GENERALIZED q-DEFORMATION OF VIRASORO ALGEBRA

LUU THI KIM THANH
Hanoi Pedagogical University No. 2

Abstract

We find an extension of the q-deformed Virasoro algebra. This deformation includes on an equal footing the usual q-deformed oscillators and the "quons" of infinite statistics. Various representations of Virasoro algebra, both differential and oscillator representation, are considered. A new realization of the generalized q-deformed centerless Virasoro algebra is constructed by introducing a so-called power raising operator.

I. INTRODUCTION

Virasoro algebra plays a crucial role in string theory $[1,2]$ of elementary particles, which has attracted a great deal of interest over the last decades. This algebra may be viewed as infinite-dimensional conformal algebra [3] and is closely related to the Korteweg-de Vries (KdV) equation. In particular the q-Virasoro algebra generates the sympletic structure which can be used for a description of the discretization of the KdV equation $[4,5]$.

In this paper we would like to consider a version of generalized q-deformation of Virasoro algebra. This generalization includes on an equal footing the usual q-deformed oscillator [6] and the "quons" of infinite statistics [7]. The aim of this paper is to consider a new realization of centerless Virasoro algebra, as well as its super-extension. In Sec. II we consider the various representations of Virasoro algebra, both differential and oscillator reprsentation. In Sec. 3 we associated generalized q-deformation of Virasoro algebra. A new realization of generalized q-deformed centreless Virasoro algebra is constructed by introducing a so-called power raising operator.

II. REALIZATION OF CENTRELESS VIRASORO ALGEBRA [2, 4, 5]:

The centreless Virasoro algebra consists of generators $L_{n}, n \in z$, satisfying the commutation relation:

$$
\begin{equation*}
\left[L_{n}, L_{m}\right]=(n-m) L_{n+m} . \tag{1}
\end{equation*}
$$

The simplest differential realization of this algebra is to identify:

$$
\begin{equation*}
L_{n} \equiv x^{-n+1} \frac{\partial}{\partial x} . \tag{2}
\end{equation*}
$$

Indeed, the equation (1) can be verified straightforwardly, using the commutation relation

$$
\begin{equation*}
\left[x, \frac{\partial}{\partial x}\right]=-1 \tag{3}
\end{equation*}
$$

It can also be shown that instead of (2) one can use the more general expression for L_{n} :

$$
\begin{equation*}
L_{n}=\left(x \frac{\partial}{\partial x}+c_{1} n+c_{2}\right) x^{-n} \tag{4}
\end{equation*}
$$

where c_{1} and c_{2} are arbitrary constants. The expression (2) corresponds to the value $c_{1}=c_{2}=0$.

The super-Virasoro algebra consists of the generators L_{n} and G_{r}, satisfying the commutation relations:

$$
\begin{align*}
{\left[L_{n}, L_{m}\right] } & =(n-m) L_{n+m} \\
{\left[L_{n}, G_{r}\right] } & =\left(\frac{1}{2} n-1\right) G_{n+r} \tag{5}\\
{\left[G_{r}, G_{s}\right] } & =2 L_{r+s}
\end{align*}
$$

where $r \in z+\frac{1}{2}$ for Neuveu-Schwarz sector, and $r \in z$ for Ramond sector.
Let θ be Grassmann variable with

$$
\begin{equation*}
\theta^{2}=0, \quad \frac{\partial^{2}}{\partial \theta^{2}}=0, \quad\left\{\theta, \frac{\partial}{\partial \theta}\right\}=1 \tag{6}
\end{equation*}
$$

Then it can be checked in direct manner that the operators

$$
\begin{align*}
L_{n} & \equiv\left(x \frac{\partial}{\partial x}+n-\frac{1}{2} n \theta \frac{\partial}{\partial \theta}\right) x^{-n} \\
G_{r} & \equiv\left\{\theta\left(x \frac{\partial}{\partial x}+r\right)+\frac{\partial}{\partial \theta}\right\} x^{-r} \tag{7}
\end{align*}
$$

realize the superagebra (5).
In the (undeformed) oscillator, formalism the oscillator a and its hermitian conjugate a^{+}obey the commutatin relation:

$$
\begin{equation*}
\left[a, a^{+}\right]=1 \tag{8}
\end{equation*}
$$

Then the generators

$$
\begin{equation*}
L_{n} \equiv\left(a^{+}\right)^{-n+1} a \tag{9}
\end{equation*}
$$

realize the Virasoro algebra (1).
Instead of (9) we can also use a more general expression for L_{n}, namely:

$$
\begin{equation*}
L_{n}=\left(a^{+}\right)^{-n}\left(a^{+} a+c_{1} n+c_{2}\right) \tag{10}
\end{equation*}
$$

For the realization of super-Virasoro algebra, in addition to the bosonic oscillators a and a^{+}, fermionic oscillators b and b^{+}with the anticommutators

$$
\begin{equation*}
\left\{b, b^{+}\right\}=1 ; \quad b^{2}=b^{+2}=0 \tag{11}
\end{equation*}
$$

are introduced.
Now it can be checked that the generators

$$
\begin{align*}
& L_{n} \equiv\left(a^{+}\right)^{-n+1} a-\frac{n}{2} b^{+} b\left(a^{+}\right)^{-n} \tag{12}\\
& G_{r} \equiv b^{+}\left(a^{+}\right)^{-r+1} a+b\left(a^{+}\right)^{-r}
\end{align*}
$$

form the superalgebra (5).

