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Abstract. In this paper, we consider squark decays into charginos and neutralinos with
complex parameters. The one loop vertex correction to the decay width has been calculated.
The numerical results are also perfomed.

I. INTRODUCTION

The minimal supersymmetric standard model (MSSM) is one of the most promising
extensions of the Standard Model. The MSSM predicts the existence of scalar partners to
all known quarks and leptons. Each fermion has two spin zero partners called sfermions
f̃L and f̃R, one for each chirality eigenstate: the mixing between f̃L and f̃R is proportional
to the corresponding fermion mass, and so negligible except for the third generation. In
particular, this model allows for the possibility that one of the scalar partners of the top
quark (t̃1) is higher than other scalar quarks and also than the top quark [1].

As well known, CP violation arises naturally in the third generation Standard Model
and can appear only through the phase in the CKM-matrix. In the MSSM with complex
parameters additional complex couplings are possible leading to CP violation within one
generation at one-loop level [2, 3]. Very recently, Higgs boson in the MSSM with explicit
CP violation is studied [4] and CP violation as a probe of flavor origins in supersymmetry
is discussed [5].

In this paper we study the decays of squarks into charginos and neutralinos in the
MSSM with complex parameters.

II. DIAGONALIZATION OF MASS MATRICES

We neglect generation missing as pointed out in Refs. [6, 7] only three terms in the
supersymmetric Lagrangian can give rise to CP violating phases which cannot be rotated
away: The superpotential contains a complex coefficient µ in the term bilinear in the Higgs
superfields. The soft supersymmetry breaking operators introduce two further complex
terms, the gaugino mass M̃ , and the left- and right-handed squark mixing term Aq. In
the MSSM one has two types of scalar quarks (squarks), q̃L and q̃R , corresponding to the
left and right helicity states of a quark.

The mass matrix in the basis (q̃L, q̃R) is given by[1]

M2
q =

(
m2

q̃L
aqmq

aqmq m2
q̃R

)
= (Rq̃)+

(
m2

q̃1
0

0 m2
q̃2

)
(Rq̃) (1)
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with

m2
q̃L

= M2
q̃ + m2

Z cos 2β(Iq
3L − eqs

2
w) + m2

q , (2)

m2
q̃R

= M2
{ũ,D̃} + eqm

2
Z cos 2βs2

w + m2
q, (3)

aq = Aq − µ{ cos β, tanβ} (4)

for { up, down} type squarks, respectively. eq and Iq
3L are the electric charge and the third

component of the weak isospin of the squark q̃, and mq is the mass of the partner quark.
Mq̃, Mũ and MD̃ are soft SUSY breaking masses, and Aq are trilinear couplings.

According to eq. (1) M2
q̃ is diagonalized by a unitary matrix Rq̃. The weak eigen-

states q̃1 and q̃2 are thus related to their mass eigenstates q̃L and q̃R by

(
q̃1

q̃2

)
= Rq̃

(
q̃L

q̃R

)
, (5)

Rq̃ =

(
e

i
2
φq̃ cos θq̃ e−

i
2
φq̃ sin θq̃

−e
i
2
φq̃ sin θq̃ e−

i
2
φq̃ cos θq̃

)
(6)

with θq̃ is the squark mixing angle and φq̃ = arg(Aq). The mass eigenvalues are given by

m2
q̃1,2

=
1
2

(
m2

q̃L
+ m2

q̃R
∓
√(

m2
q̃L

− m2
q̃R

)2
+ 4 |aq|2 m2

q

)
(7)

By convention, we choose q̃1 to be the lighter mass eigenstate. For the mixing angle
θq̃ we require 0 ≤ θq̃ ≤ π. We thus have

cos θq̃ =
− |aq|mq√(

m2
q̃L

− m2
q̃1

)2
+ a2

qm
2
q

, sin θq̃ =
m2

q̃L
− m2

q̃1√(
m2

q̃L
− m2

q̃1

)2
+ a2

qm
2
q

(8)

III. TREE LEVEL RESULT AND VERTEX CORRECTIONS

Our terminology and notation are as in Ref. [8].

The tree-level amplitude for decay q̃i → q′χ̃±
j is ( see Fig. 1)
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Fig. 1. Feynman diagrams for the O(αs) SUSY-QCD correction to squark decay into charginos
and neutralinos: (a) tree level; (b), (c) vertex corrections.

