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Controller design for enhancement position accuracy of a rigid-flexible
links robot by using particle warm optimization algorithm
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This paper presents the results of controller designing for enhancement
position accuracy of two-link flexible robot which motions on planar plane.
The first link is rigid with rotational joint and the second link is flexible and
slides in translational joint which fixed mounted the end point of link 1. Finite
element method (FEM) and Lagrange equations are used dynamic modeling
the system. The length of work part of flexible link 2 is continuously changed
and drags on changing of conditions boundary. These factors are many
challengers in modeling, solving nonlinear differential equations (DE) of
motion and designing controller. Elastic displacements at the end-effector
directly effect on position accuracy of robot. The extended PID control is
designed to reduce effecting of these displacement. The parameters of PID
control are optimized by using Particle Swarm Optimization (PSO) algorithm.
The solving technique with changing conditions boundary also clealy present.

Tém tit

Tr khoa:

Thiét ké hé diéu khién;
R6 bot dan hoi; Picu kién
bién; Do ch‘inh xac vi tri;
Thuat toan bay dan.

Bai bao nay trinh bay két qua nghién ciu thlet ké hé diéu khién nang cao do
chinh xé4c vi tri cho hé 16 bdt co 2 khau ndi tiép chuyén dong trong mat
phang. RS bét co khau 1 cimg chuyén dong quay, khau 2 dan h01 va chuyén
dong truot trong khép tinh tién duoc gan co dinh vao diém cudi cua khau
cung 1. Phuong phap phan ttr hitu han két hop véi hé phuong trinh Lagrange
loai 2 duge sur dung dé mo hinh héa dong luc hoc hé r6 bdt. Chiéu dai lam
viéc ctia khau dan hoi 2 lién tyuc thay d01 theo thoi gian keo theo su thay doi
lién tuc cua dicu kién bién. Nhimg yéu té nay tao ra sy phirc tap trong mo
hinh héa dong luc hoc, giai hé phuo‘ng trinh vi phan (DE) phi tuyén va thiét
ké diéu khién. Yéu t6 chuyen vi dan hodi anh hudng rat 16n toi do chinh xac
chuyén dong cua hé. He diéu khién PID duoc thiét ké véi cac thong so Ki,
Kp, Kd dugc tdi wu bang thuat toan bay dan (PSO) nham lam giam, tién téi
tri¢t ti€u anh hudng cta yeu td chuyén vi dan hoi va nang cao d6 chinh xac vi
tri ctia diém thao tac ro bét. K¥ thuat giai hé phuong trinh vi phan chuyén
dong c6 diéu kién bién thay d6i lién tuc cling duoc trinh bay cu thé.

Received: 20/7/2018
Received in revised form: 12/9/2018
Accepted: 15/9/2018




HOI NGH| KHOA HOC VA CONG NGHE TOAN QUOC VE CO KHi LAN THU V - VCME 2018

1. INTRODUCTION

There are challengers in dynamic modeling and control flexible robot [1], [2], [3] because
of mentioning effect of elastic displacement in motion. Lumped Parameters Method (LPM) [4],
Assumed Modes Method (AMM) [5], [6], [7] and Finite Element Method (FEM) [8], [9], [10]
are mostly used to dynamic model of flexible robot. Traditional and intelligent controller
systems are applicated to control these types. However, simple, effective and suitable with real
time controller always is the first selection of researchers. Most of the investigations on robot
with elastic arms have been confined to robot with only revolute joints [1], [2], [3]. Combining
such systems with translational joints enables these robots to perform manipulation tasks in a
much larger workspace, more flexibility and more applications. Translational joint is also the
popular joint to connect links in robot mechanism such as cylindrical robots. Few authors have
studied the manipulator with only translational joint [5], [6]. A number of researches focused on
the flexible manipulator with a link slides through a translational joint with a simultaneous
rotational motion [8], [11], [12]. However, most of studies on type of sliding flexible link in
translational joint have not clearly analyzed in conditions boundary and solving nonlinear
differential equations with dynamic modeling using FEM. There are many researchers who
focused on intelligent control system development to end-effectors control as Fuzzy Logic [13],
Neural Network [14], PSO [15], Back-stepping [16] and Genetic Algorithm [9]. PSO was
formulated by Edward and Kennedy in 1995. PSO algorithm is optimization technique by social
behavior of bird flocking [15].

