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 This paper presents the results of controller designing for enhancement 
position accuracy of two-link flexible robot which motions on planar plane. 
The first link is rigid with rotational joint and the second link is flexible and 
slides in translational joint which fixed mounted the end point of link 1. Finite 
element method (FEM) and Lagrange equations are used dynamic modeling 
the system. The length of work part of flexible link 2 is continuously changed 
and drags on changing of conditions boundary. These factors are many 
challengers in modeling, solving nonlinear differential equations (DE) of 
motion and designing controller. Elastic displacements at the end-effector 
directly effect on position accuracy of robot. The extended PID control is 
designed to reduce effecting of these displacement. The parameters of PID 
control are optimized by using Particle Swarm Optimization (PSO) algorithm. 
The solving technique with changing conditions boundary also clealy present. 

  Tóm tắt 

Từ khóa: 

Thiết kế hệ điều khiển;  
Rô bốt đàn hồi; Điều kiện 
biên; Độ chính xác vị trí; 
Thuật toán bầy đàn. 

 Bài báo này trình bày kết quả nghiên cứu thiết kế hệ điều khiển nâng cao độ 
chính xác vị trí cho hệ rô bốt có 2 khâu nối tiếp chuyển động trong mặt 
phẳng. Rô bốt có khâu 1 cứng chuyển động quay, khâu 2 đàn hồi và chuyển 
động trượt trong khớp tịnh tiến được gắn cố định vào điểm cuối của khâu 
cứng 1. Phương pháp phần tử hữu hạn kết hợp với hệ phương trình Lagrange 
loại 2 được sử dụng để mô hình hóa động lực học hệ rô bốt. Chiều dài làm 
việc của khâu đàn hồi 2 liên tục thay đổi theo thời gian kéo theo sự thay đổi 
liên tục của điều kiện biên. Những yếu tố này tạo ra sự phức tạp trong mô 
hình hóa động lực học, giải hệ phương trình vi phân (DE) phi tuyến và thiết 
kế điều khiển. Yếu tố chuyển vị đàn hồi ảnh hưởng rất lớn tới độ chính xác 
chuyển động của hệ. Hệ điều khiển PID được thiết kế với các thông số Ki, 
Kp, Kd được tối ưu bằng thuật toán bầy đàn (PSO) nhằm làm giảm, tiến tới 
triệt tiêu ảnh hưởng của yếu tố chuyển vị đàn hồi và nâng cao độ chính xác vị 
trí của điểm thao tác rô bốt. Kỹ thuật giải hệ phương trình vi phân chuyển 
động có điều kiện biên thay đổi liên tục cũng được trình bày cụ thể. 
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1. INTRODUCTION  

There are challengers in dynamic modeling and control flexible robot [1], [2], [3] because 
of mentioning effect of elastic displacement in motion. Lumped Parameters Method (LPM) [4], 
Assumed Modes Method (AMM) [5], [6], [7] and Finite Element Method (FEM) [8], [9], [10] 
are mostly used to dynamic model of flexible robot. Traditional and intelligent controller 
systems are applicated to control these types. However, simple, effective and suitable with real 
time controller always is the first selection of researchers. Most of the investigations on robot 
with elastic arms have been confined to robot with only revolute joints [1], [2], [3]. Combining 
such systems with translational joints enables these robots to perform manipulation tasks in a 
much larger workspace, more flexibility and more applications. Translational joint is also the 
popular joint to connect links in robot mechanism such as cylindrical robots. Few authors have 
studied the manipulator with only translational joint [5], [6]. A number of researches focused on 
the flexible manipulator with a link slides through a translational joint with a simultaneous 
rotational motion [8], [11], [12]. However, most of studies on type of sliding flexible link in 
translational joint have not clearly analyzed in conditions boundary and solving nonlinear 
differential equations with dynamic modeling using FEM. There are many researchers who 
focused on intelligent control system development to end-effectors control as Fuzzy Logic [13], 
Neural Network [14], PSO [15], Back-stepping [16] and Genetic Algorithm [9]. PSO was 
formulated by Edward and Kennedy in 1995. PSO algorithm is optimization technique by social 
behavior of bird flocking [15]. 

This paper forcus on controller designing for enhancement position accuracy of two-link 
flexible robot. The first link is rigid with rotational joint and the second link is flexible and slides 
in translational joint which fixed mounted the end point of link 1. Finite element method (FEM) 
and Lagrange equations are used dynamic modeling the system. The length of work part of 
flexible link 2 is continuously changed and drags on changing of conditions boundary. The 
solving technique with changing conditions boundary also clealy present. The extended PID 
control is designed to reduce effecting of these displacement. The parameters of PID control are 
optimized by using Particle Swarm Optimization (PSO) algorithm.  
 
