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Abstract. A set of new ideas and concepts (which the authors treat as a new version of the theory
of hierarchic dynamic systems) are set forth in the article. In turn, the set of hierarchic principles
is put in the methodogical basis of this theory. It is shown, a peculiar version of the theory of
hierarchic waves and oscillations can be developed on the basis of proposed general theory.

I. INTRODUCTION

As it is well known, a conventional version of the theory of hierarchic dynamic systems
(see [1-5]) is most popular now. Another (new) version of the hierarchic approach has
been proposed in monographs [6-9] and papers [10-13]. When a proper set of dynamical
variables for each hierarchic level is introduced, therein, the proper variables are chosen in
such a way that the mathematical structure of the dynamic equations for every hierarchic
level (in these new variables) is the same.

Hence, essentially new basic concepts are used in the proposed version of hierarchic
theory. Further development of such theory is undertaked in this work. The main atten-
tion is given to the nonlinear wave-oscillation dynamic systems with explicitly expressed
hierarchy of periods (frequencies) of oscillations.

Let us begin with discussion of the set of hierarchic principles that are put into basis
of the theory considered. These principles [7-13] originate from relevant generalization of
totality of experimental facts and observations well known today.

II. HIERARCHIC PRINCIPLES

The five following hierarchic principles form a basis of the discussed version of hier-
archic theory, e.g. one general hierarchic principle and four particular fundamental ones.

General hierarchic principle. Everything in the Universe has the hierarchic na-
ture.

The other four principles concern the structure, general dynamic, informative, and
thermodynamic features of the hierarchic systems.
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The principle of information compression: each higher hierarchic level is al-
ways simpler than the preceding one (the concept of (algorithmic) complexity we determine
as a minimal length of corresponding algorithm describing the considered system.

The principle of hierarchic resemblance (self-modeling principle or holographic
principle): each hierarchic level in its general properties represents the system as a whole

The hierarchic analogue of the second thermodynamic principle: each
higher hierarchic level has less information entropy than the preceding one. The informa-
tion about the state of the considered dynamic system is directed from lower hierarchic
levels to higher ones, whereas the information in the form of controlling action is directed
oppositely always, i.e., the controlling information is always directed from higher to lower.

Hierarchic analogue of the third thermodynamic principle: the highest level
of a closed hierarchic system is characterized by vanishing information entropy. Using
this observation a number of methods for quantitative analysis of such systems (hierarchic
methods) were worked on successfully [7-13].

III. DYNAMIC EQUATION OF THE ZEROTH HIERARCHIC LEVEL

Then let us to set factorization (i.e., mathematical description) the above formulated
hierarchic principles. For simplicity we assume that some oscillation dynamical system
can be described by the following vector exact differential equation

dz

dt
= Z (z, t) , (1)

where z = {z1, z2, ..., zn} is some vector and Z = {Z1, Z2, ..., Zn} is the vector function in
a n−dimensional Euclidean space Rn, t∈ [0,∞] (t is the laboratory time, for example).
The initial conditions are standard:

z (t = 0) = z0. (2)

Discussing properties of the vector function Z and the initial conditions, we limit
ourselves by separation only three most characteristic situations:
the determined hierarchic system, i.e. the function Z satisfies the uniqueness of the solution
of corresponded equation and the initial conditions are given uniquely;
the stochastic hierarchic systems that are characterized by random initial conditions;
the chaotic systems with properties caused by nonlinear nature of the system and other
causes.

Then we take into account the general hierarchic principle, i.e., we assume that our
dynamic system possesses a hierarchic structure. According to the principle of hierar-
chic resemblance, each hierarchic level of the system should be described by an equation
which resembles mathematical structure. Hence, the main hierarchic problem is elabora-
tion of special procedures for hierarchic transformation of the initial equation (1) to each
level. Therein, this procedure should satisfy all requirements that follows from the above
formulated hierarchic levels.

