the influences of the nearest atomic neighbors based on the anhar-
monic correlated Einstein model [4] the anharmonic effective interatomic potential for a
singly vibrating atom is given by (ignoring the overall constant)

Uo
eff (x) =

8∑

j=1

U
(
xR̂01 · R̂0j

)
=

1
2
ko

effx2 + ko
3x

3 , (5)

or by using the definitions y = x − a, x = r − r0, a = 〈r − r0〉 with r and r0 as the
instantaneous and equilibrium bond length of the absorber and backscatterer, respectively,
we obtain the effective local force constant for singly vibrating atom in the form

Uo
eff (y) ∼=

1
2
ko

effy2 + ko
3y

3, ko
eff = 2Dα2

(
8
3
− 2αa

)
= M0ω

02
E , ko

3 = −2Dα3, (6)

where M0 is the central atomic mass; D and α are parameters of the Morse potential
expanded to the third order about its minimum

U(x) = D
(
e−2αx − 2e−αx

) ∼= D
(
−1 + α2x2 − α3x3 + · · ·

)
, (7)

Using Eqs. (5)–(7) we obtained the Einstein frequency ω0
E and temperature θ0

E

ω0
E =

[
2Dα2

(
8
3
− 2α a

)
/M0

]1/2

, θ0
E = ~ω0

E/kB, (8)

where kB is Boltzmann constant.
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The atomic vibration is quantized as phonon, that is why we express y in terms of
annihilation and creation operators, â and â+, i. e.,

y ≡ a0

(
â + â+

)
, a2

0 =
~ω0

E

2ko
eff

, (9)

and use the harmonic oscillator state |n〉 as the eigenstate with the eigenvalue En = n~ω0
E ,

ignoring the zero-point energy for convenience.
Using the quantum statistical method, where we have used the statistical density

matrix Z and the unperturbed canonical partition function ρ0

Z = Trρ0 =
∑

n

exp
(
−nβ ~ω0

E

)
=

∞∑

n=0

zn
0 =

1
1 − z0

, β = 1/kBT, z0 = e−θ0
E /T , (10)

we determine the MSD function

u2 =
〈
y2

〉
≈ 1

Z Tr
(
ρ0y

2
)

= 1
Z

∑
n

exp
(
−nβ ~ω0

E

)
〈n| y2 |n〉

= 2a2
0 (1 − z0)

∑
n

(1 + n) zn
0 = ~ω0

E
2ko

eff

1+z0
1−z0

= 3~ω0
E

32Dα2
1+z0
1−z0

= u2
0

1+z0
1−z0

, u2
0 = 3~ω0

E
32Dα2 .

(11)

In the crystal each atom vibrates in the relation to the others so that the correlation
must be included. Based on quantum statistical theory with the correlated Einstein model
[4] the anharmonic correlated vibrating interatomic effective potential and the correlated
effective local force constant have been derived and they are given by

Ueff (y) ∼=
1
2
keffy2 + k3y

3 + · · · , keff = Dα2

(
11
3

− 15
2

α a

)
= µω2

E , k3 = −5
4
Dα3 ,

(12)
so that the derived MSRD function for bcc crystals is resulted as

σ2 (T ) =
~ωE

2keff

1 + z

1 − z
= σ2

o

1 + z

1 − z
, σ2

o =
3~ωE

22Dα2
; z = e−θE /T ; (13)

ωE =

√
keff

µ
=

[
Dα2

µ

(
11
3

− 15
2

α a

)] 1
2

; µ =
MaMs

Ma + Ms
; θE =

~ωE

kB
, (14)

where Ma and MS are the masses of absorbing and backscattering atoms; and in Eqs. (11,
13) u2

0 , σ2
0 are the zero point contributions to u2 and to σ2; ωE , θE are the correlated

Einstein frequency and temperature, respectively.
From the above results we obtained the DCF CR, the ratios CR/u2 and CR/σ2

CR =
2u2

0 (1 + z0) (1− z) − σ2
0 (1 − z0) (1 + z)

(1 − z0) (1 − z)
, (15)

CR

u2
= 2− σ2

0 (1 + z) (1 − z0)
u2

0 (1− z) (1 + z0)
, (16)

CR

σ2
=

2u2
o (1 + z) (1 − zo)− σ2

o (1 − zo) (1 + z)
σ2

o (1− zo) (1 + z)
. (17)
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It is useful to consider the high-temperature (HT) limit, where the classical approach
is applicable, and the low temperature (LT) limit, where the quantum theory must be used
[4].

In the HT limit we use the approximation

z (z0) ≈ 1 − ~ωE

(
ω0

E

)
/kB (18)

to simplify the expressions of the thermodynamic parameters. In the LT limit z (z0) ⇒ 0,
so that we can neglect z2

(
z2
0

)
and higher power terms. The results for these limits are

written in Table 1.