2. DYNAMIC MODELING 

2.1. Dynamic equations 

Considering the flexible robot with rotational/translational joints is shown in Fig.1. The 

coordinate system XOY  is the fixed frame. Coordinate system 1 1 1X O Y  is attached to first point of 

rigid link 1. Coordinate system 2 2 2X O Y  is attached to the center of translational joint which is fixed 

mounted the end point of link 1. The rotational joint variable  t  is driven by  t  torque and 

translational joint  d t  is driven by F  force. Joints are assumed rigid. Link 1 is rigid. Link 2 is 

flexible and divided n  elements. The length of link 2 is 2L . The elements are assumed 

interconnected at certain points, known as nodes. Each element j , j 1 n   has two nodes  j,j 1 . 

Each node of element j  has 2 elastic displacement variables which are the flexural displacement 

 2j 1 2j 1u ,u  and the slope displacements  2j 2j 2u ,u  , respectively. Element k  is any element which 
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slides through prismatic joint. Assumed that the length of prismatic joint is shorter than length of 
element k  and without loss of generality, the elastic displacements at the node k  are zero 

 2k 1 2ku u 0    if these displacements are behind or inside prismatic joint (Fig. 2). This is the 

conditions boundary which are continuously changed by varying k  value while solving differential 
equations. Defining the part in work is from element k to the end-effector point. We have 

 e 2kl L d t   (1) 

Index of element k must be integer value, so it can be taken integer part in Eq. (2) 

 2

e

L d t
k

l

 
 
 

 (2) 

  
 

Fig. 1. Rigid-flexible links robot 
 

Fig. 2. Position of element k 

 
The dynamic equation of motion relies on the Lagrange equations with Lagrange function 

L T P   given by  

 
T T

d L L
t

dt

    
    

    
Q

q q
 (3) 

Where, T  and P  are the kinetic and potential energy of the system. Vector 

     
T

t t F t 0.. .. 0 0   Q  is external generalized torque with rotational joint or force with 

translational joint acting along components of the generalized coordinate  tq . Assumed that 

robot motions in horizontal plane, effect of gravity is can be ignored. The equations of motion 
can be expressed as 

     t M q q C q,q q+Kq Q    (4) 

Where, the Coriolis and centrifugal matrix is C  which is correspondingly calculated as in 
[17]. The structural damping is ignored in this study. The generalized inertia matrix M and the 
stiffness matrix K  are calculated by proposed assembly algorithm based on FEM theory. The 

size of matrices ,M K  and C  is    2n 4 2n 4   . All components of ,M K  and C  are related to 
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the elastic deformation of links and they will be determined in the generalized case. Considering 

element j  of link 2, a point  2j xr  represented in 
2 2 2X O Y , where 

e0 x l   and 2
e

L
l

n
  , can be 

computed as follows 

       
T

2j e 2 jx j 1 l L d t x w x 0 1      r  (5) 

Notice that  jw x  is the total elastic displacement of element j ,    j j jw x xN q ;  j xN is 

the vector of the shape functions,           j 1 2 3 4x x x x x  N     ; The  computation of the 

shape functions is detailed in [usoro]; jq  is the vector of elastic displacements of the element j , 
T

j 2j 1 2j 2j 1 2j 2u u u u  
  q . Therefore, the point 2jr  represented in XOY , can be expressed as  

02j 01 12 2jr H H r  (6) 

Where 
01H  and 

12H  are the homogeneous transformation matrices representing the 

transformation from
1 1 1X O Y  to XOY , and from 

2 2 2X O Y to
1 1 1X O Y , respectively. Notice that, 

because of the concept of homogeneous matrix used, the representation of vectors 2jr , 02jr   needs 

four components. However, in the following, only two first components of them are utilized to 
respect to the descriptions in the planar workspace. The kinetic energy of element j  of link 2 is 

determined with    
T

jg 2j 1 2j 2j 1 2j 2t d t u u u u  
   q  as [10] 

el T T
2j 2 02j 02j jg j jg0

1 1
T m dx q

2 2
  r r q M     (7) 

The total kinetic energy of link 2 is yielded as 
n

T

e 2j e
j 1

1
T T

2

  q M q  . The matrix eM  is 

constructed from all the matrices jM . The total kinetic energy of the system is determined as 

