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ELECTRON SPIN EVOLUTION INDUCED BY HYPERFINE
INTERACTION WITH NUCLEAR SPINS

IN A 2D QUANTUM DOT

DAI VAN TRUONG AND NGUYEN VIET HUNG
Institute of Physics and Electronics, VAST

Abstract. We study the electron spin dynamics in 2D - quantum dots due to the hyperfine
interaction with surrounding nuclear spins. The study shows that electron spin dynamics depends
strongly on the initial state and polarization of the nuclear spin system. Obtained results has shown
that electron spin dynamics is reproducible with initial randomly correlated states but depends on
the individual initial tensor product state. The decay of electron spin does not have an exponential
character, instead of it a power is given.

I. INTRODUCTION

In the last decade, the spin dynamics of electrons in semiconducting nanostructures
has attracted great attention from both theoretical and experimental points of view [1,2].
The controlled manipulation of the spin, and in particular of its phase, is the primary
prerequisite needed for novel applications in future quantum information processing. It
is thus desirable to understand the mechanisms which limit the spin phase coherence of
electrons. It was shown that in GaAs - semiconductors the spin decoherence times T2

is unusually long exceeding 100 ns [3]. In the other hand, in GaAs each nucleus carries
spin, the hyperfine interaction between electron and nuclear spins is unavoidable, and it is
therefore important to understand its effect on electron spin dynamics. This is particularly
interesting in the case, when the electrons are confined in closed systems such as a quantum
dot with a spin 1/2 ground state. Besides the fundamental interest, these systems are
potential candinates for spin qubits [4–11]. The spin dynamics in GaAs nanostructures is
extensively studied in Refs. [7, 8, 12,13].

In this work, we investigate the spin dynamics of a single electron confined to a 2D -
quantum dot at low temperature. Neglecting both spin-obit coupling and eletron-phonon
interaction [7], the hyperfine interation between electron and nulear spins becomes the
dominante mechanism controling the spin dynamics of electrons [11]. Obtained results
show that (i) the spin dynamics of electrons depends strongly on the initial state and the
polarization of nulear spins, (ii) not randomly correlated initial states but the individual
tensor product initial state affects the spin dynamics and (iii) the decay of electron spin
doesnot have an exponential character, instead of it a power is given.

II. THE MODEL

The hyperfine interaction. We consider an electron confined in a 2D-GaAs
quantum dot by the parabolic potential in the s-style state. We assume the electron to be



222 DAI VAN TRUONG AND NGUYEN VIET HUNG

in some orbital eigenstates according to the confinning potential, e.g. the orbital ground
state in the quantum dot. The remaining spin degree of freedom is coupling to the spins
of surrounding nuclei via the hyperfine interaction. The Hamiltonian reads:

Ĥ = ~S
∑

i

Ai
~Ii. (1)

Here the subscript i labels the nuclei, and the interaction constants Ai depend on the
position of nuclear spin ~Ii in the quantum dot [11]:

Ai = Aν0|Ψ(~ri)|2,
where n0 = 1/ν0 is the density of nuclei, A is the coupling constant [≈ 10−5eV ÷ 10−4eV],
Ψ(~ri) is the electron envelope wave function at nuclear site ~ri.

In the GaAs - quantum dot, the nulear spin I equals to 1/2. The electron enve-
lope wave function in the ground state in the quantum dot with a parabolic confinement
potential has the well-known Fock-Darwin form [14]:

|Ψ(~ri)|2 =
1
2π

1
(R/a)2

exp
(
−ρi/ (R/a)2

)
χ2

0 (z) ,

where R is the effective radius of quantum dot, a is the characterizing length of confinement
potential. The electron envelope wave function in the z - axis is given by:

χ2
0 (z) = θ

(
1
2
− |z|

)

The initial state. In the numerical simulations to be described below, the electron
spin is initially in a single tensor product state with the nuclear spin system.

|ψ(t = 0)〉 = |ψel〉 ⊗ |ψnuc〉 (2)

i.e. the electron spin described by |ψel〉 is initially uncorrelated with the nuclear spins.
However, there is still a large variety of possibilities for the initial nuclear spin state |ψnuc〉.
Since the nuclear spins are 1/2, it is convenient to choose |↑〉 and |↓〉 as the basic states
for electron spin and each nuclear spin. A simple choice is that the nuclear spin state is a
tensor product of single states:

|ψnuc〉 = |↑〉1 ⊗ |↑〉2 ⊗ |↓〉3 ⊗ ...⊗ |↑〉N . (3)

A nuclear spin state close to the above form can be generated experimentally by cooling
down the nuclear spins in a strong external magnetic field. The strong magnetic field pro-
vides a quantization axis and suppresses dipolar interactions changing the spin projection
along the field direction. Then, due to spin-lattice relaxation processes, the nuclear spin
system will end up in a state of the type (3).