Finally, another version of realizing the Virasoro algebra is constructed on basis (a, M) with the commutator

$$
\begin{equation*}
[M, a]=-a^{2} \tag{13}
\end{equation*}
$$

Note that the operator M acts as power raising operator. From (13) it is easy to prove that

$$
\begin{equation*}
[M, a]=-n a^{n+1} \tag{14}
\end{equation*}
$$

for arbitrary n.
The Virasoro generators can be now identified with

$$
\begin{equation*}
L_{n} \equiv M a^{n-1} \tag{15}
\end{equation*}
$$

To extend the formalism to super-Virasoro algebra, we introduce also the fermionic oscillators b, b^{+}satisfying (11) and

$$
\begin{equation*}
[M, b]=\left[M, b^{+}\right]=0 . \tag{16}
\end{equation*}
$$

With the basis (a, b, M) we can construct the supergenerators as follows:

$$
\begin{align*}
L_{n} & =M a^{n-1}+\frac{n}{2} b^{+} b a^{n} \tag{17}\\
G_{r} & =M a^{r-1} b+a^{r} b
\end{align*}
$$

III. REPRESENTATION OF GENERALIZED q-DEFORMED VIRASORO ALGEBRA

Consider now the generalized q-deformed Virasoro algebra based on the generalized q-oscillator algebra [8], with oscillator a and a^{+}obey the commutation relation:

$$
\begin{equation*}
a a^{+}-q a^{+} a=q^{c N} \tag{18}
\end{equation*}
$$

The usual q-deformatiom

$$
\begin{equation*}
a a^{+}-q a^{+} a=q^{-N}, \tag{19}
\end{equation*}
$$

corresponds to the value $c=-1$, and the "infinite statistics"

$$
\begin{equation*}
a a^{+}=1 \tag{20}
\end{equation*}
$$

corresponds to $c=0, q=0$.
In this section we propose a version of quantum deformation of Virasoro algebra in the framework of power raising formalism described in the previous section.

Instead of (13) we now assume that

$$
\begin{equation*}
[M, a]_{\left(q^{c}, q\right)}=-a^{2} \tag{21}
\end{equation*}
$$

Here we use the notation:

$$
\begin{equation*}
[A, B]_{(\alpha, \beta)} \equiv \alpha A B-\beta B A \tag{22}
\end{equation*}
$$

From (18) it is easy to prove that

$$
\begin{equation*}
\left[M, a^{n}\right]_{\left(q^{n c}, q^{n}\right)}=-[n]_{q}^{(c)} a^{n+1} \tag{23}
\end{equation*}
$$

for arbitrary n, where the general notation

$$
\begin{equation*}
[x]_{q}^{(c)}=\frac{q^{x}-q^{c x}}{q-q^{c}} \tag{24}
\end{equation*}
$$

is used.
Now we can show that the expression (15) of L_{n} satisfies the following generalized q-deformation of Virasoro algebra:

$$
\begin{equation*}
\left[L_{n}, L_{m}\right]_{q^{n-m}, q^{c(n-m)}}=[n-m]_{q}^{(c)} L_{n+m} . \tag{25}
\end{equation*}
$$

From these we reconver the result:

$$
\begin{align*}
{\left[M, a^{n}\right]_{\left(q^{-n}, q^{n}\right)} } & =-[n]_{q} a^{n+1} \tag{26}\\
{\left[L_{n}, L_{m}\right]_{\left.q^{n-m}, q m-n\right)} } & =[n-m]_{q} L_{n+m} \tag{27}
\end{align*}
$$

for usual q-deformation of Virasoro algebra.
When $c=-1$, in the limit of "infinite statistics", $c=0, q=0$, we have:

$$
\begin{align*}
M & =-a \\
L_{n} L_{m} & =L_{n+m} \tag{28}
\end{align*}
$$

ACKNOWLEDGMENTS

We would like to thank Prof. Dao Vong Duc for helpful discussions and valuable comments.

REFERENCES

[1] M. Chaichian, P. P. Kulish and J. Lukierski, Phys. Lett. B 237 (1990) 401.
[2] N. Aizawa and H. Sato, Phys. Lett. B 256 (1991) 185.
[3] A. Jannussis, G. Brodimas and R. Mignanit, J. Phys. A: Math. Gen. 24 (1991)
[4] M. Chaichian, Z. Popowicz, P.Presnajder, Phys. Lett. B 249 (1990) 63.
[5] T. L. Curtwright and C. K. Zachos, Phys. Lett. B 243 (1990) 237.
[6] A. J. Macflance, J. Phys. A 22 (1989) 4581.
[7] M. Jimbo, Intern. J. Mod. Phys. 4 (1989) 3759.
[8] Dao Vong Duc, Enslapp. A-494/94