Thus, the first step in the discussed direction is the hierarchization of the considered
system. For this we separate all oscillation periods (the evident as well as the hidden ones)
and organize their in the hierarchical manner. Or, in other words, we accept the oscillation
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periods as characteristic times for the hierarchic levels. Dividing all periods on the period
of highest level we obtain a possibility to construct the following strong hierarchic series:

ε1 << ε2 << .... << εκ << .... << εm << 1. (3)

This series we will use later as a basis for constructing the looking for procedure of
hierarchization. Namely, we use the parameters εκ as small parameters for corresponding
asymptotic expansions. But, the question arises: how to calibrate the system parameters in
the scale of the chosen small parameters εκ. We use for this the above formulated hierarchic
principles. Let us begin with the hierarchic analogy of the second and third thermodynamic
principles. One can prove the latter affirmation equivalent to the assertion that each higher
hierarchic level has less characteristic velocities of the varying of dynamic variables than
the preceding one. The affirmation that characteristic velocities of dynamical variables
varying of the highest level of the closed hierarchic system are zero is the consequence
of the fourth hierarchic principle. Using these suppositions, we formulate the general
definition of the hierarchic scale parameter of a problem εκ for the κ-th level through the
variables of this level:

εκ ∼

∣

∣

∣

∣

∣

dz(κ+1)

dt

∣

∣
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∣

/
∣

∣
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∣

∣

dz(κ)

dt

∣

∣

∣

∣

∣

<< 1, (4)

where z(κ) is the vector of the proper variables of a κ-th hierarchic level. In turn, this
gives a possibility to treat the initial dynamic equation (1) as the zero-level-equation:

dz(0)

dt
= Z(0)

(

z(0), t, ε1, ..., εm

)

, (5)

Further more , we expand the right part of the equation (5) in a power series with
respect to small parameters εκ. Because hierarchy here is expressed strongly (see (3), (4)),
we can temporarily neglect the hierarchic structure with levels higher the first one:

dz(0)

dt
= Z(0)

(

z(0), t, ε1

)

, z(0) (t0) = z(0), (6)

where ε1 << 1, in accordance the above introduced designations, is the scale parameter for
the first hierarchic level. The physical sense of the approximation is that only influences
of neighboring hierarchic levels are accounted.

This calculation situation is illustrates in Fig. 1. The illustration of the scheme
of interactions between the zeroth and other hierarchic levels of the dynamic system is
given. Taking into consideration the above-formulated supposition about accounting only
neighboring interactions only, we obtain the system where interaction is taken between
neighboring levels only. This approximation allows us to simplify calculation procedure
essentially.
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Fig. 1. Illustration of the scheme of interactions between the zeroth and other
hierarchic levels of a dynamic system.

IV. DYNAMIC EQUATION FOR HIGHER HIERARCHIC LEVELS:
STRUCTURAL AND FUNCTIONAL (DYNAMIC) OPERATORS

Now we introduce the concepts of the structural and functional (dynamic) operators
which are responsible for the structural and functional (dynamic) hierarchies correspond-

ingly. To describe structural hierarchy, one introduces structural operator M (κ)

Z(κ+1)
(

z(κ+1), t
)

= M (κ)Z(κ)
(

z(κ), t
)

, (7)

where Z(κ) is the vector function defined as the right part of relevant standard dynamic
equation (of the type (6) but for the for κ-th hierarchic level only).

Thus, the structural operator M (κ) is responsible for the hierarchic resemblance in
the discussed dynamic system. To obtain the functions Z(κ+1)

(

z(κ+1), t
)

(for the known

functions Z(κ)
(

z(κ), t
)

) various integral transformations are used. In this cycle of works
we discuss only integral operators, namely the averaging and Fourier transformations,
correspondingly.

The transformation functional (dynamic) operator Û (a function in the case of inte-
gral structural operators) describes the dynamics of connections between proper variables
of two neighboring hierarchic levels. We define the transformation functional (dynamic)
operator as

z(κ) = Û (κ+1)
(

z(κ+1), t
)

. (8)

As one can be convinced, the introduced operators (structural (7) and functional (8))
satisfy also other hierarchic principles.