M0
(
q̃i → q′χ̃±

j

)
= igū(k2)

[
kq̃

ijPL + lq̃ijPR

]
v(k3) (9)

The decay width at tree-level is thus given by

Γ0
(
q̃i → q′χ̃±

j

)
=

g2k

(
m2

q̃i
, m2

q′, m
2
χ̃±

j

)

16πm3
q̃i

×
{[∣∣∣kq̃

ij

∣∣∣
2
+
∣∣∣lq̃ij
∣∣∣
2
]

X − 2
[
kq̃+

ij lq̃ij + kq̃
ijl

q̃+
ij

]
mq′mχ̃±

j

} (10)

with X = m2
q̃i
− m2

q′ − m2
χ̃±

j

Analogously, we get for squark decays into neutralinos

M0
(
q̃i → qχ̃0

j

)
= igū(k2)

[
bq̃
ijPL + aq̃

ijPR

]
v(k3) (11)
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Γ0
(
q̃i → qχ̃0

j

)
=

g2k

(
m2

q̃i
, m2

q, m
2
χ̃0

j

)

16πm3
q̃i

×
{[∣∣∣bq̃

ij

∣∣∣
2
+
∣∣∣aq̃

ij

∣∣∣
2
]

X̂ − 2
[
b
q̃+
ij a

q̃
ij + b

q̃
ija

q̃+
ij

]
mqmχ̃0

j

} (12)

with X̂ = m2
q̃i
− m2

q − m2
χ̃0

j

The vertex correction terms from the four diagrams are shown in Figs. 1b-e. The
gluon vertex correction (Fig. 1. b) yields

δΓ1 =
g2kε

16πm3
q̃i

1
2

{
1
2
X
[
|lq̃ij|

2
+ |kq̃

ij |
2
]
− mq′mχ̃±

[
lq̃ijk

q̃+

ij + kq̃
ijl

q̃+

ij

]
mq′mχ̃0

j

}
(B0 + B+

0 )

+

[(
−2m2

q′m
2
χ̃± + 3m2

q′
X

2

)[
|lq̃ij |

2 + |kq̃
ij|

2
]

−mq′mχ̃±(3m2
q′ + X)

[
lq̃ijk

q̃+

ij + kq̃
ijl

q̃+

ij

]]
(C11 + C+

11)

+

[(
X2

2
+ m2q̃′m2

χ̃±

)[
|lq̃ij|

2 + |kq̃
ij |

2
]

−mq̃′mχ̃±

(
2m2

χ̃± +
3
2
X
)[

lq̃ijk
q̃+

ij + kq̃
ijl

q̃+

ij

]]
(C12 + C+

12)

+
[(

X2 − 2m2
q′m

2
χ̃± + Xm2

q′
)][

|lq̃ij |
2 + |kq̃

ij|
2
]

−mq′mχ̃±(2m2
q′ + X)

[
lq̃ijk

q̃±

ij + kq̃
ijl

q̃±

ij

]](
C0 + C+

0

)
}

+
g2kε

16πm3
q̃i

1
2

{
X

2
m2

q′
[
|lq̃ij|

2 + |kq̃
ij |

2
]
− m3

q′mχ̃±

[
lq̃ijk

q̃+

ij + kq̃
ijl

q̃+

ij

](
iC11 − iC+

11

)

+
[
m2

q′m
2
χ̃±
[
|lq̃ij|

2 + |kq̃
ij |

2
]
− mq′mχ̃±

X

2
[
l
q̃
ijk

q̃+

ij + k
q̃
ijl

q̃+

ij

]]
(iC12 − iC+

12)

+
[
m2

q′
(
X + 2m2

χ̃±
)[
|lq̃ij |

2 + |kq̃
ij |

2
]

−mq′mχ̃±(2m2
q′ + X)

[
lq̃ijk

q̃+

ij + kq̃
ijl

q̃+

ij

]]
(iC12 − iC+

12)

}
(13)

where ε = −αs

3π
The contribution due to the graph of Fig. 1c with a gluino and a squark q̃′n (n=1, 2)



SQUARK DECAYS INTO CHARGINOS AND NEUTRALINOS ... 27

in the loop is:

δΓ2 =
g2kε

16πm3
q̃

{[
iX

2
Cµ

µ +
(X

2
m2

q′ + m2
q′m

2
X̃±

)
.iC11 +

(X2

2
+

X2

2
m2

X̃± − m2
q′m

2
X̃±

)]