This paper forcus on controller designing for enhancement position accuracy of two-link
flexible robot. The first link is rigid with rotational joint and the second link is flexible and slides
in translational joint which fixed mounted the end point of link 1. Finite element method (FEM)
and Lagrange equations are used dynamic modeling the system. The length of work part of
flexible link 2 is continuously changed and drags on changing of conditions boundary. The
solving technique with changing conditions boundary also clealy present. The extended PID
control is designed to reduce effecting of these displacement. The parameters of PID control are
optimized by using Particle Swarm Optimization (PSO) algorithm.

2. DYNAMIC MODELING
2.1. Dynamic equations

Considering the flexible robot with rotational/translational joints is shown in Fig.1. The
coordinate system XOY is the fixed frame. Coordinate system X,0,Y, is attached to first point of

rigid link 1. Coordinate system X,0,Y, is attached to the center of translational joint which is fixed
mounted the end point of link 1. The rotational joint variable G(t) is driven by r(t) torque and
translational joint d(t) is driven by F force. Joints are assumed rigid. Link 1 is rigid. Link 2 is
flexible and divided n elements. The length of link 2 is L

interconnected at certain points, known as nodes. Each element j, j=1+n has two nodes (j,j+1).

, . The elements are assumed
Each node of element j has 2 elastic displacement variables which are the flexural displacement

(uzjfl,uzjﬂ) and the slope displacements (uzj,uZHZ) , respectively. Element k is any element which
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slides through prismatic joint. Assumed that the length of prismatic joint is shorter than length of
element k and without loss of generality, the elastic displacements at the node k are zero

(u2k71=u2k=0) if these displacements are behind or inside prismatic joint (Fig. 2). This is the

conditions boundary which are continuously changed by varying k value while solving differential
equations. Defining the part in work is from element k to the end-effector point. We have

kI, =L,~d(t) (1)

Index of element k must be integer value, so it can be taken integer part in Eq. (2)
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Fig. 1. Rigid-flexible links robot
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Fig. 2. Position of element k

The dynamic equation of motion relies on the Lagrange equations with Lagrange function
L=T-P given by

T

230

Where, T and P are the kinetic and potential energy of the system. Vector
Q(t):[r(t) F(t) 0. .0 0] is external generalized torque with rotational joint or force with

translational joint acting along components of the generalized coordinate q(t). Assumed that

robot motions in horizontal plane, effect of gravity is can be ignored. The equations of motion

can be expressed as

M(q)4+C(q,9)q+Kq=Q(t) (4)

Where, the Coriolis and centrifugal matrix is C which is correspondingly calculated as in
[17]. The structural damping is ignored in this study. The generalized inertia matrix M and the
stiffness matrix K are calculated by proposed assembly algorithm based on FEM theory. The
size of matrices M,K and C is (2n+4)x(2n+4). All components of M,K and C are related to
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the elastic deformation of links and they will be determined in the generalized case. Considering
element j of link 2, a point rzj(x) represented in X,0,Y,, where 0<x<I_  and lezL% , can be

computed as follows
rzj(x):[(j—l)le—L2+d(t)+x w (x) 0 1]T (5)
Notice that w; (X) is the total elastic displacement of element j, Wj(X) N (x ( )q 0 N.( )1s
the vector of the shape functions, N,(x)=[¢(x) ¢ (x) ¢ (x) ¢,(x)]; The computation of the
shape functions is detailed in [usoro]; q; is the vector of elastic displacements of the element j,

T . .
qj:[uzjf1 Uy Uy, u2j+2] . Therefore, the point r,; represented in X0Y , can be expressed as

=H, H,r (6)

02] 1272j

Where H,, and H,, are the homogeneous transformation matrices representing the
transformation from X,0,Y, to X0Y , and from X,0,Y, to X,0,Y, , respectively. Notice that,

because of the concept of homogeneous matrix used, the representation of vectors r,;, r,, needs

four components. However, in the following, only two first components of them are utilized to
respect to the descriptions in the planar workspace. The kinetic energy of element j of link 2 is

. . T
determined with q;, :[e(t) d(t) Uy g Uy Uy, uZHZJ as [10]
1L 1. :
2j :E'[O m rozlrozldx ijTgMj Qjg (7)

c 1. . . .
The total kinetic energy of link 2 is yielded as T, =ZT21 =EqTMeq . The matrix M, is

=

constructed from all the matrices M, . The total kinetic energy of the system is determined as

|
T =T, +T +T, :EqTMq. Where T, and T, are the kinetic energy of the first link and the

payload which can be easily determined via the rigid model. Let E and I be Young’s modulus
and inertial moment of link 2, respectively. The elastic potential energy of element j, P, , is

p=l['E { )J {az L )JdX:%ququj ®)

o1
The total potential energy of the whole system is yielded as P=ZP]. =EqTKq. The general