Table 1. Expressions of u2, σ2, CR, CR/u2, CR/σ2 in the LT and HT limits

Function T → 0 T → ∞
u2 u2

0 (1 + 2z0) 3kBT/16Dα2

σ2 σ2
0 (1 + 2z) 3kBT/11Dα2

CR 2u2
0 (1 + 2z0) − σ2

0 (1 + 2z) 9kBT/88Dα2

CR/u2 2 − σ2
0 (1 + 2z) /u2

0 (1 + 2z0) 0.54
CR/σ2 2u2

o (1 + 2zo) /σ2
o (1 + 2z) − 1 0.37

3. NUMERICAL RESULTS AND COMPARISON TO EXPERIMENT

Now we apply the expressions derived in the previous section to numerical calcula-
tions for bcc crystals Fe and W. The Morse potential parameters D and α of these crystals
have been calculated by using our procedure presented in [8]. The calculated values of
Morse potential parameters D, α, r0 , the effective local spring or force constants, the
Einstein frequency and temperature k0

eff , ω0
E , θ0

E for singly vibrating atom and those
of keff , ωE , θE for correlated vibration are presented in Table 2. They show a good
agreement of our calculated values with experiment [7]. The effective force constant, the
Einstein frequency and temperature change significantly when the correlation is included.
The calculated Morse potentials for Fe and W are illustrated in Figure 1 showing a good
agreement with experiment [7]. Figure 2 demonstrates the anharmonic correlated effective
potentials for Fe and W compared to experiment [7]. The anharmonic correlated effective
potential, the anharmonic singly atomic vibration effective potential and their harmonic
term are compared in Figure 3 showing their significant differences. Figure 4 presents
the temperature dependence of the Debye-Waller factors described by MSRD σ2 (T ) and
MSD u2 (T ). They agree well with experiment [7], contain zero-point contributions at
low temperature as a quantum effect and are linearly proportional to temperature at high
temperatures thus satisfying all their standard properties[10]. They also show that the
displacement becomes greater (σ2 > u2) especially at high temperatures when the cor-
relation is included. The temperature dependence of our calculated correlation function
(DCF) CR of Fe and W is illustrated in Figure 5 and their ratios with the MSD function
u2and with the MSRD σ2 in Figure 6. All they agree well with experiment [7]. The DCF
is linearly proportional to the temperature at high-temperatures and contain zero-point
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contributions at low-temperatures, the ratios CR/u2 and CR/σ2increase fastly at low tem-
peratures and approach constant values at high temperatures showing the same properties
of these functions obtained by the Debye model [2, 11]. Hence, they show significant cor-
relation effects contributing to the Debye-Waller factor in XAFS. Figure 5 and 6 show the
importance of correlation effects described by CR in the atomic vibration influencing on
XAFS of bcc crystals.

Fig. 1. Calculated Morse potential of Fe and
W compared to experiment [7].

Fig. 2. Calculated anharmonic correlated ef-
fective potential for Fe and W compared to
experiment [7].

Fig. 3. Comparison between calculated effec-
tive potentials for Fe and W.

Fig. 4. Calculated σ2, u2 for Fe and W com-
pared to experiment [7].
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Fig. 5. Temperature dependence of the cal-
culated DCF CR of Fe and W compared to
experiment [7].

Fig. 6. Temperature dependence of the cal-
culated ratios CR/u2 and CR/σ2 for Fe and
W compared to experiment [7].

Table 2. Calculated values of D, α, ro, ko
eff , keff , ωo

E , ωE , θo
E , θE for Fe and

W compared to experiment [7].

Crystal D(eV) α ro
ko

eff keff ωo
E ωE θo

E(K) θE(K)
(eV.Å−2) (eV.Å−2) (1013Hz) (1013Hz)

Fe, present 0.417 1.382 2.845 4.266 2.933 2.707 3.174 206.76 242.5

Fe, exp. [7] 0.420 1.380 2.831 4.266 2.933 2.707 3.174 206.76 242.5

W, present 0.992 1.412 3.035 10.548 7.252 2.346 2.751 175.77 210.1

W, exp. [7] 0.990 1.440 3.052 10.948 7.527 2.390 2.803 182.57 214.1

4. CONCLUSIONS

In this work a new procedure for studying anharmonic interatomic effective poten-
tial, effective local force constant and correlation effects in the atomic vibration of bcc
crystals in XAFS has been developed.

Derived analytical expressions for CR, u2, σ2 are linearly proportional to the temper-
ature at high-temperatures and contain zero-point contributions at low temperatures. The
displacement becomes greater when the correlation is included, especially at high temper-
atures. The ratios CR/u2 and CR/σ2 approach the constant values at high-temperatures
showing the same properties obtained by the Debye model.

This model avoids full lattice dynamical calculations yet provides a good agreement
with experiment thus denoting the simplicity and efficiency of the derived procedure for
study of anharmonic effective potential, local force constant, Debye-Waller factor and
correlation effects in XAFS theory.
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