Let us now discuss some characteristic features of their application for the theory of
hierarchic oscillations in electrodynamic systems. Therein, here, in this article, we will
take an interest, mainly, in the mathematical part of the problem.
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V. FORMULATION OF THE HIERARCHIC SINGLE-PARTICLE
ELECTRODYNAMIC PROBLEM

We start this section with discussion of some general features of the hierarchic version
of classical single-particle electrodynamic problems. First of all we accept that the acting
electromagnetic field can be described as the superposition of the wave and non-wave
parts, correspondingly and the latter (non-wave part) is assumed slowly varying, non-
periodic quasi-stationary and quasi-homogeneous fields. This means that arrangement of
the electric and magnetic fields acting on the charged particles can be represented in the
form:

~E =
1

2

∑

l

[

~El exp {imlpl}+ c.c.
]

+ ~E0; ~B =
1

2

∑

j

[

~Bj exp {imjpj} + c.c.
]

+ ~B0, (9)

where ~E and ~B are electric field intensity and magnetic induction field. ~El = ~El (~r, t) and
~Bj = ~Bj (~r, t) are slowly varying complex amplitudes of electric and magnetic induction

fields of partial waves (proper and stimulated); ~E0 = ~E0 (~r, t), ~B0 = ~B0 (~r, t) are slowly
varying quasi-stationary and quasi-homogeneous electric and magnetic induction fields,
and ml, mj are wave harmonic numbers (mj, ml = ±1, ±2, ...). The quantities

pq = ωqt− ~kq~r, q = j, l (10)

are phases of oscillations, ωq is the angular frequency, kq is the wave vector, t is the
laboratory time and ~r is the position vector. In the case of proper waves we have the

dispersion relations between ωq and kq

(

~kq = ~kq (ωq)
)

.

In terms of the above discussed general hierarchic theory, assigning form (10) to the

fields determines form of the chosen structural operator M (κ).
In the framework of considered theory electron, ion or plasma beams of two extreme

types (low- and high-intensity beams, respectively) could be described. The characteristic
feature of beams of the first type is that intensity of Coulomb interaction between the
charged particles is relatively low. In fact, such beams are just streams of nearly inde-
pendent drifting charged particles. Hence, we have a possibility to study of a separate
particle interaction with the fields. The single-particle theory of motion of charged parti-
cles in electromagnetic fields is a result of such study. In turn, the single-particle problem
is the main point of this theory. The particular case of the multi-particle problem can be
realized here by simply summing up all separate single-particle interactions.

In contrast, the particle-particle Coulomb interactions can be rather intense in the
high-intensity beams. At sufficiently high densities the beams show a collective behavior
and they treated as a quasi-continuous flow of drifting charged (or quasi-neutral) plasmas.
Hence, in this case the charged particle beam should be regarded as a whole electrodynamic
object.

It is obvious that owing to the above-discussed differences of the beams of both types
the mathematical descriptions of these objects should also be different. Thus, beam’s
motion of the first type (rarified plasma beams) can be considered as the motion of aggre-
gate of individual particles (Lagrange formalism). In this case, the beam motion can be
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described by the single-particle equations in the Hamiltonian form:

dHα

dt
=
∂Hα

∂t
;

d ~Pα

dt
= −

∂Hα

∂t
;

d~r

dt
=
∂Hα

∂ ~Pα

, (11)

or by the Lorenz equation:

d~βα

dt
=

qα

mαγαc

{

~E +
[

~βα
~B
]

− ~βα

(

~βα
~E
)}

. (12)

Here: Hα =

√

m2
αc

4 + c2
(

~Pα − qα

c
~A
)

+ qαϕ is the Hamiltonian of a charged particle

of type α; qα is its charge (qα = −e for electron and qα = +Ze for an ion, e is electron

charge, Z is charge number of the ion), mα is the rest mass of particle of sort α; ~A is

vector potential and ϕ is scalar potential of the electromagnetic fields [4]; ~βα = ~vα/c is
the non-dimension particle velocity, (here ~vαis the velocity, cis light velocity in vacuum)
~Pα is the canonical momentum, ~rα is the position vector of particle α; γα =

(

1 − β2
α

)

−1/2

is the relativistic factor (here βα =
∣

∣

∣

~βα

∣

∣

∣
).