T
1 e P

1
T T T T

2
    q Mq  . Where 1T  and PT  are the kinetic energy of the first link and the 

payload which can be easily determined via the rigid model. Let E  and I  be Young’s modulus 

and inertial moment of link 2, respectively. The elastic potential energy of element j , jP , is 

computed as [10] 

   e

T2 2
l j j T

j j j j2 20

w x,t w x,t1 1
P EI dx

2 x x 2

    
           
 q K q  (8) 

The total potential energy of the whole system is yielded as 
n

T

j
j 1

1
P P

2

  q Kq . The general 

stiffness matrix K  is constructed from all matrices jK . Finally, substituting all matrices 

,M C and K  into Eq. (4) obtains the dynamic equations for the generalized model.  
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2.2. Boundary Conditions and solving DE technique 

The displacements of its first node vanish  2k 1 2ku u 0   . Therefore, the  
th

2k 1 and the 

 
th

2k 2 rows and columns of the matrices ,M K  and C  are continuously eliminated. The same 

positions of  tq and  tQ  are eliminated, respectively. The size of matrices ,M K  and C  is 

changed to    2n 2 2n 2    and the size of  tq and  tQ  is  2n 2 1  . The solving differential 

equations technique can be described as Fig. 3 in MATLAB/SIMULINK. 
 

 

Fig. 3. Schematic solving differential equations in MATLAB/SIMULINK 

 

Considering step i , the value  k i  is calculated in Eq. (2). Size of      i i i
, ,M K C  is 

   2n 4 2n 4    and    i i
,q Q is  2n 4 1  . Declaration      

* * *

i i i
, ,M K C  with size is    2n 2 2n 2    

and    
* *

i i
,q Q with size is  2n 2 1  . Attaching elements of      i i i

, ,M K C  to      
* * *

i i i
, ,M K C  with 

 k i variable is implemented at Block 1 (Fig. 3). Example with  
*

i
M  matrix and    

* *

i i
,q Q  vectors: 

               

                       

                   

          

              

                   

M M

M M

Q Q q q

*

i i

*

i i

* *

i i i i

1: 2k i 1 ;1: 2k i 1 1: 2k i 1;1: 2k i 1

2k i 2 : 2n 2 ; 2k i 2 : 2n 2 2k i 4 : 2n 4 ; 2k i 4 : 2n 4

1: 2k i 1 ;1 1: 2k i 1;1 ; 1: 2k i 1 ;1 1: 2k i 1;1

 (9) 

The others matrices and vectors are operated the same way. Note that all of generalized 
matrices and vectors must be retrieved inertia size in step i+1 at Block 2 and Block 3 for 

calculating next step with updating  k i 1  value. 
 

3. CONTROLLER DESIGN 

3.1. Control law 

Elastic displacements at the end-effector effect on position accuracy of flexible robot. 
Therefore, control law must be designed to minimum reduced these influences. Considering the 
extended PID control law which includes reducing elastic displacement factor and is given as 
below 
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 
t

P D I 0
t (t) (t) u(t) (s)u(s)ds   ξ  K e K e K e  (10) 

The previous PID controller which has not reducing elastic displacement factor is shown as 

 
t

P D I 0
t (t) (t) (s)ds   ξ  K e K e K e  (11) 

Where,  
T

ref real ref real(t) d d 0 . . 0   e  is the joint variables error vector, 

       
T

t t F t 0 . . 0 t    ξ Q  is the applied force vector in Eq. (4),    2n 1u t u t is the elastic 

displacement at the end-effector, P I DK ,K ,K  are the zero matrix excepted positions 

   1,1 , 1,2 which are the values of control system. The size of    t , te ξ is  2n 4 1  , size of 

P I DK ,K ,K  is    2n 4 2n 4   . ref  and refd  are the desired values and the input data. real  and 

reald  are the output data of control system. Lyapunov function V is given as 

 
2t

T

P I 0

1 1
V T P s u(s)ds

2 2
    
   ee K e K . Derivating of V is computed as 

t
T

P I 0
V T P u(t) u(s)ds  = + e K e K e e       with  T 1 1

T P ( )
2 2

   
        

   

Tq Mq Mq+Kq q ξ q M 2C       t . 

Note that T Tq Mq q Mq=     and T Tq Kq q Kq  with M , K  are the symatric matrices.  So, 

 1
V 0

2
  T T

Dq K q e M-2C e      with  Te M-2C e =0  because  M-2C is the skew-matrix [17]. 

We can conclude that controller can achieve stable with control law in Eq. (10). 
 
3.2. PSO algorithm 

This paper presents the PSO algorithm to find the suitable parameters of the PID 
controller. Each particle moves about the cost surface with a velocity. The particles update their 
velocities and positions based on the local and global best solutions. Fig. 4 shows the movement 

of a single particle  i  at the time step  t i  in space search. At time step  t i , the position, 

velocity, personal best and global best are indicated as      i i ix t ,v t ,p t  and  gp t , respectively. 