=1

computed as [10]

stiffness matrix K is constructed from all matrices K, . Finally, substituting all matrices

M,C and K into Eq. (4) obtains the dynamic equations for the generalized model.
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2.2. Boundary Conditions and solving DE technique

The displacements of its first node vanish (u,,_, =u,, =0). Therefore, the (2k+1)th and the

(2k+2)th rows and columns of the matrices M,K and C are continuously eliminated. The same
positions of q(t) and Q(t) are eliminated, respectively. The size of matrices M,K and C is

changed to (2n+2)><(2n+2) and the size of q(t) and Q(t) is (2n+2)><1 . The solving differential
equations technique can be described as Fig. 3 in MATLAB/SIMULINK.

’—>.
Bluelkcl Block 2 Rotational joint
o(t)

’—D.
Torque * ( ) 4 d(t) Translational joint
i(t 1 >
P a(t) Greapa o (2nt2)1 s 1 ‘ Uiy
Force q(t) (n+ajxL s alt) e g Flexural displacement
q(t) do 4 q0 »{qo (2nt2)x1 2m42
Dynamic equations fen (an+4)<t q(t) 1@
- (2n+2)x1 Initial condition Update k Slope displacement
a(t)
—iy &
(2n+a)<1 fon k
Update velocity q(t) vector

Block 3

Fig. 3. Schematic solving differential equations in MATLAB/SIMULINK

Considering step i, the value k(i) is calculated in Eq. (2). Size of M, K .C, is

i

* * *

0K Co
and q,,Q;, with size is (2n+2)x1 . Attaching elements of M ,K,C; to M K ,Cj with

(2n+4)><(2n+4) and q ,Q(i) is (2n+4)><1. Declaration M with size is (2n+2)><(2n+2)

* *

k(i) variable is implemented at Block 1 (Fig. 3). Example with M(i) matrix and q ,in) vectors:

M| T:(2K(i)+1);1:(2ke(i)1) [=M | 1:(2K(0)+151:(2Ke(i)+1) |

M | (2k(i)+2):(2n+2)s(2K(i)}+2)(2n+2) |=M| | (2k(i)+4):(2n+4);(2k())+4):(2n+4) | (9)

Q)| 1:(2e(i)+1)11 |=Q | 1:(2(i)+151 ey | 1:(2K(i)+1):1 [=q, | 1:(2Ke(i))+151 |

The others matrices and vectors are operated the same way. Note that all of generalized
matrices and vectors must be retrieved inertia size in step i+1 at Block 2 and Block 3 for

calculating next step with updating k(i+1) value.

3. CONTROLLER DESIGN
3.1. Control law

Elastic displacements at the end-effector effect on position accuracy of flexible robot.
Therefore, control law must be designed to minimum reduced these influences. Considering the
extended PID control law which includes reducing elastic displacement factor and is given as
below
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t
é(t):er(t)+KDé(t)+Klu(t).[0 é(s)u(s)ds (10)
The previous PID controller which has not reducing elastic displacement factor is shown as
£(t)=K,e(t)}+K,e(t)}+K, '[;é(s)ds (11)

Where, e(t)=[0,,—0,., d..—d

0.. O]T is the joint variables error vector,

real ref ~ “real

c“,(t)=[r(t) F(t) 0.. O]T :Q(t) is the applied force vector in Eq. (4), u(t)=u2n+1(t) is the elastic
displacement at the end-effector, K, K, K, are the zero matrix excepted positions
(1,1),(1,2) which are the values of control system. The size of e(t),&(t) 1S (2n+4)><1, size of
K. K, K, is (2n+4)x(2n+4). 6., and d,, are the desired values and the input data. 6, and

d,., are the output data of control system. Lyapunov function V is given as
2

V:T+P+%eTer+%Kl [ Ioté(s)u(s)ds} . Derivating of V is  computed as

V=T+P+éTKPe+Kléu(t)I;éu(s)ds with T+P=qT(Mq+EMq+KqJ:qT(&(t)+5q(M—2C)J .

Note that "Mq=q'Mq and q'Kq=q'Kq with M , K are the symatric matrices. So,

V=—qTKDq+%éT(M-2C)éSO with ¢"(M-2C)é=0 because (M-2C)is the skew-matrix [17].

We can conclude that controller can achieve stable with control law in Eq. (10).