The hierarchic part of the problem consists of two main stages. The first stage is the
reducing of the equations (11) or (12) to one of so-called standard forms. The second one
is the asymptotic integration of the standard equations. Here we accept such hierarchic
standard form as the system with fast rotating phases:

dx

dt
= X (x, ψ1, ..., ψκ, ..., ψm, ξ1, ..., ξm) ;

dψ1

dt
= ξ1ω1 (x) + Y1 (x, ψ1, ..., ψκ, ..., ψm, ξ1, ..., ξm) ;

. . . . . . . . .

dψm

dt
= ξmωm (x) + Ym (x, ψ1, ..., ψκ, ..., ψm, ξ1, ..., ξm) ,

(13)

where scale parameters ξκ = 1/εκ are the relevant terms of the strong hierarchic series
(see for comparison (3)):

ξ1 >> ξ2 >> ... >> ξκ >> ... >> ξm >> 1, (14)

and x is the vector whose components are slowly varying variables only, ψκ are partial vec-
tors of different hierarchy of the vector of fast rotation (revolving) phases ψ, ωκ are slowly
varying part of velocity vector of fast rotating phases, Yκ are relevant vector functions, κ
is hierarchic level number, and m is the number of the highest hierarchic level.

Within context of the definition (4), large hierarchic parameters ξκ in (13), (14) can
be determined as

ξκ ∼

∣

∣

∣

∣

dψκl

dt

∣

∣

∣

∣

/
∣

∣

∣

∣

dxq

dt

∣

∣

∣

∣

, (15)

where ψκl is l-th component of vector ψκ and xq is q-th component of vector x. Here we
consider the rate of variation of xq not exceeding rates of variations of other slow variables
and the component ψκl is the ”slowest” of other fast components of the vector ψκ. Thus,
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with general definition of hierarchic scale parameter (4) we affirm that variables ψκl (in
the case κ = 1) and xq represent two neighboring different hierarchic levels.

VI. CLASSIFICATION OF OSCILLATORY PHASES AND
RESONANCES. HIERARCHIC TREE

Accordingly with the general principles of the hierarchic approach we should reduce
initial systems (11) or (12) to the standard form (13). Therefore, the first step consists in
determining all elements of “slow vector” x and “fast phase vector” ψ in (13). In other
words, it consists in classifying total set of variables of systems (11) and (12) as slow and
fast ones, respectively.

The Hamiltonian H and variables ~P , ~β (or ~v = ~βc) and ~r, as a rule, might be
considered as slow variables. In contrast, classification of the Lagrange phases of particle
oscillations is more complicated. In this case, we should separately find the set of phases
forming component basis of vectors Φ and x. Besides that, we must divide rotating phases
of particle oscillations into those associated with explicit and hidden periods of oscillation.
The phases of the first group are related with phases of the particle oscillations in the
wave-type fields. The periodicity of these fields is responsible for the periodic character of
electron motion with respect to the same wave phases (10)

pq = ωqt− ~kq~r. (16)

The second case is much more complicated. It can be associated with phases of
periodic particle motion in non-periodical quasi-stationary intrinsic beam fields, exter-
nal focusing and beam-forming fields, etc. The procedure separating hidden periods of
arbitrary functions is known in mathematics [6-8, 14-22]. There are also semi-empirical
approaches based on qualitative peculiarities of a studied physical picture [6-8].

Analyzing the rates of particle phase varying we find that their total set involves both
types of phases: slow components of vector x and fast components of vector ψ. Moreover,
some nonlinear combinations of two, three or more Lagrange fast phases produce slowly
varying functions. Each slow phase resulting from this ”combination” action (m-fold, in
general case) corresponds to some physical mechanism of particle resonance. We distin-
guish quasi-linear and parametric resonance. Quasi-linear resonances are characterized by
two-phase (or m-phase, in general case) combinations where one of phases only is associ-
ated with explicit period of the system. The magnitude of stimulated wave force acting
on the particle is always linearly dependent on wave field amplitude in the lowest order
in some small parameter. Therefore, these resonances are quasi-linear ones. Examples:
cyclotron resonance, various types of synchrotron resonances, etc.