A more general state of the nuclear spins is the superposition of tensor product
states,

|ψnuc〉 =
∑

T

αT |T 〉 , (4)

where the summation runs over all tensor product states of the form (3), i.e. over a
complete basis of the underlying Hilbert space. The complex amplitudes αT satisfy the
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normalization condition
∑
T
|αT|2 = 1. If the complex amplitudes αT are chosen randomly,

the nuclear spin state is called randomly correlated state.
In our simulations, we consider the GaAs - quantum dot with a given number N of

nuclear spins contained in a plane dish of radius R =
√
N/n0π. For the two dimensional

GaAs - quantum dot, typically, N ≈ 103 nuclei with the density n0 ≈ 12.8nm−2 and the
distribution of nuclear spins is regular. Thus, the radial coordinate ρi of i-th nuclear spin
is defined as ρi =

√
(i− 1/2)/πn0 with i ranging from 1 to N .

Since the Hamiltonian (1) conserves Jz of the total momentum ~J = ~S +
∑
i

~Ii, it is

convenient to study the time evolution of electron spin in a given Jz subspace defined by
eq.(2). The dimension of this subspace is given by:

CN+1
N+1

2
−Jz

=
(N + 1)!(

N+1
2 − Jz

)
!
(

N+1
2 + Jz

)
!

(5)

To study the time evolution of the electron spin, we diagonalize the Hamiltonian for a
subspace with a given value Jz and calculate the time evolution of the expectation value
of Sz .

III. NUMERICAL RESULTS AND DISCUSSION

As we have discussed in the previous section, the dimension of the computational
subspace given by Eq. (5) should increase so quickly with increasing N . For example, in
the case of the fully unpolarized initial nuclear system the dimension of the computational
subspace is C = 1716 and 6435 for N = 12 and 14, respectively. Because of this difficulty,
in this work, we are only able to study for some small values of N . However, obtained
results together with previous works [5, 10, 13] have provided a better understanding of
the decohence of the electron spin in the quantum information processing.

Fig. 1 shows simulation results for the system ofN = 12 nuclear spins with different
values of the degree of polarization Jz . The upper left panel shows the expectation value
< Sz(t) > as a function of time for fully polarized initial nuclear system with electron
spin pointing opposite to the nuclear spins. In the following panels the polarization of
the nuclear system is successively reduced by lowering the value of Jz in the initial state.
The case of a fully unpolarized nuclear spin system is shown in the bottom left panel with
Jz = −0.5. Since the value of the z-component of the total spin J is fixed the expectation
values of the transversal components Sx and Sy vanish. In all cases, < S(t) >=< Sz(t) >
decreases in magnitude. With decreasing the polarization the decay becomes more pro-
nounced, and the accompanied oscillations suppresse. It is the decay of the envelope in
these graphs but not the fast oscillations themselves that signals the spin decay. In our
calculations, because of the limit of computer power, the system of N = 12 nuclear spins
is the largest system in which we could investigate all degrees of polarization.

Next, we investigate the dependence of the electron spin evolution on the type of
initial state. The Fig. 2 shows the dependence of electron spin on time with N = 18 and
Jz = 7.5. The two left panels show the electron spin dynamics with randomly correlated
initial states and the two right ones show the corresponding data for the tensor product
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Fig. 1. The time evolution of the electron spin in the system of N = 12 nuclei. In
the top left panel the nuclear spins are fully polarized in the initial state with the
electron spin pointing opposite to the nuclear spins [Jz = 5.5]. In the following
panels the number of flipped nuclear spins in the initial state is gradually increased
(Jz decreases). The case, when the limiting of the fully unpolarized initial state
is reached, is shown in the bottom left panel [Jz = −0.5].

initial states. In both cases, < Sz(t) > decreases in magnitude. Results show that the
electron spin dynamics doesn’t depend on the randomly correlated initial state, but on the
tensor product initial state. In the latter case, the time evolution depends significantly
on the individual initial state. By comparing the data in the left panels with that in
the right ones we see that the decay of electron spin in the case of the tensor product
state is considerably slower than in the case of the randomly correlated state. In addition,
the obtained results [un-presented] also show that the time evolution for the randomly
correlated nuclear spin system closely mimics the average over all tensor product initial
states [15]. These conclusions are relevant with different numbers of nuclear spins and
different values of the degree of polarization Jz .

Finally, we estimated the decay law of the magnitude of < Sz(t) >. As shown in Fig.
3, the decay of < Sz(t) > follows well the power law t−α. A rough estimation in different
systems studied shows that for a given polarization α increases with increasing N . These
results are in qualitatively agreement with results of the perturbative approach calculation
[7, 8] for the large enough system. Khaetskii et al. [7, 8] have shown the < Sz(t) > decays
as t−3/2 for the case of large external magnetic field and the tensor product initial states.
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Fig. 2. Electron spin dynamics for N = 18 nuclei and Jz = 7.5. The left two
panels show the results for two randomly correlated initial state of the nuclear
system. The right two panels show the corresponding data for the two tensor
product initial states.

Fig. 3. The decay law of the electron spin dynamics for some cases with the
randomly correlated initial state. The dashed lines describe the law ∝ tα with α
given in the figure.

IV. CONCLUSION

In summary we have studied electron spin dynamics via its hyperfine interaction
with nuclear spins in a 2D GaAs - quantum dot. Obtained results show that the time
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evolution of electron spin depends on the type of initial state and the polarization of
the system. Electron spin dynamics doesn’t depend on the randomly correlated initial
states but on the tensor product initial states individually. The decay of the electron spin
evolution is given by a power. The study provides a better understanding of the decohence
of the electron spin in the quantum information processing.
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