The velocity  iv t  serves as a memory of the previous flight direction, can be seen as 

momentum. At time step  t 1 , the new position  ix t 1  can be calculated based on three 

components which are momentum, cognitive and social component [15]. 
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Fig. 4. The movement of a single particle and steps in PSO algorithm 

 
After finding the personal best and global best, particle is then accelerated toward those 

two best values by updating the particle position and velocity for the next iteration using the 
following set of equations which are given as 

         
     
i i 1 i i 2 g i

i i i

v t kv t 1 C .rand. P x t 1 C .rand. P x t 1 ;

x t x t 1 v t ;

       

  
 (12) 

Where, 
1C  and 

2C  are learning factors. Symbol rand  is the random number between 0 and 

1. Symbol k  is the inertia serves as memory of the previous direction, preventing the particle from 
drastically changing direction. The information details of PSO algorithm can be considered as. 
The sequences of operation in PSO are described in figure 4 with variable par  are the optimum 

solution. The objective function     
dT

T
* * T

0

J dt  e e ξ ξ  is used in this study. Fitness function J  is 

the linear quadratic regulator (LQR) function. Function J  includes the sum-squared of error 

 *e of joints and elastic displacements and sum-squared of driving energy. The optimum target 

is finding the minimum cost of J  function with values of respective parameters of PID 

controllers which are changed from lower bound to upper bound values. 
 

4. NUMERICAL SIMULATION  

In this work, simulation results are presented for two cases. Case 1 is reduced elastic 
displacement and case 2 is without reduced elastic displacement in joint space. Parameters of 
dynamic model, reference point and PSO algorithm are shown in Table. 1. It noted that values of 
lower and upper bound of variables are determined from auto tuning mode in 
MATLAB/SIMULINK. 
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Table 1.  Dynamic configure of robot and PSO algorithm parameters 

Parameters of flexible robot Parameters of PSO algorithm 

Number of elements of link 2 n=5 Number of particles in a swarm 50 

Length of link 1, link 2 (m) L1=0.2; L2=0.8 Number of searching steps for a 
particle 

50 

Cross-section area (m2) A1= 2.5x10-3; A2=4.5x10-5 Cognitive and social acceleration 2 

Mass of payload (kg) mt=0.1 Max and min inertia factor 0.9; 0.4 

Mass density (kg/m3) 1 2 7850    Number of optimization variables 6 

Young’s modulus (N/m2) 10
1 2E E 2 10    Lower bound of variables 0 

Simulation time (seconds) 20 Upper bound of variables 10 

Reference points     ref ref1.57 rad ;d 0.3 m      

The optimum parameters of PID with reducing elastic displacement (reduced): kp1=5.84; kd1=0.285; ki1=1.897; 
kp2=5.69; kd2=1.97; ki2=1.68 
The optimum parameters of PID without reducing elastic displacement (not reduced): kp1=7.88; kd1=0.59; 
ki1=1.42; kp2=7.12; kd2=7.89; ki2=2.19 

 
The joint displacements, error control and deviation between both cases are shown in fig. 5 

and fig. 6. Flexural and slope displacement at the end-effector are described in fig. 7 and fig. 8. 
Applied torque and force at joints is presented in fig 9 while deviation between them is shown in 
fig. 10. The simulation results in figures show that position accuracy in case reducing elastic 
displacement is higher than other case. Error of position is reduced about 10%. Setting time is 
reduced from 10(s) to 2(s) (fig. 6). 

In general, simulation results show that initial control requests in jointspace are warranted 
with extended PID controller. The errors of joint variables are fast reduced. However, elastic 
displacements are not absolutely eliminated and these values effect on position of end-effector 
point in workspace.  

 

       
 

                Fig. 5. Rotational joint displacement                                    Fig. 6. Translational joint displacement 
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                              Fig. 7. Flexural displacement                                             Fig. 8. Slope displacement 
 

         
 

                         Fig. 9. Applied torque and force                                    Fig. 10. Deviation applied torque/force 
 

5. CONCLUSIONS 

Designing extended PID controller of a flexible link robot combining rigid and flexible 
link, combining rotational and translational joint is presented. Equations of motion are built 
based on using finite element method and Lagrange approach. Extended PID control system is 
proposed to warrant following reference point in joint space. The position error is reduced based 
on reducing elastic displacement at the end-effector. Parameters of PID control are optimized by 
using PSO algorithm. The output search results are successfully applied to control position. The 
solving technique with changing conditions boundary also clealy presented. 
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