Parametric one-particle resonances correspond to cases when all phases forming slow
phase combination are of wave nature. For instance, parametric resonances of third-,
fourth-, and higher orders [6-8] can realize in free electron lasers (FELs), in parametric
electronic devices (Adler’s lamp, parametric electron-wave lamps), etc. [6-8]. In gen-
eral, slow θνg and fast ψνg combined phases of coupled-pair parametric or quasi-linear
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resonances can be defined as

θνg =
mνnν

mgng

pν − σνgpg;

ψνg =
mνnν

mgng

pν + σνgpg.
(17)

where σνg = ±1 are sign functions, mν and mg are numbers of wave field harmonics, and
nν and ng are numbers of electron oscillation harmonics in these fields. Hence, the lowest
order of relevant amplitudes of stimulated waves in the case of parametric resonances is
quadratic. Therefore, we classify parametric resonances as nonlinear ones.

According to the above discussed hierarchic principles we define components of the
scale parameter tensor according to reciprocal rate of varying of fast to slow combined
phases (17)

ξνgrk ∼

∣

∣

∣

∣

dψνg

dt
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∣
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/
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∣

∣

dθνg

dt

∣

∣

∣

∣

>> 1. (18)

It means that slow θνg and fast ψνg combined phases are variables of different hier-
archic levels. Therein, we assume the rates of change of velocities are of the same order
(in magnitude) as rates of velocities of other slow variables (see (15)). Condition (18) is
one of key relationships of the proposed theory of hierarchic wave and oscillations. It has
the physical meaning of generalized hierarchic resonances in the system. Indeed, here the
main resonances as well as the resonances on harmonics are taken into account.

Then we analogously take into account the non-resonant phases of oscillations. The
only difference is that instead of slow and fast combined phases we choose ordinary slow and
fast phases. On the next stage of calculation, we construct hierarchic series of components
of both tensors of scale parameters in the form (14). Hierarchic series (14) are the essential
point of the theory called the theory of hierarchic oscillations. In its physical nature
this series follows from the above-accepted assumption on influences between neighboring
hierarchic levels only (see Fig. 1 and corresponding comments).

Relevant hierarchic trees can be constructed for the discussed oscillatory hierarchic
systems. For the sake of simplicity we consider that only simple (two-fold) resonances
can be realized in the system. Or, in other words, that each two structural elements
(fast phases) of lower hierarchic level form one structural element (slow phase) of the next
higher level. Therefore, phase-resonant hierarchic tree can be constructed (Fig. 2).

Then, we discuss the hierarchic tree (9), from point of view of the above-formulated
hierarchic principles. We see that a few “κ-level phases” (they are two phases only in this
particular case) forms each combined phase of the next (κ+ 1)-level. This means that
the higher hierarchic level the less number of oscillative phases are. The latter can be
considered as obvious illustration of the compression hierarchic principle.

The hierarchic resemblance principle holds due to specific mathematical construction
of equations for each hierarchic level. As it is noted above, all these equations are similar.
At that, characteristic velocities of changing of variables of different levels are higher the
lesser number of hierarchic level is. It is readily seen that any oscillations are not on the
highest hierarchic level: θm = const, dθm/dt = 0 , κ = m. It means that on the highest
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Fig. 2. The simplest case of hierarchic tree consisting of rotating (revolving)
charged particle phases. Here: κ is hierarchic number of the level, ψκl and θκl are
rotating phases with rate of rotation velocities of different hierarchic order (they
are shown by dark small circles), m is the highest hierarchic level.

hierarchic level information entropy is equal zero. Hence, hierarchic analogy with the third
thermodynamic principle takes place here, too, and so forth.

The main idea therein consists in reducing corresponding nonlinear equations with
partial derivatives (using, for instance, the concept of characteristics or some other similar)
and then to use the above described single-particle algorithms. In detail calculation tech-
nologies of such a kind are described in the monographs [6-8]. Corresponding examples
are given also in other our articles of this series.
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