× αLRkq̃′

njl
q̃+

nj + αLRlq̃
′

njk
q̃+

nj ]

+
[
− iX

2
Cµ

µ −
(

X

2
m2

q′ + m2
q′m

2
χ̃±

)
.iC+

11 −
(

X2

2
+

X

2
m2

χ̃± − m2
q′m

2
χ̃±

)
.iC+

12

]

× [α+
LRkq̃′+

nj lq̃nj + α+
LRlq̃

′+
nj kq̃

nj ]

− mq′mχ̃±

[
iCµ

µ +
(

m2
q′ +

X

2

)
.iC11 +

(
X

2
+ m2

χ̃±

)
.iC12

] [
αLRkq̃′

njl
q̃+

ij + αRLlq̃
′

njk
q̃+

ij

]

−mq′mχ̃±

[
−iCµ+

µ −
(

m2
q′ +

X

2

)
.iC+

11 −
(

X

2
+ m2

χ̃±

)
.iC+

12

] [
α+

LRkq̃′+
nj lq̃ij + α+

RLlq̃
′+

nj kq̃
ij

]}

+
g2kε

16πm3
q̃i

{
−mq′mq

X

2

[
α+

RLkq̃′+
nj lq̃ijC

+
11 + α+

LRlq̃
′+

nj kq̃
ijC

+
11 + αRLkq̃′

njl
q̃+
ij C11 + αLRlq̃

′

njk
q̃+
ij C11

]

− mq′mqmχ̃±

[
α+

RLkq̃′+
nj lq̃ijC

+
12 + α+

LRlq̃
′+

nj kq̃
ijC

+
12 + αRLkq̃′

njl
q̃+
ij C12 + αLRlq̃

′

njk
q̃+
ij C12

]

+ m2
q′mqmχ̃±

[
α+

RLkq̃′+
nj kq̃

ijC
+
11 + α+

LRlq̃
′+

nj lq̃ijC
+
11 + αRLkq̃′

njl
q̃+
ij C11 + α+

LRlq̃
′

nj l
q̃+
ij C11

]

+
X

2
mqmχ̃±

[
α+

RLkq̃′+
nj kq̃

ijC
+
12 + α+

LRlq̃
′+

nj lq̃ijC
+
12 + αRLkq̃′

njk
q̃+
ij C12 + αLRlq̃

′

njl
q̃+
ij C12

]}

+
g2kε

16πm3
q̃i

{
mq′mq

X

2

[
α+

RRk
q̃′+
nj l

q̃
ijC

+
11 + α+

LLl
q̃′+
nj k

q̃
ijC

+
11 + αRRk

q̃′

nj l
q̃+
ij C11 + αLLl

q̃′

njk
q̃+
ij C11

]

+ mq′mg̃mχ̃±

[
α+

RRkq̃′+
nj lq̃ijC

+
12 + α+

LLlq̃
′+

nj kq̃
ijC

+
12 + αRRkq̃′

njl
q̃+
ij C12 + α+

LLlq̃
′

njk
q̃+
ij C12

]

+ m2
q′mg̃

(
X

2
+ m2

χ̃±

)[
α+

RRkq̃′+
nj lq̃ijC

+
0 + α+

LLlq̃
′+

nj kq̃
ijC

+
0 + αRRkq̃′

njl
q̃+
ij C0 + α+

LLlq̃
′

njk
q̃+
ij C0

]

− m2
q̃′mg̃mχ̃±

[
α+

RRkq̃′+
nj kq̃

ijC
+
11 + α+

LLlq̃
′+

nj lq̃ijC
+
11 + αRRkq̃′

njk
q̃+
ij C11 + α+

LLlq̃
′

njl
q̃+
ij C11

]

− X

2
mg̃mχ̃±

[
α+

RRkq̃′+
nj kq̃

ijC
+
12 + α+

LLlq̃
′+

nj lq̃ijC
+
12 + αRRkq̃′

njk
q̃+
ij C12 + α+

LLlq̃
′

njl
q̃+
ij C12

]

−
(

m2
q′ +

X

2

)
mg̃mx̃±

[
α+

RRkq̃′+
nj kq̃

ijC
+
0 + α+

LLlq̃
′+

nj lq̃ijC
+
0 + αRRkq̃′

njk
q̃+
ij C0 + αLLlq̃

′

nj l
q̃+
ij C0

]}

+
g2kε

16πm3
q̃i

{
mq′mg̃

X

2

[
−α+

LLkq̃′+
nj lq̃ijiC

+
0 − α+

RRlq̃
′+

nj kq̃′

ij iC0 + αLLkq̃′

njl
q̃′+
ij iC0 + αRRlq̃

′

njk
q̃′+
nj iC0

]