3.2. PSO algorithm

This paper presents the PSO algorithm to find the suitable parameters of the PID
controller. Each particle moves about the cost surface with a velocity. The particles update their
velocities and positions based on the local and global best solutions. Fig. 4 shows the movement

of a single particle (1) at the time step t(i) in space search. At time step t(i) , the position,
velocity, personal best and global best are indicated as x,(t),v,(t),p,(t) and p,(t), respectively.
The velocity vi(t) serves as a memory of the previous flight direction, can be seen as

momentum. At time step (t+1), the new position x;(t+1) can be calculated based on three

components which are momentum, cognitive and social component [15].
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Fig. 4. The movement of a single particle and steps in PSO algorithm

After finding the personal best and global best, particle is then accelerated toward those
two best values by updating the particle position and velocity for the next iteration using the
following set of equations which are given as

v,(t)=kv,(t-1)+C, .rand.(Pi —X, (t—l))++C2 .rand.(Pg —X, (t—l));
x,(t)=x,(t-1)+v,(t);

Where, C, and C, are learning factors. Symbol rand is the random number between 0 and

(12)

1. Symbol k is the inertia serves as memory of the previous direction, preventing the particle from
drastically changing direction. The information details of PSO algorithm can be considered as.
The sequences of operation in PSO are described in figure 4 with variable par are the optimum

Td

* T * . . . . . .

solution. The objective function J= I ((e ) (e )+§T§)dt is used in this study. Fitness function ] is
0

the linear quadratic regulator (LQR) function. Function ] includes the sum-squared of error
(e*)of joints and elastic displacements and sum-squared of driving energy. The optimum target

is finding the minimum cost of ] function with values of respective parameters of PID
controllers which are changed from lower bound to upper bound values.

4. NUMERICAL SIMULATION

In this work, simulation results are presented for two cases. Case 1 is reduced elastic
displacement and case 2 is without reduced elastic displacement in joint space. Parameters of
dynamic model, reference point and PSO algorithm are shown in Table. 1. It noted that values of
lower and wupper bound of wvariables are determined from auto tuning mode in
MATLAB/SIMULINK.
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Table 1. Dynamic configure of robot and PSO algorithm parameters

Parameters of flexible robot Parameters of PSO algorithm
Number of elements of link 2 n=5 Number of particles in a swarm 50
Length of link 1, link 2 (m) L,=0.2; L,=0.8 Nurpber of searching steps for a 50
particle

Cross-section area (m®) A=2.5x107; A,=4.5x107 Cognitive and social acceleration 2
Mass of payload (kg) m=0.1 Max and min inertia factor 0.9;0.4
Mass density (kg/m’) p,=p,=7850 Number of optimization variables 6
Young’s modulus (N/m’) E,=E,=2x10" Lower bound of variables 0
Simulation time (seconds) 20 Upper bound of variables 10
Reference points 0., =1.57(rad);d  =0.3(m)

The optimum parameters of PID with reducing elastic displacement (reduced): kp,;=5.84; kd,=0.285; ki,=1.897;
kp,=5.69; kd,=1.97; ki,=1.68

The optimum parameters of PID without reducing elastic displacement (not reduced): kp,;=7.88; kd;=0.59;
ki;=1.42; kp,=7.12; kd,=7.89; ki,=2.19

The joint displacements, error control and deviation between both cases are shown in fig. 5
and fig. 6. Flexural and slope displacement at the end-effector are described in fig. 7 and fig. 8.
Applied torque and force at joints is presented in fig 9 while deviation between them is shown in
fig. 10. The simulation results in figures show that position accuracy in case reducing elastic
displacement is higher than other case. Error of position is reduced about 10%. Setting time is
reduced from 10(s) to 2(s) (fig. 6).

In general, simulation results show that initial control requests in jointspace are warranted
with extended PID controller. The errors of joint variables are fast reduced. However, elastic
displacements are not absolutely eliminated and these values effect on position of end-effector
point in workspace.
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Fig. 5. Rotational joint displacement Fig. 6. Translational joint displacement
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Fig. 9. Applied torque and force Fig. 10. Deviation applied torque/force
5. CONCLUSIONS

Designing extended PID controller of a flexible link robot combining rigid and flexible
link, combining rotational and translational joint is presented. Equations of motion are built
based on using finite element method and Lagrange approach. Extended PID control system is
proposed to warrant following reference point in joint space. The position error is reduced based
on reducing elastic displacement at the end-effector. Parameters of PID control are optimized by
using PSO algorithm. The output search results are successfully applied to control position. The
solving technique with changing conditions boundary also clealy presented.
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