− mq′mg̃mqmχ̃±

[
−α+

LLkq̃′+
nj kq̃

ijiC
+
0 − α+

RRlq̃
′+

nj lq̃ijiC
+
0 + αLLkq̃′

njk
q̃+
ij iC0 + α+

RRlq̃
′

njl
q̃+
ij iC0

]

(14)

The total vertex correction is given by

δΓ(v) = δΓ1 + δΓ2 (15)
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III. NUMERICAL RESULTS AND DISCUSSION

Let us now turn to the numerial analysis. Masses and couplings of charginos and
neutralinos depend on the parameters M , µ and tan β (M ′ = 5

3Mtan2θw) For the stop
sector we use mt̃1

, mt̃2
, cos θt̃, µ and tanβ as input values. The sbottom masses and

mixing angle are fixed by the assumptions MD̃ = 1.12Mq̃(t̃) and Ab = At.
We first discuss the decay t̃1 → bχ̃+

1 . In order to study the dependence of the ratio
of the two decay widths ΓR and ΓC on cos φq̃ (for simplicity of notation we abbreviate φq̃

by φq̃ , ΓR and ΓC are corresponding to real and complex parameters, respectively), we
have chosen three sets of M and µ values:

M � |µ| ( M = 163 Gev, µ = 500 Gev) ; M ≈ |µ| (M = µ = 219 Gev) ; M � |µ|
(M = 500 Gev, µ = 163 Gev)

For this purpose, we have computed:

ΓR

ΓC
=

15430
16603− 1173 cosφ

;
δΓR

δΓC
=

6964
7494− 530 cosφ − 1149 sinφ

(16)

for M = 163 Gev, µ = 500 Gev

ΓR

ΓC
=

294
2301− 2007 cosφ

;
δΓR

δΓC
=

1328
10386− 9058 cosφ − 295430 sinφ

(17)

for M = µ = 219 Gev

ΓR

ΓC
=

6481
10474− 3993 cosφ

;
δΓR

δΓC
=

29254
47278− 18024 cosφ − 152320 sinφ

(18)

for M = 500 Gev, µ = 163 Gev
Fig. 2 shows the cosφ dependence of the ratio ΓR/ΓC . It is interesting to note that

the ratio increases quickly with increasing cosφ for M � µ while the ratio varies only little
for M � µ.

The ratio δΓR/δΓC of this decay are shown in Fig. 3 as a function of φ. As can
be seen, the ratio decreases quickly with increasing φ near the threshold for M � µ or
M = µ while it varies only little for M � µ.

From these results, we conclude that CP violation in the case of M � µ is expected
to be large according to the MSSM. This is again in sharp constrary with the case of
M � µ in which CP violation is vanishingly small.

For the decay b̃1 → tχ̃−
1 , we obtain

ΓR

ΓC
=

2593
2651− 58 cosφ

;
δΓR

δΓC
=

−221
−226 + 5 cosφ − 89 sinφ

(19)

for M = 163 Gev, µ = 500 Gev

ΓR

ΓC
=

3555
3608− 53 cosφ

;
δΓR

δΓC
=

−304
−309 + 5 cosφ + 67 sinφ

(20)
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for M = µ = 219 Gev

ΓR

ΓC
=

7282
7374− 92 cosφ

;
δΓR

δΓC
=

−622
−630 + 8 cosφ + 164 sinφ

(21)

for M = 500 Gev, µ = 163 Gev

Fig. 2 Fig. 3

Fig. 4 Fig. 5

The dependences of ΓR/ΓC on cosφ and δΓR/δΓC on φ are shown in Fig. 4 and
Fig. 5. The dependences are similar to those of t̃1 → bχ̃+

1 .

For the decay b̃2 → tχ̃−
1 and t̃2 → bχ̃+

1 , the dependences of ΓR/ΓC on cosφ are
shown in Fig. 6 and Fig. 7. However, these dependences in the case of sbottom decay are
weaker than those in the case of stop decay. Therefore, CP violation in the sbottom decay
is to be weak[9].



30 NGUYEN CHINH CUONG AND HA HUY BANG

Fig. 6 Fig. 7
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